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Abstract. Numerical studies of Davydov’s nonlinear dynamic model for the
a-helix protein confirm his prediction of soliton formation. These solitons are
robust, localized, dynamic entities that couple molecular (amide-1) vibrations to
longitudinal sound waves; they may provide an efficient mechanism for energy
transport in biological systems. Both the numerical studies and analytical compu-
tations show a threshold level of nonlinearity below which solitons will not form. A
rough estimate indicates that this nonlinearity has the required order of magni-
lude.

“ 1. INTRODUCTION

“How can energy be transmitted in biological systems?” This basic question
was discussed in depth at a meeting of the New York Academy of Sciences in
1973, amid talk of a “crisis in bioenergetics.”' A central issue in the “crisis” is
that the attractive mechanism of energy transduction via excited molecular
vibrations is presumed (on the basis of a linear dynamic analysis) to have an
unacceptably short lifetime; but a potential resolution of this objection has
been proposed by Davydov.? He suggests that the nonlinear character of
interatomic forces (e.g., the hydrogen bond) can lead to the formation of
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robust solitary waves (often called “solitons”?), which exhibit greatly increased
radiative lifetimes and a correspondingly increased ability to transport energy
over large distances.

As a specific context for the development of his idea, Davydov has
concentrated on the a-helix protein and has chosen the relatively isolated
amide-I (or C=0 “stretch”) vibration of the peptide group as the main
“basket” in which energy is carried. According to a linear analysis, energy ’
transported by this means should spread out from the effects of dispersion and
should rapidly become disorganized and lost as a source for biological mecha-
nisms. But in the nonlinear analysis of Davydov, propagation of amide-I
vibrations is retroactively coupled to longitudinal sound waves of the a-helix,
and the coupled excitation propagates as a localized and dynamically self-suffi-
cient entity called a soliton. The amide-1 vibrations generate longitudinal
sound waves that in turn provide a potential well that prevents vibrational
dispersion; thus the soliton holds itself together.

For such a coupled excitation to be viable, certain “ threshold” conditions
must be satisfied. The nonlinear coupling between amide-I vibrations and
nonlinear sound waves must be sufficiently strong and the amide-I vibrations
must be energetic enough for the retroactive interaction to “take hold.” Below
this threshold, a soliton cannot form and the dynamic behavior will be
essentially linear. Above threshold the soliton is a possible mechanism for
lossless energy transduction.

This chapter reports on a numerical study of Davydov’s fundamental
equations that confirms his analytical results. A sharp threshold between linear
(dispersive) behavior and nonlinear (soliton) formation is clearly seen, and this
threshold is related to fundamental physical parameters describing the a-helix
protein. In Section 2 we describe for the general reader the basis for these
numerical computations. To this end each term in Davydov’s model is physi-
cally described with reference to the basic atomic structure. Section 3 displays
our main numerical observations with emphasis on their physical significance.
Finally we summarize our results and discuss some important open questions
in this new area of nonlinear biomolecular dynamics. All mathematical discus-
sions are presented in appendices, not because we feel that these are unim-
portant but to make the scientific logic of Davydov’s theory as clear and as
widely understandable as we can. This theory may, after, all, help to resolve
the “crisis in bioenergetics.”

2. DAVYDOV’S MODEL FOR a-HELIX PROTEIN

The atomic structure of a-helix protein is sketched (as a stereogram) in Fig. 1.
The basic helix follows the sequence:

etc¢ —N—C—C—N—C—C—N— etc.



On Davydov’s a-Helix Solitons 365

Figure 1. Stereogram of a-helix protein.

with a pitch of 5.4 A. Superimposed on this basic structure are three “spines,”
which are almost longitudinal with the sequence:

etc. ———N—C=0———N—C=0———N—C=0———etc.
where “O=C" represents the locus of the amide-I vibration and “Q-——N”

is the longitudinal hydrogen bond that holds the structure in its helical form.
Davydov’s equations describe propagation along these three spines of amide-I
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bond energy and longitudinal sound waves. Nonlinearity of the hydrogen bond
leads to coupling of these two propagating systems and, if certain threshold
conditions are satisfied, the formation of a soliton.

