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We express classical Hamiltonian ray optics for light rays in axisymmetric fibers as a Lie-Poisson dynamical system 
defined in R 3, regarded as the dual of the Lie algebra sp(2, •). The ray-tracing dynamics is interpreted geometrically as 
motion in ~3 along the intersections of two-dimensional level surfaces of the conserved optical Hamiltonian and the 
skewness invariant (the analog of angular momentum, conserved because of the axisymmetry of the medium). In this 
geometrical picture, a Hamiltonian level surface is a vertically oriented cylinder whose cross section describes the radial 
profile of the refractive index, and a level surface of the skewness function is a hyperboloid of revolution around a horizontal 
axis. Points of tangency of these surfaces are equilibria, which are stable when the Gaussian curvature of the Hamiltonian 
level surface (constrained by the skewness function) is negative definite at the equilibrium point. Examples are discussed for 
various radial profiles of the refractive index. This discussion places optical ray tracing in fibers into the geometrical setting 
of Lie-Poisson Hamiltonian dynamics and provides an example of optical ray trapping within separatrices (homoclinic 
orbits). 

1. Optical phase space 

The  phase space of geometr ical  optics is four- 

d imensional .  Refer red  to a s tandard  p lanar  

screen, a ray is de t e rmined  by two position coor- 

d inates  q = (qx, qy) defining its in tersect ion with 

the screen, and  two momentum coordinates  p = 

(Px, Py) that  cue the project ion onto  the screen of 

a three-vector  ff t angen t  to the ray, whose length 

n(q) is the refractive index of the m e d i u m  at that  

point.  See fig. 1. Only  rays pe rpend icu la r  to the 

optical axis canno t  be paramet r ized  in this man-  

ner.  

The  coordinate  normal  to the screen, z, ex- 

tends  along the optical axis. The  project ion along 

the optical axis of the vector if(q, z ) - w h i c h  in 

general  is allowed to depend  on z -  is given by 

/ ~ x 2 _ n o p t .  h = y n 2 [ q , z )  = 

The manifold  (q, p )  is symplectic, with Poisson 

bracket  

OF 0G OF 0G 
{F ,G}  = - ~ "  Op - O---/)- " Oq '  

qy 

/ / ~ ' ~ q , z )  

x 

Fig. 1. Image screen phase space for geometrical optics. 

and the evolut ion of the system is governed by 

Hami l ton ' s  equat ions,  

' q  = {q, H °pt} OH °pt 
dz  0p ' 

d__p_p = {p, HOpt } OH °pt 
dz  Oq 
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2. Generators of flow scribed by Hamiltonians, 

To any differentiable function F(q, p) we asso- 
ciate its Lie operator if(q, p; O/Oq, O/Op) [6], 

. :  - -  ¢ / ~ ( ~ 2 ) 2  - - p  2 , 

OF O OF 0 
F =  {F, o} = - ~ - . ~  - O---p'Oq" 

A Lie opera tor  ff generates the flow of phase 
space  (q, p )  given by the  vec t o r  field 
( -  OF/Op, OF/Oq), which is orthogonal to the gra- 
dient of F, (OF/Oq, OF/Op), and, hence, is con- 
ta ined within the submanifolds  F(q, p) = 
constant, i.e. within its "level surfaces". The flow 
expressed by Hamil ton 's  equations is the particu- 
lar case for F = - H  °pt= h. The evolution of an 
observable g(q,p)  under  the flow generated by 
an ff will be governed by the analogous equation 
d g / d z  =fig, for flow paramete r  ~-, and will be 
canonical, i.e. it will preserve Poisson brackets. If 
F is independent  of ~" we may integrate the flow 

equation into a Lie transformation, 

g(q,  p;  ~') = e x p ( r P )  g(q,  p).  

which Poisson commute with the skewness invari- 
ant (i.e. exhibit {H,S  2} = 0). We define the ax- 

isymmetric coordinates 

X = q 2 > 0 ,  y = p 2 ~ 0 ,  Z = q ' p ,  

for which  {S 2, X} = {S2, y}  = {S 2, Z} = 0. In  fact, 
any translation-invariant Hamiltonian describing 
a system that is symmetric under  rotations around 
the optical axis (and under reflections across 
planes containing this axis) may be expressed as a 
function of only these axisymmetric variables, 

H = H ( X , Y , Z ) .  Actually, the general fiber 
Hamiltonian is a function of only two of these 
variables, H = H(X,  Y), since no terms appear  in 
H that depend on the relative angle q~ between q 
and p through q • p = qp cos ~ = Z. 

