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Abstract The support operators method of discretizing partial differential equations produces dis-
crete analogs of continuum initial boundary value problems that exactly satisfy discrete conservation laws
analogous to those satisfied by the continuum system. Thus the stability of the method is assured, but
currently there is no theory that predicts the accuracy of the method. In this paper, we numerically
investigate how the accuracy, particularly the accuracy of the fluxes, depends on the definition of the
inner product for discrete vector fields. We introduce two different discrete inner products, the standard
inner product that we have used previously and a new more accurate inner product. The definitions of
these inner products are based on interpolation of the fluxes of vector fields. The derivation of the new
inner product is closely related to the use of the Piola transform in mixed finite elements. Computing
the formulas for the new accurate inner product requires a non-trivial use of computer algebra. From the
results of our numerical experiments we can conclude that using more accurate inner product produces
a method with the same order of convergence as the standard inner product but the constant in error
estimate is about three times less. However, the method based on the standard inner product is easier to

compute with and less sensitive to grid irregularities, so we recommend its use for rough grids.

1 Introduction

The support-operators method (SOM) [4, 15, 16, 17] for discretizing partial
differential equations takes advantage of the fact that most partial differen-
tial equations of importance in mathematical physics and engineering can be
formulated in terms the invariant differential operators divergence, gradient,
and curl. The SOM provides a systematic approach to spatial differencing of
partial differential equations by constructing discrete analogs of these invari-
ant operators that ezactly satisfy discrete analogs of important differential
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and integral identities satisfied by the invariant continuum operators. From
the discrete identities, in direct analogy with the continuum, one can then
derive ezact discrete conservation laws and ezact analogs of other important
physical principles, which in turn assures the stability and robustness of the
method. The SOM method has been developed for and applied to a wide
range of problems [3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16].

In the version of the SOM studied here, the main steps are: choose a
discretization of the scalar and vector fields; choose a discretization for the
divergence (V-); then choose discrete inner products for discrete scalar and
vector fields; and then use a discrete analog of the Divergence Theorem to
determine the discrete gradient (V). The Divergence Theorem says that

/Qv-ﬁfdw/gﬁvmvz/mfa-ﬁds, (1.1)

where () is some smooth region, J€) is the boundary of the region, 7 is an
outward normal to the boundary, f is a smooth scalar function defined on
the closure of the region, and ¢ is a smooth vector field defined on the closure
of the region (see [17]). So if f and g are scalar fields and if ¢ and « are
vector fields, then relevant continuum inner products for scalars and vectors
are

(foy= [ fedv, (@@= [ &V, (12)
and then (1.1) can be written
(V-U,f>+(17,Vf>:/me-ﬁdS. (1.3)

Previously, natural geometric ideas have been used to discretize these inner
products, while standard finite-volumes are used to discretize the divergence.
The discrete analog of the gradient is derived from the discrete analog of the
(1.3).

In this paper, we show how to improve the accuracy of the standard
discrete inner product for vectors, and thereby improve the accuracy of the
SOM, particularly the accuracy of the fluxes. There is no rigorous theory
that can predict the accuracy of the SOM, and in particular, the accuracy
of the gradient, from the accuracy of the inner products and the accuracy of
the divergence, but experience shows that improvements in the accuracy of
the inner products improves the accuracy of the SOM.

Our interest in this problem was motivated by the mixed finite-element
method (e.g. see [1, 2]). The new inner product is intimately connected to



the Piola transform used in the mixed methods to define the spaces of vector
function elements, however our derivation is distinctly different from that
used in the mixed method.

The many applications of the SOM has shown that when one is inter-
ested in long-time simulations, solving problems in non-isotropic heteroge-
neous materials, or using grids that may not be smooth, the best results
are usually obtained when the numerical approximations of the fundamental
operators have exact discrete analogs of the important properties of the con-
tinuum operators. Because the SOM discretizations exactly satisfy discrete
conservation laws, the solutions of the discrete problem are stable because the
discrete solutions will satisfy bounds analogous to the continuum solution.
This stability is the source of the strengths of the SOM. However, the accu-
racy of the SOM is not guaranteed and depends in a nontrivial way on the
details of the construction of the discrete analogs of the invariant operators
and the discrete inner products.