Let us begin by considering the equations that Davydov has derived to
describe propagation along the three spines. From* these are:

. danu
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Broadly speaking, Eq. (1) describes the propagation of amide-I vibrations via

dipole-dipole interactions and Eq. (2) represents the propagation of longitudi-

nal sound. The total longitudinal sound energy is defined in Eq. (3). Each term,

when individually considered, is quite plausible.

2.1, Subscripts

There are two subscripts to the dynamical variables, n and a. These run over
the ranges:
n=-1,0,1,2,...,n

max

a=1,2,3
Thus n specifies a particular unit cell along a spine and a chooses a particular
spine.

2.2. Bond Occupation Amplitude 4,

Consider Eq. (1) with the nonlinear coefficients x, and x,, the dipole-dipole
coupling coefficients J and L, and the sound energy W set equal to zero. Then
we have

k3 dana e 1
ih = = &y, (1)
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In this equation
2 e
‘anu‘ - anaa:a

represents the probability of finding a quantum of bond energy &, at unit cell
n on spine a. If for the sum of such probabilities we have

2 lana‘zzl
n,o

a single quantum of amide-I bond energy is present on the helix.

Equation (1) is the quantum dynamical description of a simple oscillator. It
says that the magnitude of a,, remains constant and its phase progresses
linearly with time as

a,(t) = anu(o)exp( “‘l'hff;ot)

From Ref. 5 &, = 1650 cm™! in spectrographic units,* thus
&y = .205eV
=0.328 X 107197J
2.3. Longitudinal Displacement B,

Consider Eq. (2) with the nonlinear coefficients x, and x, set equal to zero.
Then

4B, _

dt2 W(Bn-i—l,a - 2ﬁna + Bn—l,a) =0 (2’)

This is a linear equation for longitudinal sound propation on the helix, where
B, is the displacement of unit cell n on spine a from its equilibrium position
and M is the mass of (see Fig. 1)

2C+O0+N+H+R

For the computations reported here, we (quite arbitrarily) take R to be CH,.
Thus

M = 70 X mass of proton
=1.17X 107% kg

The parameter w in Eq. (2') gives the linear restoring force per unit of

*One electron-volt (€V) = 8065.5 cm™ ! = 1.602 X 10~ joule (J).
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hydrogen bond stretching. From Ref. 6 a somewhat similar bond is said to
have a force constant of 0.76 mdyne/A.* Thus we take

w =76 N/m

From Eq. (2') the longitudinal sound speed is [w/M]'/? times the longitudinal
distance between unit cells. Since the pitch of the helix is 5.4 A, corresponding .
to 3.6 spines, the length of a single unit cell along one spine is 4.5 A. Thus

sound speed = 1.15 X 10* m/sec
2.4. Dipole-Dipole Coupling

If Eq. (1) is considered in the approximation that the sound energy W and the
nonlinear coefficients x, and x, are zero, it can be written in the form

d
ih Z:a + J(an-l,a - 2a"a + an—l,a) -_ goanu = _-zja"a
+L(a”,a+l + an.a—l)
(1)

These terms with coefficients J and L represent the effects of dipole-dipole
couplings between the amide-1 vibrations. The particular form presented in Eq.
(1") emphasizes that the effect of the “J-term” is to provide a mechanism for
longitudinal propagation of bond energy. Indeed if the left-hand side of Eq.
(1) were zero, it would be satisfied by a plane wave of probability amplitude
propagating in a dispersive manner.

The “J-term” represents dipole-dipole coupling between a particular
amide-I bond and its next neighbors in the longitudinal direction. The “L-term”
represents a corresponding coupling to lateral neighbors. Fortunately for our
numerical studies, the values for these coupling coefficients have been calcu-
lated (and checked for their effects on infrared spectra) as’:

J=78cm ! =1.55%x10"2]J
and
L=124cm™ ' =246 X 1072]
2.5. Nonlinear Coefficients x, and x ,
The nonlinear coefficients x, and x, represent anharmonicity in the longitudi-
nal hydrogen bonds. Their effect is to provide nonlinear coupling between the

longitudinal sound waves Eq. (2') and dispersive propagation of amide-I bond

*One dyne = 107> newton (N).
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energy Eq. (1”) as was described in Section 1. This coupling permits the
formation of a soliton.