The Hamiltonian flow will take place on level 

surfaces H = constant, or 

In particular, the skewness function y = n Z ( X )  - H  2. 

S = q ×p = qxPy - qyPx 

generates rotations of phase space, of q and p 
jointly, each in its plane, around the optical axis. 
Its square, S 2, is called the Petzval invariant, and 
is conserved for ray optics in axisymmetric media. 

3. lnvariants in axisymmetric systems 

When two functions, F and G, Poisson com- 
mute,  {F, G} = 0, the flow generated by F takes 
place on the G = constant submanifolds, and vice 
versa. This leads to the natural  introduction of 
symmetry-adapted coordinates in phase space. 
Specifically, we take advantage of the fact that 
axisymmetric, translation-invariant fibers are de- 

These are surfaces generated by a line parallel to 
the Z-axis whose intercept describes the refrac- 
tive index profile in the Z = 0 plane, and which 
are restricted to the first quadrant  X > 0, Y > 0. 

See fig. 2. 

2 
~Y : n ( X )  
\ \  

~\x'~xx H = c ons t. 

2 

Fig. 2. Level surfaces of the Hamiltonian are cylinders whose 
intersection with the X - Y  plane describes the radial refrac- 
tive-index profile. 
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Fig. 3. Level surfaces of the skewness function are hyper- 
boloids of revolution around the X = Y axis at Z = 0. 

Concurrently, the flow will lie on level surfaces 
S 2 = constant, determined by (q ×p)2 = q2pZ _ 

(q .  p)2 = constant, or 

X y -  Z 2  ~-.~ 82  > 0.  

The S = constant submanifolds are seen to be 
hyperboloids of revolution around the X = Y axis, 
extending up through the interior of the S = 0 
cone, and lying between the 3(- and Y-axes. See 
fig. 3. The intercepts between the hyperboloids 
and the axis of revolution of the cone occur at 
X = Y = S. Through the discussion and examples 
in the following sections, the reader should come 
to appreciate the geometry introduced by the 
(X, Y, Z)  coordinates and the level surfaces of H 
and S 2. 

4. R 3 vector formulation of  ray optics: equilibria 
and stability conditions 

Hamilton's equations for ray optics may be 
rewritten in terms of the ~3 coordinates x =  
(X, Y, Z)  in vector form as 

.~" = V 2 S  2 X V H .  

This vector-cross-product form of the optics 
equations ensures that both of the quantities H 

and S 2 are conserved, and that the motion of the 
system takes place in •3 along the intersections 
of the level surfaces of these two conserved quan- 
tities. 

The level surfaces of H are cylinders extending 
along the Z-axis with cross-sections determined 
by the refractive index profile, while level sur- 
faces of S 2 are hyperboloids of revolution around 
the line X = Y in the positive quadrant of the 
X - Y  plane. At the points of tangency of these 
level surfaces, the gradients of H and S 2 become 
collinear. These tangency points are the equilib- 
ria, i.e., the fixed points of the flow in ~3. 

At an equilibrium point, the constrained sur- 
face composed of the sum 

n s ( x  ) = H + A S  2 

has a critical point, for a multiplier A that may 
depend upon the value of the equilibrium point, 
x~. At such a point, we have 

8 H  s = 0 = D H s (  x~ )  " ~ x .  

Written out, this becomes 

1 dn 2 ) 
~ H s =  2-H d X  + A Y  ~ X  

+ ( _  I ~ + A X ) S Y _ 2 a Z S Z .  