In Section 2 we illustrate the SOM using a one-dimensional example. For
this example we give the usual “standard” inner product and then introduce
a “new” inner product based on linear interpolation of vector fields and then
extend these inner products to two-dimensional tensor product grids. These
examples clearly show how improving the inner product for vectors improves
the accuracy of the gradient. However, the example accurately illustrates
how improving the inner product makes the SOM more complicated. For
smooth grids, the gradients based on the standard and new inner products
are second-order accurate and, for rough grids, they are both first-order accu-
rate when we used a point projection to compare the discrete to the continuum
(see (2.1.2) and (2.15) below). A clue that the new inner product is better
comes from using an integral-average projection, which shows that the new
inner product produces a gradient that is then second-order accurate in arbi-
trary grids, while the standard inner product is still only first-order accurate.
From the a finite-volume point of view, it is natural to use integral-average
projections to access the accuracy of these methods.

In Section 3 we define cell inner products of vector fields on a general
quadrilateral cell in the plane. We begin by describing the cell using bi-
linear interpolation of its corners and then use this description to compute
the geometric properties of the cell. Using this, we can easily describe the
standard inner product and introduce the new inner product. The crucial
point in this section is to show that it is natural to define the inner product
by linearly interpolating the fluxes corresponding the vector field rather than



the vector field itself. This produces an interpolation for vector fields that is
intimately connected to the Piola transform used in the mixed finite-element
method. The resulting inner product is so complex that we used computer
algebra techniques in a nontrivial way to compute its formula. The new inner
product has defied our attempts at analysis, but the numerical tests indicate
some advantages.

The crucial issue for us is not how much the gradient improves, but how
much does the new inner product improve the accuracy of the solution of
Laplace’s equation, particularly the accuracy of the fluxes? The SOM has
been well tested, so Section 5 is devoted to using a few numerical examples
to check this question. For smooth grids both the new and standard inner
products produce second-order accurate solutions and fluxes, and for rough
grids the solution is still second-order accurate for both inner products, but
the fluxes are only first-order accurate. However, the total errors for both
the solution and the fluxes are smaller for the new inner product.

Another important question for us is what is the best way to create a
vector inner product in three dimension: the standard inner product doesn’t
have a clear generalization while the new one does, although the inner prod-
uct will be quite complicated. So it is important to be able to numerically
evaluate the new inner product quickly, and there are a number of ideas used
in finite-elements that could bring the cost within reason. Because the new
inner product has a clear finite element interpretation, ideas from this area
will certainly help. Anyway, further work in this direction needs to be done
before we can routinely use the new inner product, even in two dimensions.
As a final note, these inner products capture considerable geometric detail
about the cell on which the vector field is to be interpolated, and consequently
cannot be simple!

Our understanding of the use of the Piola transform in the mixed finite-
element method and of the importance of interpolation for defining inner
products was considerably influenced by conservations with colleagues and
students. Thanks to T. Arbogast, J.M. Morel, N. Robidoux, T.F. Russell,
M. Wheeler, and I. Yotov.

2 Motivation

In this section, we present a one dimensional example to illustrate how the
SOM works and how the method depends on the inner product of the vector



fields. We then describe the extension of the one-dimensional case to tensor-
product grids in two dimensions,

2.1 SOM in One Dimension

In one dimension, the Divergence Theorem (1.1) becomes integration by parts

/bv'fdx+/bvf'dx:fv|z, (2.1)

but when discretizing this formula we will need to keep track of which func-
tions are the analogs of the scalars and which are analogs of vectors and
which operators are the analogs of the divergence and gradient. So in this
section we will use functions v and w as analogs of the vector fields and func-
tions f and g as analogs of the scalar fields, while D is the discrete analog
of the divergence and G is the discrete analog of the gradient. In this pa-
per, we will not analyze the accuracy of the boundary conditions, so we will
assume that all functions (and their derivatives, if necessary) are zero at the
boundary. Under this assumption, we can write (2.1) as

(W, )+ (v, f)=0 (2.2)
where the inner products are

b

(f,g>:/abfgda;, (v,w>:/a vwdx. (2.3)

In fact, in the continuum in one dimension, the inner products are the same,
but they will be discretized differently.