To be more specific, note in Eq. (2) that the “x-terms” act as a source for
the longitudinal sound. Once generated, this sound energy acts in Eq. (1) as a
“potential well” for the bond energy, which prevents its dispersion.

Some information on the level of anharmonicity in the hydrogen bonds of
' a-helix protein is available in Ref. 7. For the purpose of our numerical studies,
we have assumed

X1 TX2=X (4)

and allowed x to be an adjustable parameter. Rough estimates, outlined in
Appendix B, however, indicated that

X~2-6X10""'N
2.6. Sound Energy W

The total longitudinal sound energy is defined as W in Eq. (3) and enters as an
additional energetic term in Eq. (1). Including it to the approximation de-
scribed by Eq. (1) indicates that its effect is merely to speed the rate of phase
advance by a small amount. The numerical effect of this term in our results is
negligible.

3. NUMERICAL OBSERVATIONS

Equations (1)-(3) contain too many physical constants for a convenient
numerical study. Thus the equations we have actually computed are written in
the normalized form.

-dAmx_ dBmx 2 2
177———1.41/1,,“'%[( T ) + (B, = B,_} )

-0.058(1‘1"..],“ + An+l,a) + 0'092(An,a+1 + An,a—l)
+0.372 X (10°%)[B,+1 o = B,—1.o)4na

+Bn+l,xxAn+|,a~B An-l,a—Bna(An+!.a_An—l,a)]

n—1,a
(1//:)
d*B,, o
Y ~(B,+1,4 — 2B,,+ B,_, ,) = 0.132(10"%)

X ['An+l,alz - !An—l,aIZ]

+A:a(An+l,a - An—-l,a) +(A:+l,a - Az—l,a)Ana] (2”)
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In these equations:

=4 aexp( —fot) (5a)
B, =B, X 107"m (5b)
1/2
r= t(-]%) (5¢) |

where we note that Eq. (5a) absorbs the fast phase advance in amide-I bond
amplitude, Eq. (5b) measures displacement in units of 0.1 A, and (5c) measures
time in units of
172
(—A—{—) =3.92 X 10™ " sec
w
This is the natural period of longitudinal sound vibration (divided by 2w).
From Eq. (2”) it can be seen that the longitudinal sound velocity is unity in
these units.
We take the total number of unit cells
Ny = 200
Since, as previously mentioned, the length of a single unit cell along a spine is
4.5 A, this corresponds to a total length of 900 A: about the length of a typical
myosin molecule in a thick fiber of striated muscle.
As initial conditions we write
A,, =1 for n=1

no

A,.,=0 for n=*1

and

B,=0 for alln
at 7 = 0. Physically this corresponds to the introduction of one quantum of
amide-I bond energy onto each of the three spines to excite what Davydov has
called the symmetric mode.

The only item remaining to be specified in Egs. (1'”") and (2”) is x, the level
of anharmonicity in the hydrogen bond. Guided by our previously mentioned
estimates (see Appendix B), we choose x = 10~ N. The calculations are
displayed in Fig. 2 where

U(l) =A% + 4%, + Al
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and

v =3 [( Do )2 + (Byer.a = Bua)’

Consider first the result for r = 300 (Fig. 2a). The bond energy U(1) has
dispersed somewhat and is moving away from the point of initiation at a
normalized speed of about 0.1. The longitudinal sound energy U(2) consists of
two distinct components: a “fast” component traveling at the limiting sound
speed and therefore found at n = 100, and a “slow” component that is locked
to the bond energy. Does the interaction of bond energy and slow sound
constitute of soliton? Figures 2a (7 = 300}, 2b (7 = 600), 2¢ (7 = 900), and 24
(7 = 1200), indicate that the bond energy does not settle into the hyperbolic
secant shape that characterizes a soliton.? On the contrary, it continues to
disperse until at 7 = 1500 (Fig. 2f) it has spread itself over half the molecule.