At criticality each coefficient vanishes, so 

1 _ d n  z 
Z e = 0 ,  A -  2 H ~  < 0 ,  X ~ T v - + Y , = 0 .  

lazx e - -  

Hence, critical points occur in the Z = 0 plane 
only, for values of H and S 2 such that the 
gradients V H =  ( 1 / 2 H ) ( d n 2 / d X , - 1 )  and 
VS 2 = (Y, X )  are collinear. These are the equilib- 
ria of the ray optics system. 

The second variation, 

82Hs  = 8 x  t " D 2 H s (  x e )  • 8 x ,  

is conserved by the linearized equations. (This is 
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because  ~2H S is the Hamiltonian for the lin- 
earized dynamics around x e. See ref. [3], ap- 
pendix A, and ref. [7] for discussions of linearized 
Hamiltonian dynamics.) When the equilibrium 
point x~ satisfies the conditions for DZHs(xe)  to 
be definite in sign, the second variation ~2H s may 
be taken as a norm for measuring perturbations 
from equilibrium, and its conservation in that 
case implies stability of the equilibrium. (Phase 
points that start near the equilibrium stay near it 
in the linearly conserved norm ~2H S when 
D2Hs(xe)  is definite; so in that case the equilib- 
rium is stable.) Consequently, x¢ will be a stable 
equilibrium when the following symmetric matrix 
is definite: 

(i. 0) D 2H s = C 0 , 
0 - 2 A  

where 

1 [  1 ( d n 2 ]  2 d2n 2 
A = - ~ -  f f  ~-~-] d X  2 

B 
1 d n  2 1 

4H 3 d X  +A '  C -  4H  3. 

Since - 2 A  and - H  are positive already, the 
remaining requirement for positive definiteness 
of DzHs is that its determinant det(DZHs) be 
positive. Now, in R3 the Gaussian curvature of 
the constrained surface H s ( x )  = H + AS 2 is given 
by [1] 

K = - -  det(D2Hs) 

(1 + IDHsl2) 5/2" 

Therefore,  definiteness of D2Hs implies defi- 
niteness of the Gaussian curvature of the con- 
strained Hamiltonian surface H s ( x )  at its critical 
points. In our particular case, D H  s vanishes at 

equilibrium and 

- K =  det(D2Hs) 

(2  n2 =n2 ) 2A X + + 2 H  2 
8H4X 2 ~ 2 X -d-~ . 

The determinant is positive (and the Gaussian 
curvature of H s ( x  ~) is negative), provided 

d2( X2n  2) x 2 d 2 n  2 + dn2 
d X  2 d X  2 4 X ~ -  R- + 2n 2 < O, 

which means that the profile of X Z n Z ( X )  is con- 
cave downward at a stable equilibrium. 

This vector formulation provides a geometrical 
picture of Hamiltonian ray optics. It characterizes 
the motion as taking place along intersections in 
~3 of two-dimensional level surfaces of the 
Hamiltonian and the skewness invariant. Further- 
more, it characterizes the equilibria both as tan- 
gent points of these level surfaces, and as critical 
points of the Hamiltonian constrained by the 
skewness invariant. Finally, this formulation de- 
termines the stability of the equilibria in terms of 
the Gaussian curvature of the constrained Hamil- 
tonian at its critical points. In particular, points 
for which the H and S 2 level surfaces are tan- 
gent and possess curvatures of the opposite sign 
are stable equilibria. (When the two level sur- 
faces have curvatures of opposite sign at the 
tangent point, nearby motions along their inter- 
sections describe nested ellipses on each surface, 
thereby implying stability.) On the other hand, 
equilibria at tangencies of H and S 2 having 
same-sign curvatures may be either stable or un- 
stable. Such an equilibrium is stable (unstable) 
when the Gaussian curvature of the constrained 
Hamiltonian at the critical point is negative (posi- 
tive). In terms of the refractive-index profile, such 
an equilibrium is stable provided the profile of 
X 2 n 2 ( X )  is concave downward when evaluated at 
the equilibrium point in the domain X > 0, Y > 0. 
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5. •3 Poisson brackets and Lie -Po i s son  brackets 

The Poisson brackets among the axisymmetric 
variables X, Y and Z close among themselves, 

{ X , Y } = 4 Z ,  { Y , Z } = - 2 r ,  { z , x } = - 2 x .  