The discretizations is generated on a one-dimensional grid, {z;;i = 0,..., N},
where z9 = a, x1xy = b, N > 0, 2511 = (w41 +24)/2, and hipy = w1 — 5.
We choose a cell-centered discretization for the space S of scalar fields: fi i,
t =0,---N — 1, and a nodal discretization for the space V of vector fields:
v, 1 =0,---N.

There are natural discretizations of the inner products (2.3). We write
our discrete inner products as a cell inner product and then sum the cell
inner-products over the grid. For the discrete scalar functions the mid-point
rule is natural:

(f, @ivy = firy givy hivs (2.4)



with

N-1
i=0
For the discrete vector functions the trapezoid rule is natural:
<’U, w>l+% — Ui+1 wi+21 + U; Wy hz_'_% : (26)
with
N-1
(v, w) = (v, w)y = ) (v, Wity . (2.7)

i
=)

i
The natural finite-volume discretization for divergence is

(D 0)iyy = ~H— (2.8)
i+1

=

In the SOM, the discrete gradient is constructed as negative adjoint to
D in sense that for the just defined discrete inner products G = —D ™, that
is,

<G fa U>V = _<f7 D 'U>S' (29)
The definitions of the two inner products, the definition of the divergence,
the summation by parts formula (2.9), and the the fact that f and v are
arbitrary gives the expression
hivy +hi s
2

which means the discrete gradient is

(G f)i= firy — fing (2.10)

(2.11)
This standard gradient is usual discretization in non-uniform grids.

2.1.1 A New Inner Product

Let us introduce a new more accurate inner product in space of discrete vector
functions. To do this, we assume that vector fields varies linearly between
nodes, that is,

Vit1 — U (

v(x) =v; + T— X)), Tipl >T>x;, (2.12)

Tit1 — T



on the i+1/2 cell. If v and w are both defined in a cell by linear interpolation
then we define the cell inner product as

(v, W)iyr = /;Hl v(x) w(x) de

i

1 1 1
= h’l-l—% (g U Wi + 6 (Ui Wi+1 + Vi+1 U]l) + g Vi+1 wi—l—l) (213)

As above, the global inner product in space of vector field is the sum of cell
inner products over all cells (2.7).

Again, as above, the new definition of the inner product for vectors yields
a new gradient that, analogous to (2.10), satisfies the following system of
equations

h hl+% + hz'fl

i—1 hz 1
(G i+ == (G )i+ = (G iyt = firy — fimy - (214)

This new discrete gradient has the same form as the compact finite-difference
approximation to the first derivative and the finite element approximations
that involve the mass matrix.

2.1.2 Accuracy Analysis

The accuracy analysis is based on projecting smooth functions onto the grid
and then using Taylor series to compute the truncation error of the differential
operators. Because we are using a staggered grid, the natural projection of a
smooth vector function v(x) onto the grid is given by the point projection

v; = v(xy),

while for scalar functions there are two natural projections onto the grid, the
point projection and the integral-average projection:

fios =y o fy=o— [Tr©d. @)

hi+l i

2

The choice of projection will affect the accuracy analysis.

The analysis of the inner-products shows that for both projections the
cell inner products are third-order accurate and the global inner products
are second-order accurate. More importantly, by construction, the new inner
product of vector fields is exact on linear functions, while the standard is not.
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It is in this sense the new inner product is more accurate than the standard
inner product.