To see how the bond energy dispersion at x = 10~ '" N differs from linear
dispersion, turn to Fig. 3, where the computation is repeated for the case
x = 0. Note that the linear bond dispersions at 7 = 600 (Fig. 3a) and at
T = 900 (Fig. 3b) are identical to those in Figs. 2c¢ and 2d. Thus we must
conclude that nonlinear coupling between amide-I energy and sound energy
plays no role in the computations of Fig. 2. The threshold level has not been
attained; solitons have not formed.

If the nonlinearity parameter is raised an order of magnitude, to the level
x = 10719 N, the dynamic behavior of the bond energy is strikingly different.
As Fig. 4 clearly shows, it no longer disperses but propagates along the helix
with a fixed shape and a normalized velocity of 0.132. In this case the level of

Bond energy
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Figure 3. Symmetrical three-spine excitation at x = 0.
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Figure 6. Symmetrical three-spine excitation at x = § X 101! N.

configuration. To illustrate this effect Fig. 8 plots the peak bond energy in the
excited spine and that in one of the unexcited spines as a function 7.

Finally we consider the influence of single-spine excitation upon the
threshold for soliton formation. For x = 5 X 10~!! N the appropriate data are
presented in Fig. 9, which shows that a soliton does not develop; rather, the
packet of bond energy emits “bursts” of longitudinal sound. If, however, the
nonlinear parameter is raised to x = 7 X 10~!" N, the data of Fig. 10 clearly
show the development of a soliton.

4. MECHANICAL BENDING OF THE HELIX

Davydov has suggested that one effect of soliton propagation along an a-helix
might be to cause a mechanical bend (kink?) of the helix.2 Such an effect
would not appear for the symmetric (or three-spine) solitons described in
Section 3 because each spine would be elongated equally. However the system
composed of Egs. (1") and (2”) can also support an antisymmetric soliton for
which

A, = -4,

nl

An3=O

Since the longitudinal sound is insensitive to the phase of A, this mode would
elongate spines 1 and 2 but would leave spine 3 unchanged.
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Figure 8. Bond energy in excited spine and unexpected spine versus time for single-spine
excitation with x = 107 'O N.

The amount of such elongation is readily computed from the results
developed in Appendix A. From Eq. (A2) we have

= 0264-—2 0% |A12

and the total elongation is
_ (10°%) ¢ »
[pdt= 0.2647—:-5—[/1 dt

10

= 0.26419°%) (7)
1 —s5?
where N is the total number of amide-I quanta being carried along a single
spine by the soliton and s is the soliton speed.

Since the radius of a-helix is 2.8 A, the turning radius for the bend is
(1+V3/2)2.8=523 A. Also the right-hand side of Eq. (7) is in units of 0.1 A
[see Eq. (5b)]. Thus the angle (8) of the bend will be

10
0= tan"[O 00505N ——= 110 2}

- §
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To a good approximation, therefore, the angle of bend will be
6 = 0.29N(10"x ) deg (8)

The same angle of bend would be observed for N quanta propagating along a
single spine. However, as we noted in connection with the single-spine compu-
tations presented in Figs. 7 and 9, such an excitation tends to relax into the
symmetric mode.

5. SUMMARY OF RESULTS
5.1. Threshold for Soliton Formation

Our numerical and analytical studies show that with symmetrical {(three-spine)
excitation of the initial cell, the threshold level of nonlinearity for soliton
formation is

__3_ -1
x>NX10 N

where N is the number of amide-I quanta introduced onto each spine.
Comparing this result with our order estimates

x>2—6X10""N

for the nonlinear parameter, we see a possibility of soliton formation with a
single quantum on each spine. As the number of quanta introduced becomes
larger, the likelihood of soliton formation increases. In this connection it is
important to note that the 0.5 €V released in each event of ATP hydrolysis is
more than enough to introduce two quanta into an amide-I bond.

5.2. Soliton Speed

From both numerical computations and analytical calculations we find the
soliton speed near threshold to be almost equal to the group velocity of a linear
pulse below threshold. From our numerical computations it is 0.11 of longitu-
dinal sound speed or

soliton speed ~ 1.26 X 10° m/sec

Thus the time required for a soliton to traverse 1000 A (about the length of a
-typical myosin molecule in striated muscle) is about 80 psec.