Consequently, we may re-express the equations of 
Hamiltonian ray optics in axisymmetric media 
with H = H ( X ,  Y )  as 

and the ~3 geometry of the previous section is 
recovered as a Hamiltonian system. 

In the present case, the function S 2 is 
quadratic. In such cases, the R 3 Poisson bracket 
becomes a Lie-Poisson bracket, defined on the 
dual g* of the Lie algebra g by the general 
formula, for/x ~ g*, 

OH OH 
X =  { X ,  H} = { X ,  Y} -6- ~ = 4Z - ~  , 

OH ~H 
I?= {Y,H} = { Y , X ) - ~  = -4Z-0 -~ ,  

OH OH 
2 = { Z , H }  = {Z, X} ~-y + [ z , Y ) - ~  

OH OH 
= - 2 x - g ~  + 2Y3-- ~ . 

For functions F and G of the axisymmetric 
variables x = (X,Y, Z)  in ~3 we may introduce 
the following Poisson bracket in triple-scalar- 
product form: 

{ F , G } ( x )  = V2S  z.  V F X  VG. 

This bracket satisfies the properties required of a 
Poisson bracket: it is bilinear, antisymmetric, and 
satisfies the Jacobi identity. In fact, the Jacobi 
identity is satisfied by this Poisson bracket for any 
continuous choice of the function S 2. We call 
such a bracket an ~3 Poisson bracket. Note that 
{S 2, G} = 0 for any function G in ~3. Such func- 
tions that Poisson commute with every function 
are called Casimirs. Clearly, the Casimirs are 
constants of the motion, since they Poisson 
commute with every Hamiltonian. Thus, the pre- 
servation of the level surfaces of the skewness 
invariant S 2 is built into the Poisson bracket 
description for Hamiltonian optics in axisymmet- 
ric media. The equations of ray optics in vector 
form now reappear as Hamilton's equations, 

.~ = {x, H} = $r2S 2 X VH, 

where ( , ): g* × g -0 R denotes the pairing be- 
tween the Lie algebra and its dual, and [ , ] is the 
Lie algebra product. (The Lie-Poisson bracket 
was introduced in ref. [4]. See refs. [5, 8] for 
modern discussions of Lie-Poisson brackets.) If 
we choose a basis ~:l . . . .  , sen of g, the structure 
constants C/~ are defined by 

[~i '~j]  = Cikj~k, 

where we sum over repeated indices. Let  
x l , . . . ,  x n be the corresponding dual basis, with 
pairing given by ( x  i, ~j) = Sj. Then the Lie-Pois-  
son bracket is expressible as 

k OF 0G 
{ F, G} = - Cifl. % ~ olxj' 

upon identifying/z = ]Zi xi. 
Referring to the ~3 Poisson brackets among 

the variables X, Y and Z quickly determines the 
structure constants C k for the Lie-Poisson de- 
scription of Hamiltonian ray optics. Setting /z i = 
x i, i = 1 , 2 , 3 ,  with x l = X ,  x 2 = Y  , x 3 = Z  , gives 
C132 = - 4 ,  C23 = 2, C~l = 2, and the rest either 
vanish, or are obtained from antisymmetry under 
exchange of indices. These are the structure con- 
stants of any of the Lie algebras sp(2, R), sl(2, ~), 
su(1, 1), or so(2, 1). For definiteness, we refer to 
the reduced description of Hamiltonian ray optics 
in terms of axisymmetric R 3 variables as being 
"Lie-Poisson on sp(2, ~)*". 