The accuracy of the divergence is evaluated using Taylor series centered
at the cell centers,

ad T — Tij41 n
= Z'U .’I/'Z+1 ( '+ ) , (216)
0 n.

because the divergence is evaluated at the cell centers. Using the point
projection for v' and v gives the truncation error as

v(@iv1) —v(@i) _
hiyy

V'(Tivy) — h’z—l—l/ZU( N(iry) (2.17)
which is the standard second-order estimate for the centered difference. If
we use the integral-average projection for v' and the point projection for v,
then the fundamental theorem of calculus gives the truncation error as

hl /:Dz‘+1 U’(é') dé- _ U(xi+;3 - U(.'L'Z) = 0, (218)
ity Ju i

2

that is, the divergence is exact!

The gradient is evaluated at the nodes, so to analyze its truncation error,
f is expanded at x;, and then we use the point projection for f’, but either
the point or integral-average projection for f. The point projection for f
gives

f(wi) — ~ i (hi+% - hif%) FO ()

- (hH_l - hz+%h27% + h?_%) f(3) (a:l1219)

The integral-average projection for f gives

fivy — fie

fl@i) = (Piys + hi—%§/2

(hz’+% - h}i—%) £ ()
— (hz+1 — hz+%hzfé + hffé) f(3) (a:lIQQO)

So in both cases, the gradient is first-order accurate in general grids and
second-order accurate in uniform grids.



As we do not have an explicit expression for the new gradient, we will
analyze the residual of the equation the defines the gradient. For the purposes
of comparison, we rewrite the truncation error for the standard gradient using
the residual of Equation (2.11) which is the analog of formula (2.14) for the
new gradient. So we set

hivs+hi_y ,
Rz‘Std = %f (z;) — (fi+% — fif%) (2.21)

and then, as above, expand at x; and then use the point projection for f’, but
either the point or integral-average projection for f. The point projection
for f gives

1

std o L2 2 ) p@ 0 —
R, NS(h’H-% hiy) 19 (@) 48

(R, + 02y fO),  (222)
while the integral average projection gives
sthl 2 2 @) i 3 3 (3)(..
For the new gradient (2.14) given by the new inner product, the residual
is

h

Rznew —

i3 hivy +hi s hity

(G it = (G )it =2 (G i (firg — fimy) -
(2.24)

The point projection for f gives

1

1
new 2 p2 ) @) —
R! 5 (h2, —h2,) O () I

(hdy + 0 y) D),  (2.25)

while the integral-average projection for f gives

1

1
new o L s gs @
Rl 24 (hl+§ + hl*g) f (‘,'UZ) 120

(B2, — b3 ) D). (2.26)

So, in a uniform grid, all of the above residuals are third order, implying
the gradient is second order. In non-uniform grids, the integral average
projection error for the equation defining the new gradient is third order,
while all others are second order. So in arbitrary grids, the new gradient
is second-order in the integral average projection, while all other truncation



Figure 2.1: The Data on a Cell

errors are first order. This is the main motivation for extending these ideas
to higher dimensions.

In summary, in all cases the inner products for scalars and vectors are
third-order accurate on each cell and globally second-order accurate. The
new inner product for vectors is exact on linear functions, but the standard
is not. For the point projection, the divergence is second-order accurate
on general grids, and for the integral-average projection, the divergence is
exact. All truncation errors for the gradient are second-order accurate in
uniform grids and first order accurate in general grids with the important
exception that using the integral average projections gives a second-order
accurate gradient in general grids. These results have been confirmed by
numerical experiment.

2.2 SOM in Tensor Product Grids

A tensor product grid is given by the points (z;,y;), 0 <i < N, 0<j < M
where the z; and y; give grids in one dimension. The cells in the grid are
labeled by their mid-points ;3 ji1, and if Az s =20 —2; and Ay;ya =
Yj+1 — y; then the area of such a cell is given by

Aiyyjrs = Az Ay (2.27)
Now scalar functions are discretized as fi; 1 ;11 and vector fields v = (v, v(?)

are given by their normal Cartesian component at the centers of the sides of

cell:
o, 0<i<N,0<j<M-1, o, 0<i<N-1,0<j<M.
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The notation can be quite cumbersome, and because we work mostly with a
single cell as shown in Figure 2.1, we introduce the cell-based notation

L = Uz(,lj)-i-% v VR = Uzgr)l,jJr% v VD= Uﬁ)é,j S Uﬁ)é,jﬂ ’
and then set o = (v, vg, vp,vy). Of course, the subscripts L, R, D, U stand
for left, right, up and down, dz and dy give the lengths of the sides of the
cell, and A denotes the area of the cell.