5.3. Mechanical Bending

The mechanical bending of the a-helix under symmetrical excitation is zero,
but if the soliton is antisymmetric (in the sense defined by Davydov) or if all
the bond energy is confined to a single spine, the bend angle is approximately
8 = 0.45N(10'%x). This could be a significant effect for several amide-1 quanta
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in the soliton and a nonlinear parameter somewhat larger than the values
estimated in Appendix B.

6. OPEN QUESTIONS

In an exploratory study such as this it is as important to indicate what we have
not shown as it is to itemize our results. Davydov has clearly changed the
question posed at the beginning of this chapter to: “Is biological energy
transmitted by solitons?” A definitive answer is not yet available, however.
Indeed it is rather exciting to await future scientific developments that should
indicate whether the real level of nonlinearity in a a-helix is approximately that
estimated in Appendix B (indicating that solitons should easily form at the
single quantum level), or substantially smaller (indicating that several quanta
must participate to form a soliton). We feel that the following questions should
be given high priority.

1. Additional Numerical Studies. The numerical studies presented here
are not complete, and additional investigations should include the following:
(a) a more careful study of relaxation from single-spine excitation, (b) more
general initial conditions, to initialize more than one cell and to excite
Davydov's antisymmetric mode, (¢) inclusion of additional dipole-dipole
coupling terms from Ref. S, (d) augmentation of Davydov’s equations to
include additional degrees of freedom, and (e) study of soliton propagation
through a nonuniform a-helix.

2. The Level of Anharmonicity. Every effort should be given to obtain
better experimental measurements and theoretical estimates of the anhar-
monicity (x) in the hydrogen bonds of a-helix protein. We have not found
really satisfactory estimates from the literature’ and present the order estimates
of Appendix B as a rough guide. But we are not biochemists (nor chemists,
even) so relevant information may be lying about. The level of anharmonicity
is the most important fact in nonlinear biomolecular dynamics.
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APPENDIX A: THE INITIAL VALUE PROBLEM IN LINEAR AND
NONLINEAR LIMITS

The original difference—differential equations, Egs. (1) and (2”), are ap-
proximated as partial differential equations and studied analytically. In the
linear limit, a Fourier transform solution is discussed. In the nonlinear limit,
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the inverse scattering transform® is used to find the threshold for soliton
creation and soliton speed.

From the numerical results presented above, it is evident that several unit
cells participate in the structure of each soliton. Thus, as Davydov et al. have
shown,* Egs. (1) and (2”) can be approximated as

04 0°4

j e Jhonhr - 10

it 0.058 ye F(7)A4 = 0.744(10"°x )pA (A1)
azp 32p 32
9P _ 9P« 4 0.264(10"%) —14|° A2
g (109%) 5z 141" (A

where ¢ is a continuous variable approximating the longitudinal index n. Also

=38

F(r) = 0.068 + 1.41%][(%)2 + (aaBga )2] dt

The term F(7)A can be eliminated from Eq. (A1) by adjusting the phase of A
as

A= @exp[-—ifTF('r’) d'f’]

The numerical results also show that soliton speed is slow compared with
sound speed. Thus Eq. (A2) becomes approximately

0.264(10"
p = 228HI0%0) g2 (a3)
1—3s
where s is the wave speed. With these approximations, Eq. (A1) takes the form
e ’@ _ 0.196(10°%)" -,
i + 0.058 22 = — AN (A4)

This is the “nonlinear Schrodinger equation,” which has been exactly solved
by Zakharov and Shabat for arbitrary initial conditions.’
We are interested in the initial conditions (Fig. AD

A=% for 0<é<p

for —p<£(<0

~ =

=0 for |§|>p

These initial conditions deserve a word of explanation (Fig. A2). In our
numerical computations a certain number (N) of amide-I quanta were put
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A0

p N/P —-—] :
L—— -N/P ]

Figure Al. Initial conditions.