The Lie operator ff defined by the sp(2, R)* 
Lie-Poisson bracket is given by 
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/~= {F,-}  = (V2S2 × V F ) . V .  

In particular, we have the Lie operators of the 

coordinate basis X, Y, Z, 

a 
~ = - 4 Z - ~  - 2 X-g- Z , 

a 
2 = 2 X ~  - 2Y~-~. 

These variables are related to the ~3 variables by 

X =  q2 = r2, y =  p2 = p2 + P20 
/.2' 

Z = q ' p = r p ~ ,  S = P o ,  

and they appear in a symplectic Poisson bracket, 

aF aG aF OG OF aG aF aG 
{ F , G } -  Or Opt Op~ Or + aO ap o apo aO" 

These operators satisfy the commutation rela- 

tions 

which is in keeping with the general relation 

satisfied by Lie operators, 

[F ,G]  = - { F , G }  ^. 

A Lie operator  f generates an SP(2,~) group 
transformation that preserves the level surfaces 
of S 2. (These are the SP(2, ~) "co-adjoint orbits".) 
In particular, the SP(2, ~) Hamiltonian flow gen- 
erated by /4 preserves the level surfaces of S 2 

(since the Lie operator  ~2 vanishes). 

The optical Hamiltonian for axisymmetric, trans- 
lation-invariant media is given in terms of these 
canonically conjugate variables by 

/ p2 

1.2 ' v 

which, as expected, is independent of 0. Conse- 
quently, one may solve for O(z) by integrating its 

Hamilton equation, 

dO aH po 1 S 1 
d z  ap o H r 2 H X ( z )  " 

In this way, the solution for X ( z )  in the reduced 
variables determines the axial angle O(z) by a 
quadrature, since S and H are constants. 

7. Free propagation in a homogeneous medium 

6. Reconstruction 

Reconstruction of the ray optics solution in 
terms of the symplectic image-screen variables 
(q,p)  from the reduced, axisymmetric sp(2, E)* 
variables (X, Y, Z)  requires determination of the 
axial angle, O(z). This may be done by a quadra- 
ture from the reduced solution in several ways, 
since the motion is symplectic when restricted to 
level surfaces of H, to those of S 2, or to those of 
any SL(2, E) linear combination of H and S 2. For 
example, defining polar coordinates (r,O) with 
q = r(cos 0, sin 0) leads, as usual, to canonically 
conjugate pairs of variables (r,  Pr) and (0, P0). 

As the first specific example in the ~3 axisym- 
metric variables, consider ray propagation along 
the optical axis z in a homogeneous medium, 
n = constant, generated by the optical Hamilto- 
nian as a Lie transformation. This is readily inte- 
grable and yields the well known result 

P 
q - - > q + z ~ ,  P--~P, 

where p / v / ~ - p  2 is the tangent of the angle 
between the ray vector ff and the optical axis. 
The singularity for H = - ~ /n  2 _ p 2  = 0 above is 
due to the inadequacy of the standard screen 
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/ 

7 ¥ 

Fig. 4. Free motion in a homogeneous  optical medium trans- 
lates into the parabolas (heavy lines) that lie at the intersec- 
tion of H =  constant  planes with the level surfaces of the 
skewness hyperboloid. 

chart to describe grazing rays. Henceforth, we 
exclude the boundary, H = 0. 

In the three-dimensional space (X, Y, Z), prop- 
agation through a homogeneous medium may be 
written as 

Y 
X ~ X +  2z  Z + Z 2 H 2 ,  

Y ~ Y ,  

Y 
Z---, Z + z - f l .  

This is the family of parabolas shown in fig. 4 
arising from the intersections of the planar level 
surfaces of H given by Y = n 2 - H E > 0 ,  with the 
S 2 > 0 hyperboloids. 

8. Elliptic-profile fibers 

As a second example, consider the (exact, not 
"paraxial") propagation in an elliptic-profile 
graded-index fiber, 

n2(q 2 ) = n ~ - v 2 q  2, i.e. n 2 ( X ) = n o  2 - v 2 X ,  

/.,2 ~> 0 .  