The results for tensor-product grids are essentially the same as for one-
dimensional grids, so here we just look at the new gradient to see that its
accuracy is preserved. If o and w are discrete vector fields on a cell, then the
generalization of the standard cell inner product (2.6) to a tensor product
grid is

o VL Wr + VR WR Up Wp + vy Wy
(0. 0)a = (5 )AL (22)
while new inner product (2.13) becomes
— 1 1 1
<U, ’Uj>new = <<§ Vr, Wy, + 6 (UL WR + VR ’UJL) + g VR UJR> (229)
1 1 1
+ (g’UD’LUD—FE(UDwU—i—UU’U]D) —|—§UU’LUU>> A.

In any dimension, the global inner products are obtained by summing the
cell inner products over all of the cells.

The sum of the fluxes out of the cell divided by the area of the cell gives
the natural finite volume divergence on the cell:

(vrRAY — v Ay + vp Az — vpAx)
A ’

D V)= (2:30)

and because of the formula (2.27) for the area of cell, this can be rewritten
as

VR — VL Uy — Up
D = . 2.31
(V) ==+ = (2.31)

Again, as in one dimension, combining the definitions of the inner prod-
ucts and the divergence and a double summation by parts tells us that the
new gradient of a scalar is a vector,

11



A:L‘Z,% Aa:H% + Aa:i,% A.’I/‘i+%
6 (G xf)i—l,j-i—% + 3 (G:vf)i,j—l—% + 6 (G xf)i-l-l,j-i-% =
firsgrs — Ji-sg+is
(2.32)
Ayj_s Ayjis + Ayjy Ayjiy
é 2 (G yf)iprj1 + —2 3 22 (G oy f)ivsg + é (G yf)itsjr1 =

fivs gty = firsi-s-

We have used index notation here because the gradient is not cell based.

2.2.1 Accuracy of the Tensor Grid Gradient

Here we are only interested in seeing if we obtain a gradient with improved
accuracy using the integral average projection. So, as is natural, the integral
average projection of a smooth scalar field f is

1 Titl  [LYj+1
firin=7——[ [ fay)dedy (2.33)
i+3,+% Jzi Y

As we will see from the accuracy results, a good projection to use for a
smooth vector field ¥ = (v, (x, y), vy (7, y)) is the integral average of the nor-
mal component of the vector field:

! [ vy d (2.34)
Ui,j L = U\ T3, Y) QY .
o Ayjpy Jy;
1 Tit1
Visyj = Aris /I vy(x,y;) de . (2.35)

To analyze the error in the z-component of the gradient, as before, we
set the residual to

Az Az + Ax; s Az
Ry = “(Gaf)iciges + - -

5 3 (Gaf)igrs + —5 (Gaf)irring
= (firgges = fi-gits) - (2.36)
Now in (2.34) we replace v, by 0f/0x, and then in (2.36) we replace (G ¢ f)ij+1

by v; ;11 (also with i replaced by ¢ — 1 and 4 + 1) and fi;1 1 (also with i
replaced by ¢ — 1) by the integral average projection of f (2.33). All terms

12



Figure 3.1: A Two-Dimensional Cell

in the resulting formula contain an integral with respect to y that can be
factored out. The integrand is the same as in the one-dimensional residual
with f’ replaced by 0f/0x and all functions now parameterized by y. So the
same analysis as in one dimension gives

1 1 Yit1
R* ~ — (B, +h, / ®)(2;.1) d
i 5q (hiey + ki) Ayivs Jy [ @ y) dy

1 1 Yit1
(R, — R, / @ (2, y) d
120 ( it3 Z—E) Ayivy Jyi P y) dy,

with a similar result for G,. Thus the gradient in tensor product grids has
the same accuracy as the one-dimensional analog of the gradient provided
that we use an appropriate integral average of normal components projection
for vector fields. Numerical tests confirm that the order of accuracy using
both point and integral average projections is the same as in one dimension.