Quanta

S Figure A2.

i
-

onto the n = 0 bond at time r = 0. All other amide-1 bonds were without
energy at r = 0 and the energy at n = —1 was maintained at the value zero
throughout the computations. An antisymmetrical form is chosen for the full
line (—o0 <§ < +o0) to maintain the boundary condition of zero at the

origin (n = —1). We have no precise value for p, but it should be approxi-
mately 2.
For analysis it is convenient to normalize Eq. (A4) by writing
— 2)/?
(10x)

£=0241x

T=1
Then Eq. (A4) takes the form*

it + b = —2/0]% (A4)

with the initial conditions
(10°x)N
- 3.19p(1 — 52)'/?
(10°x)N
3.19p(1 — 52)'/?
=0 for |x|>p/0.241

for 0<x<p/0.241

for —p/0.241 <x<0

*Subscripts are used to indicate partial differentiation.
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A.l. Linear Limit

When the amplitude in Eq. (A4’) is small enough so the nonlinear term (J¢|%)
can be neglected, it becomes simply i¢, + ¢,, = 0 with the Fourier transform
solution

= sin’(kp/2)

) expli(kx — k?1)] dk (A5)

o(x, 1)~

where

__p
P =024

The integrand in Eq. (A5) takes its maximum value when k is the root of
tan(kp /2) = kp or
_2.331...

kmax
p
and the corresponding group velocity [where the phase (kx — k?t) is sta-
tionary] is 2k, . Thus the linear pulse velocity (in unnormalized units that
correspond to the numerical computations) is

linear pulse velocity == -0—-21;21— (A6)

For p =2 this implies a linear pulse velocity of 0.135 whereas from the
numerical computations displayed in Fig. 3 we find a velocity of 0.11.

The amplitude in Eq. (AS) should fall asymptotically as t~'/2, indicating
that the maximum bond energy in the linear limit should fall as 1 /7.'® This in
turn implies that the bond energy must “spread out” over a length of the
a-helix that is proportional to 7. Such an effect is observed in the data of Figs.
2 and 5.

A.2. Soliton Limit

We now use the analytical tools of the inverse scattering transform method to
find the threshold for soliton formation and its corresponding velocity. Read-
ers are forewarned that this discussion will be completely unintelligible unless
they have some working knowledge of the inverse scattering transform method.
Those who do not should merely note that it is a generalization of the Fourier
transform method.®

For the Zakharov—-Shabat linear scattering operator®

{% 2]
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and the initial conditions listed in Eq. (A4’), we assume asymptotic scattering
amplitudes at r = 0 to be

[%}z[(l)}exp(—ivx) for x<-—p

¥,
and
\Pl . 1 . 0 .
ol= a(y) o |exp(—ivx) + b(v) | [ep(+ivx)  forx>p
2
Then we find
lY 2 K2
a(y) = exp(2iyp) (cos mp — —sin mﬁ) +— sin’mp (A7)
" (mp)
where
2
m?*=vy?+ -—I%
p
. _ P
P =0241
1095 N
K= (10"x)

0.241 X 3.19(1 — s2)"/?

Solitons correspond to zeros of Eq. (A7) that lie in the upper half of the
v-plane. For such a zero at y = vy, + iy,, the corresponding soliton has®

speed = 4y,
amplitude = 2y,

For K small (i.e., as x — 0), a(y) has no upper half-plane zeros. Thus the
threshold for soliton formation occurs when the first zero Eq. (A7) crosses the
real axis of the y-plane. Since a zero of Eq. (A7) implies

yﬁiK)
mp

cot(mp) = i(
a real axis zero can only occur where cot(mp) = 0 or at

=P =K=—x=

k18
22
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For units that correspond to the numerical computations, the threshold condi-
tion is for s = 0.11)

XN >7.64 X 107" N (A8)

This threshold level is higher than that in Eq. 6).
The soliton velocity at threshold (again in units that correspond to the
numerical computations) is
0.258

soliton velocity = > (A9)

Comparison with Eq. (A6) shows that the soliton velocity at threshold should
be quite close (i.e., within 5%) to the linear pulse velocity. This is confirmed by
the numerical data of Figs. 5 and 6 (particularly 5¢ and 6d).

We note finally that solitary wave solutions of the set composed of Egs.
(A1) and (A2) have been studied rather extensively in plasma physics, where
they are called “Langmuir solitons.” Reference 11 is a particularly lucid
introduction to this work.