(Again, this is not the "paraxial" parabolic profile 

n(q 2) = n o - vq2.) The Hamiltonian is now 

H =  - ~ n  2 -  v 2 X  - Y 

and the flow will take place on the planes 

y =  n 2 - v X -  H 2 

intersecting the cone and hyperboloids of fig. 3. 
To compare, let us recall the exact solution ob- 
tained as a Lie transformation on (q, p) phase 
space, 

1 
q ~ q cos(toz) + ~ p  sin(wz),  

p ~ - vq sin(toz) + p  cos(toz), 
1/ 

(-O ~ ~ .  

Correspondingly we find in the (X,Y, Z)  coordi- 
nates 

X ~ X c o s Z (  w z )  + 1 Z s i n ( 2 w z )  
lJ 

+ 4Ys in2 (~oz ) ,  
v 

Y ~ v2 X s i n 2 ( t o z )  - v Z s i n ( 2 t o z )  

+ Y c o s 2 ( t o z ) ,  

Z --, - ZXsin(2~oz) + Z cos(2~oz) 
Z 

+ ~v  Ysin(2toz),  

and again H and S 2 a r e  preserved. These orbits 
are ellipses, see fig. 5. 

Let us analyze the information in fig. 5. The 
surface of the cone S z = 0 corresponds to merid- 
ional rays, i.e. rays in a plane with the optical axis 
where q and p are collinear on the screen, so 
that q x p = 0. In the fiber, the sinusoidal motion 
in (X, Y, Z)  remains in a plane with the optical 
axis, alternating between maximal elongation and 
zero momentum (on the X-axis), and zero elon- 
gation with maximal optical momentum (on the 
Y-axis) every quarter-cycle (q ~ p ) ,  (p ~ -q ) .  As 
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Fig. 5. Elliptical periodic motion in the optical phase space 
( X , Y , Z )  takes place along intersections of a Hamiltonian 
level surface for an elliptic-profile graded-index fiber, with a 
level surface of a skewness hyperboloid, 

discussed earlier, half-cycles (q ~ - q ) ,  (p  -~ - p )  
correspond to the same point on the hyperboloid. 
The size of the elongation is given (and bounded)  
by H 2 = n 2 -- /~2Xma x ~__ 0. 

Sagittal rays are those rays for which q and p 
are orthogonal on the screen, p • q = Z = 0. They 
are represented by fixed points on the X = Y 
axis, i.e. as the points of contact between a H = 
constant plane that is tangent at the tip of the 
hyperboloid at X =  Y =  S, where H 2 = n 2 - 

(1 + u2)S. They appear  as fixed points because 
the ray path in (q, p)-space is a circular helix, 
and, by construction, the X - Y - Z  coordinates 
identify rays related by a pure rotation around 
the optical axis. The axial angle O(z) advances 
along these orbits at a constant rate. 

Periodic motion on one of the interior hyper- 
boloids cutting a finite circle or ellipse at the 
H = constant plane, depicts the motion of a skew 
ray X Y > S 2 >  0 along an elliptical helical path 
along the fiber. As p and q grow and wane, and 
change their relati~,e orientation, the point in 
(X,  Y, Z)-space progresses along its periodic or- 
bit. Again the complete solution is reconstructed 
from a quadrature  for O(z). 

9. General-profile fibers 

Consider now a generic fiber in which the 
refractive index n is a function of X = q2 that is 

only assumed to be positive and physically mean- 
ingful for n > 1. As we remarked before, the flow 
will lie on H = constant vertically ruled surfaces 
with profiles Y =  r / ( X )  2 - H  2. On these surfaces 
we may superpose the lines Y = ( S  2 + Z 2 ) / X  

stemming from the conservation of skewness, pro- 
jected onto the Z = 0 plane. This is shown in fig. 
6a for one S-level surface intersecting one H-level 

surface within the allowed region of the phase 
space quadrant,  X > 0, Y>  0, H2 > 0. Between 

the intersection points, shown in fig. 6c, periodic 
motion will occur. 