3 The Inner Products in General 2-D Cells

In this section we introduce two inner products for discrete vector fields
defined on grids of quadrilateral cells: the standard inner product that is
described in many of the referenced papers on support-operators methods
(e.g. [16]), and the new inner product. We describe both inner products
from unified viewpoint based on the idea that cells are defined by mappings
from a unit square (see Figure 3.1). In the discrete case, vector fields are
described by their projections onto the unit normals to cell faces [16]. An

13



inner product for discrete vector fields must be a symmetric and positive-
definite bilinear form with respect to the components of a vector. Our inner
products are cell based: they can be defined on a single grid cell (see Figure
3.1) and then summed or all cell to make a global inner product. The process
of constructing the global inner product from the cell inner products is similar
to assembling a global mass matrix from the local mass matrices in the finite
element method.

3.1 Bilinear Interpolation of a Cell

In one dimension, a cell is described by giving the end points of an interval,
and then the full cell can be given using linear interpolation. In two dimen-
sions, a cell is described by giving its four corners and then the full cell is
given by bilinear interpolation (Figure 3.1). So if the four points are (z9, yo),
(x1,11), (z2,y2), and (x3,y3), then a unit square can be mapped to the cell
using a bilinear map:

v(&n) = (1= A—=—n)+z&(1—n)+z26n+a3(1-&)n,
(3.1)

y&mn = pl=- Q- +pnéd—n) +win+tys(1-5n,

where the corners are mapped as follows:

(070) — (xﬂayﬂ)a (170) — (xlayl)a (071) — ($2,y2), (171) — (ng,yg).

(3.2)

To describe the inner products, we need detailed formulas for the Ja-

cobian, and the tangent and normal vectors to the lines & = const and

n = const. The Jacobian of a bilinear map is linear in £ and 7 and has the
form

J=JE&n)=a+b&+cn, (3.3)

where a, b, and ¢ some coefficeints which depend on coordinates of verticies
of the cell.

If we fix p and vary &, then (z(&,7n), y(&,n)) is a straight line, conversely if
we fix £ and vary 7, the we also get a straight line. These straight lines form
a coordinate system in the the two-dimensional cell that is not necessarily
orthogonal. As illustrated in Figure 3.2, at a point where a line from each
family intersects, we define the tangent and normal vectors: fg = (z¢,Ye);

ﬁ] = (@, Yn); ]\75 = (Yy, —Ty); ]\7,7 = (—Y¢, ¥¢). The notation is arranged so

14



Figure 3.2: Tangent and Normal Vectors

that T:g and ]\75 point in the direction of increasing &, while T;] and Nn point
in the direction of increasing 7. Consequently, T:g = ]\7,5 and T;, = ]\777 if the
coordinate lines are orthogonal, that is, the cell is a rectangle.

For a bilinear map, the tangent and normal vectors are linear functions
of a single variable:

Te(n) = Tp(L—n)+Tyn, (3.4)

1,06 = T.(1-¢&)+TrE, (3.5)

Ne(€) = Ni(1-§)+ Ngé&, (3.6)

w(n) = Np(l—mn)+Nyn, (3.7)

where

TD:(xl_l'anl_yO) ) ND:(yo—yl,%—xo) )
TU:($2—$3,?J2—Z/3) ) NU:(?J3—Z/2,5U2—5U3) )
TL:(I3—$0,y3—yo) ) NL:(y3—y0,$0—$3) )
TR:($2—$1,y2—y1) ) NR—(yZ—yl,xl—M) )

normal and tangential vectors to the sides of the cell.