APPENDIX B: ORDER ESTIMATES OF HYDROGEN BOND NONLINEARITY

This appendix obtains order of magnitude estimates for the level of anhar-
monicity to be expected in longitudinal vibrations of a-helix protein. The
hydrogen bond is assumed to have the anharmonic potential (about the
minimum at x,)

U(x) = dwx? + ax’ (B1)

Nonlinearity enters Davydov’s Hamiltonian formalism as an “interaction”
term

H,, = xB'Bx (B2)

where B'B gives the number of quanta in the amide-I bond. If the restoring
force of this bond is taken to be K N/m, the bond extension is

B'Bhw, = 1Kx* (B3)
where
hwy, = by = 0328 X 10719)
the quantum energy of an amide-I vibration. From Egs. (B1)-(B3)

_ 2h%a
X 6()A'Ir

(B4)
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where the “reduced mass” of amide-I is

M

r

= 48 X mass of proton
=1.15 X 10" kg

To estimate the parameter a in Eq. (B1) we note, from Pauling et al.,'? that the
binding energy of a hydrogen bond in a-helix protein is about 8 kcal /mole or

AU=55X10"%]
But from Eq. (B1) we find (Fig. B1) that AU = w? /5447 so

w3/?

V54 AU

=38.3 X 10 N /m?

a —

Thus from Eq. (B4) we obtain the order estimate
x~2X10"1"N

We expect the readers to be as suspicious of this estimate as we are; thus we
turn to Ref. 7. There the potential Eq. (B1) is written in the form

U= tkg® + kg’ (B1)

where

€
]
> =

Yo

77

Figure BL. Plot of AU = w3 /5442,
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is a normalized space variable and

1/2
A [h}
Wi

in which  is the radian frequency and p the reduced mass of the resulting
oscillation. Evidently

Sandorfy” states: “Model calculations. . . have shown that k, must not exceed 7
or 8% of k...for [second-order perturbation theory] to be valid. According to
our experience this is probably fulfilled for weak hydrogen bonds with AU
values not higher than about 3 or 4 kcal /mole” (p. 617). Since our AU is taken
to be 8 kcal /mole, it seems reasonable to assume &, /k = 0.15 and to calculate

5/4.1/4

_ k3w

Tk p2
With p the reduced mass of an O— — —N,

p = 42 X mass of proton

we find
a = 10.96 x 10" N/m’
and therefore

X~63%x10""'N

APPENDIX C: NOTES ON THE NUMERICAL ‘CODE

Equations (1"") and (2”) are solved along three spines (a = 1,2,3), each
containing 201 unit cells (n,,,, = 200). Thus, at each unit cell there are three
first-order complex ordinary differential equations Eq. (1"”") and three second-
order real ordinary differential equations Eq. (2”). These equations are split
into a coupled system of 12 first-order real equations at each unit cell to give a
total of 2412 ordinary differential equations.

The differential equations were then solved on a CDC 7600 computer using
a numerical method of lines code, called PDEID." This code integrated the
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equations with a third-order Adams-Bashford—Moulton PECE method.'* The
time step was chosen to approximate the solution within a relative error of
0.0001 per unit time interval. For these calculations the time step ranged
between 0.15 and 0.5.

The accuracy of the time integration was also checked by rerunning some of
the calculations with a much smaller time step. No significant differences were
found when these more accurate solutions were compared with the previous
calculations.

An independent check on the overall accuracy of each calculation was made
by monitoring the total probability

200 3
P=3 3 4,
n=0 a=1
during the calculation. This probability should remain invariant as A4, , evolves
according to Egs. (1"") and (2”). This check remained constant within a few
percentage points of its initial value in all the calculations presented here.

APPENDIX D: COMPUTER FILM NOTICE

A computer film illustrating the dynamic effects discussed in this chapter, and
in- particular the soliton threshold, has been prepared by J. C. Eilbeck,
Department of Mathematics, Heriot—-Watt University, Edinburgh, Scotland.
Under the title “Davydov Solitons,” it is available from Swift Film Produc-
tions, 1, Wool Road, Wimbledon, London, SW20 OHN, UK at a price of
£55.00.
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