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We study the viability of an analytic procedure for deriving a partial differential equation approximating the dynamics of a
lattice, with an arbitrary interparticle potential, in close to continuum conditions. The comparison is made through a computer
study of the Toda lattice. Although the exact integrability is not preserved by the approximation, the shape of the colliding solitons

is extremely well preserved after many collisions.

Consider a one-dimensional chain of interacting
particles as represented by the hamiltonian

= m dYn ’ Yn+l"Yn
n= 3 5 (5) 7)) o

where Y, is the displacement coordinate along the
chain axis for the nth particle and P is the interaction
potential between adjacent mass points with mass
m, separated in equilibrium by a distance 4.

The equation for the relative change in the dis-
placement, U,=(Y,—Y,_|)/h, is

d? U,
hm——_T(U11+l)—'2T(UI1)+T(Un—~l)- (2)

dr?
Here T(u)=4d,P(u)/h is the tension function of the
corresponding continuum limit. The continuum limit
as ntco and £ 0 for the solution U, (1) =u(nh, t) and
particle mass m=#hp is

u  0?

P =53 Tlu(x 0], (3)

where p is the density of the continuum. Unless 7T is
linear, eq. (3) is a nonlinear wave equation and dis-
continuities will, in general, form in a finite time,
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We have shown in refs. [1] and [2] that if the
leading effects due to the discreteness are properly
accounted the solution of eq. (2) is better approxi-
mated by

Pu  §? ph? 0%u
Pox = x2 Tlutx, O]+ 12 dx?91%”°

(4)

than by eq. (3). Eq. (4) describes long wave phe-
nomena of the discrete dense lattice to fourth order
and regularizes the solution when shocks would form
in eq. (3). In the derivation of eq. (4), T(u) was
assumed to be an arbitrary smooth function and no
limitation was made on the magnitude of w.

The main objective of this letter to study numer-
ically the relationship between the solutions to eqgs.
(2), (3), and (4) in the Toda lattice [3] where

T(U,)=aexp(—byU,), a,b, constants. (5)

This nonlinear tension function is especially inter-
esting because the resulting eq. (2) is integrable [3].
Our study will consist of testing how well an exact
solution of the discrete Toda lattice is preserved by
the flow generated by the approximate egs. (3) and
(4).

The one-soliton solution [3] to eq. (2) with the
Toda potential (5) is
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Fig. 1. The evolution of the one-soliton solution (6) under egs.
(2), (3) and (4). The parameters were go=1, h=1/2,0=5,py=1,
bo=2 and po=1. Note eq. (4) is an excellent approximation of
eq. (2) while the solution of eq. (3) breaks into a shock.

where
£, =a,82? sech?(pohn+wt+d), d=const, (6b)

and
v =t (aobo/po) "2Q1lh ,
Q=sinh(poh) , po=const. (6¢)

Eq. (4) was derived under the assumption of small,
but finite, 4. Thus the small amplitude wide (that is,
long wavelength) discrete solitons should be well
approximated in the quasicontinuum;

U, ~ —fulboa=0(h?) . (7)

In fig. 1 we compare the evolution of the one-soli-
ton solution (6) taken as an initial datum for egs.
(2), (3) and (4). Itis clear from fig. | that the shape
of the small-amplitude Toda soliton is preserved by
the solution to eq. (4) but, as expected, a shock forms
in the solution to eq. (3) in finite time.

In fig. 2 the collision history of two solitons exactly
satisfying eq. (2) is described. Fig. 3 compares the
shapes of two-soliton solutions to egs. (2) and (4)
after nine collisions in a periodic system. While, evi-
dently, the collisions under eq. (4) are slightly ine-
lastic, the solitons have preserved their original shape
and only very minor radiation is present. This radia-
tion did not increase noticeably as the number of
collisions was increased to twenty (not shown).

The numerical approximations were performed
with the MOLID integration package [4]. The spa-
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Fig. 2. Collision time history of two solitons satisfying eq. (4).
Note that there is very little radiation after the collision. (Same
parameters as fig. 1.).

tial derivatives were approximated by a psuedo-
spectral discrete Fourier transform method and the
time integration used a variable order, variable time
step Adams-Bashford~Moulton method. The time
accuracy was varied between 10 ~¢ and 10~'° per unit
time and the number of spatial grid points was var-
ied between 128 and 512 to insure the solutions were
well converged.

These studies have shown that for long wavelength
solutions with spatial scales large compared with the
characteristic spacing of the lattice, the solutions of
eq. (4) approximate well the behavior of the discrete
lattice solutions, eq. {2), and certainly much better
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Fig. 3. The two solitons (eq. (4)) shown in fig. 2, are displayed
with the discrete Toda solution (eq. (2)) after 9 collisions in a
periodic system. Note the close agreement between the continu-
ous and discrete models. (Same parameters as fig. 2.)
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than the solutions of eq. (3). Since the Toda lattice
is highly nonlinear, the very successful performance
of eq. (4) leads us to believe in its universal ability
to study one-dimensional chains with an arbitrary
interparticle potential. Finally, we note that the
method leading to the derivation of eq. (4) was
recently generalized to multidimensional lattices [3].
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