When periodic motion occurs for some value of 
S, then also rays of neighboring skewness will 
perform similar motion. To increase skewness we 
may take rays with a larger optical momentum 
(larger angle with the optical axis) moving up fig. 
6a, larger elongation (moving to the right), 
or increasing the angle between p and q 

/ 

Z 

~ X  

(a) 

(b) 

(c) 

Fig. 6. (a) The refractive index profile of an elliptic index 
fiber. (b) The intersection of the level curves of S and 
H ( X , Y ) =  0 on the X - Y  plane. (c) The orbit diagram pro- 
jected on the X - Y  plane. 
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( S = p q s i n O )  up to its maximum ( 0 =  ~'rr, 

tSI = ~ ) .  In the case of an elliptic-profile fiber, 
the orbit will shrink if the energy is maintained 
the same because only circular helical paths will 
be possible: i.e. fixed points. 

We have thus far seen elliptic profile fibers, 
depicted in the X - Y  plane as straight lines with 
negative slope, limiting to a horizontal line when 
the medium becomes homogeneous. Let us now 
present an example of a fiber that exhibits hyper- 

bolic fixed points. 

The tangency condition for this choice of re- 
fractive index is the inverted parabola,  indepen- 
dent of n 2, 

Y =  2 v X ( n  I - u X ) ,  

with maximum at the ( X , Y )  point ( n ~ / 2 v ,  7nt).l 2 

The level surfaces of H 2 satisfy the tangency 
condition when 

n 2 + (n  I - v X )  2 - n 2 = Y =  2 v X ( n  t - v X ) .  

10. Hyperbolic fixed points and ray trapping 

Fixed points of the axisymmetric ray tracing 
system occur in the Z = 0 plane only, at X - Y  
points for which the gradients V H 2 = ( d n 2 /  

d X , - 1 )  and VS  2= ( Y , X )  are collinear, giving 
VS 2 × VH 2 = 0, and satisfying the tangency con- 
dition 

dr/2 
Y= - x T z .  

These fixed points will be stable (elliptic), pro- 
vided 

Thus, the tangent points occur in pairs at the 
roots of this quadratic equation in X, 

1 ( 2 n l + I n 2 - 3 n 2 + H 2 ) ,  X = -~v _ 

1 2 provided no 2 < 3(n 1 + H 2 ) .  Conversely,  for 
1 2 n 2 > 3 (n  I + H 2 ) ,  n o  tangency occurs  in the  posi- 

tive X - Y  quadrant. (The value n 2 = i 2 ~(n  1 + n 2) 

is a cusp (or " tangent")  bifurcation point for the 
ray path equilibria.) 

The stability condition at an equilibrium value 
of X is 

d 2 ( X 2 n 2 )  

d X  2 
< 0 ;  

d 2 ( X 2 n  2 ) 

d X  2 
- 1 2 v X ( v X - n l )  + 2(n 2 + n  2) < 0. 

otherwise, they will be unstable (hyperbolic). 

As an example of a refractive-index profile 
whose ray path dynamics has hyperbolic fixed 
points, consider the parabolic profile 

n 2 ( x )  = .,:0 + ( . , -  ~ x )  2, 

where n20, n 1 and v are positive constants. In this 
case, the level surfaces of the Hamiltonian form a 
family of upright parabolas 

Y = n  2 + (n ,  - v X )  2 -  H 2, 

whose minima occur along their common symme- 
try ards X =  n l / v .  These parabolas intercept the 
positive Y-axis for (n 2 + n~ 2) > H 2 > 0. 

In each pair of roots of the tangency condition, 
the larger one is unstable, while the smaller one 
is stable. The unstable equilibrium point at the 
larger root is connected to itself by a homoclinic 
orbit lying on one of the S2-1evel surfaces and 
encircling the stable equilibrium at the smaller 
root. Initial values lying within the homoclinic 
loop are t rapped forever within it on periodic 
orbits, while those lying initially outside the loop 
escape to infinity along the S 2 hyperboloid. 

For the case of meridional rays (S 2=  0), for 
example, tangencies occur with values n 2 = 0 = 
H 2 at the hyperbolic point (n~/u,O),  and at the 
elliptic point ( n l / 3 V  , 4 2 ~n~). The hyperbolic point 
is connected to itself on the S 2=  0 cone by a 
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homoclinic orbit. The motion along the homo- 
clinic orbit is given by 

X=r~  2 t a n h z ( n l z / r o ) ,  Y = n  2secha(n , z / r , , ) ,  

Z = ron 1 t a n h ( n j z / r o )  s ech2(n l z / ro ) ,  

where r o -- ~f~ l /v .  

Two closing remarks on the homoclinic orbits 

The discussion we have given for the behavior 
of light in an optical fiber places ray optics within 
the modern  geometric setting of the Lie-Poisson 
Hamiltonian systems and provides an example of  
ray trapping by homoclinic orbits in this setting. 
Certain perturbations may disrupt the homoclinic 
trapping. In particular, periodic perturbations in 
the refractive index along the optical axis may 
induce sensitivity of the motion to its initial con- 
ditions by causing a homoclinic tangle to form, 
across which phase points sufficiently near the 
original unper turbed homoclinic orbit may be 
transported.  This phase space transport  causes 
some loss of homoclinic trapping in the region of 
optical phase space near  the original unper turbed 
homoclinic orbit. This loss of homoclinic trapping 
appears  as a practically unpredictable (chaotic) 
wandering of the rays, which are caught in the 
homoclinic tangle produced by the periodic per- 
turbations near  the unper turbed homoclinic or- 
bit. Such wandering motions due to periodic 
perturbat ions have been recently discussed in a 
ray-optics context by Holm and Kova6i~ [2]. 

In polar coordinates, Hamiltonian ray path dy- 
namics reduces to phase-plane analysis in (r,  Pr), 
but loses the global picture afforded by the 
sp(2, E)* variables in ~3. In particular, the ~3 

picture "isolates" the singularity in the phase 
plane at r = 0, by placing it at the vertex of the 
p2 = 0 = S 2 cone, whose (X,  Y, Z )  coordinates are 
(0, 0, 0). This conical vertex is a fixed point for 
any medium whose refractive index has finite 

radial derivative at the optical axis, r = 0. The 
stability of this fixed point determines whether 
optical ray trapping by separatrices occurs for a 
given radial refractive index profile. For example, 
the separatrix orbit will be homoclinic to the fixed 
point at the conical vertex, if one of the level 
surfaces of the Hamiltonian passes through the 
vertex of the cone. The nature of the separatrix 
orbit through the vertex of the S 2 = 0  cone is 
quite interesting. The periodic orbits which do 
not encircle the vertex will pass through the Y = 
0 = pr 2 axis of the cone, but not through the X = 
0 = r z axis. Along these orbits, the canonical mo- 

mentum Pr changes sign by going smoothly 
through zero at a finite value of the radius, r. 
This change of sign is detected in the ~3 coordi- 
nates as a change in the sign of Z. Thus, periodic 
orbits not encircling the vertex are singly sheeted 
on the S 2 = 0 cone. However, along the periodic 
orbits on the cone which do encircle the vertex, 
the canonical momentum Pr reflects at a nonzero 
value back to - P r  as the orbit crosses the X = 0 
axis. In order to get back to the original state in 
the (r,  Pr) phase plane, this reflection must occur 
twice; so these orbits in ~3 are doubly sheeted on 
the S 2 = 0 cone. Thus, a separatrix orbit through 
the vertex of the S 2 = 0 cone separates the singly 
sheeted periodic orbits which do not pass through 
the X = 0 axis, from the doubly sheeted periodic 
orbits which do pass through that axis. (The peri- 
odic orbits on the hyperboloids within the cone 
are all singly sheeted; since these orbits never 
cross the X = 0 axis, no ambiguity arises in the 

sign of Pr for them.) 
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