15



3.2 Cell Geometry

Before we can describe the inner products, we need to know a bit more about
the geometry of the cell. First, it is easy to check that:

Te-Ne=J, Te-N,=0,
T, -Ne=,0 T, -N,=1J, (3.8)
and consequently the tangent and normal vectors are biothogonal. Moreover
[Ne| = [Ty, |Ny| = [Te].- (3.9)

If we introduce the angle 6 between the tangent and normal vectors (see
Figure 3.2), and use the biorthogonality of the tangent and normal vectors
(3.8), then

Te - N, J J T, N,
os() = == = =~ = 11 (3.10)
[ Tel INel | Tel N[ ING[ [Ty [T] [Ny

We will need the the unit tangent and normal vectors:

P= =t =1 (3.11)
| T¢] T
N, N

Te=——; ily=—L, (3.12)
| Vel | Vo

which are bi-orthonormal:
tz-ﬁgzcos(ﬁ); Fg-ﬁn: :
ty e =0; ty - iy = cos(f) . (3.13)
lte] =1 ty] =

As shown in Figure 3.3, we introduce the angle ¢ between the two tangent
vectors,
te - £, = cos(¢), (3.14)

and note that if # is the angle between the tangents and normals as given in
(3.10) and shown in Figure 3.2, then ¢ + 6 = 7/2, so cos(f) = sin(¢).

16



Figure 3.3: Local Basis of Tangents and Normals

We also need the lengths of the sides of the cells:

Sp = [N, = [T6(0)] = /(z1 —20)2+ (1 — )2, (3.15)
Sy =N, = [TeW)] = (w2 —23)2+ (g2 —y3)2,  (3.16)
St = [NeO)| = [T,0)] = /(w5 —w0)2+ (35— w)?.  (3.17)
Se=INe(W)| = |T,(1)] = (m2—2)2+ (@2 —p)2.  (3.18)

3.3 Vector Fields in Local Coordinates

As shown in Figure 3.3, if V is an arbitrary vector field defined on the cell,
then it is convenient to write the vector field as a liner combination of the

tangent vectors:
V=Vete +Vyt,, (3.19)

which implies that the normal components of V are given by
Voeite=Ve (fe-ite) , Veity =V, (&) (3.20)
and that the tangential coefficients are

Vo Veite (Vi) |Tel N
€7 sin(g) J ’

17




V. Vi) |T,| N
vo= Vo (Vo) TN 1)
sin(¢) J

The desired form of the vector field is then
. Vede . V-it
V t U
sin(e) ¢ 1 sin(e)
(V' iie) [Nel Te+ (V- i) |N,| T,

by

(3.22)

J
(V- Ne) Te + (V- N,) T,
7 .
It is important to note that all the expression in the previous formula are
known geometric quantities except for V- Ng and V - N which are known
as the fluxes. These fluxes will play a critical role in the interpolation, be-
cause if we know them everywhere in the cell, then we know the vector field
everywhere.

3.4 Degrees of Freedom and Inner Product

The degrees of freedom we have to define the inner products are the normal
components of a vector on the cell faces. More precisely, we assume we are
given, on each face of the cell, the normal components of two vector fields V'
and W:

Vp=V-i,(0), Wp=W-i,(0),
Vo=V -it,(1), Wy=W-i, (1),
Vi =V - iie(0), W, =W -ii(0),
Ve=V-i(1), Wrp=W-iic(1). (3.23)

Our plan is to interpolate the given normal components of the two vector
fields V and W to the interior of the cell and then compute the discrete cell
inner product by computing continuum cell inner product for the interpolated
fields:

- - - Lol -
(V0) = [ V) Wiy dudy = [ [ 7€) W(&n) J(€n) dedn.

Notice that the interpolation formulas for the vector field must be linear in
the degrees of freedom - Vi, Vg, Vp, Vir - so that the integral will be bilinear.
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Figure 3.4: Triangles

In fact, we will be able to compute these integrals exactly, and the new inner
product is given by the exact integral, while the standard inner product is
given by a simple quadrature rule applied to the integral.

3.5 The Standard Inner Product

If we are given the data of the normal components (3.23) of two vector fields
on the faces of a cell:

V= (VD7VU7VL7VR)7 W = (WD7WU7WL7WR)7

then we need to construct a cell inner product (V, W) that is given by a
symmetric positive-definite quadratic form in the given data. The standard
inner product is constructed by interpolating the data to a constant vector
field in the four triangles given by any three of the corner points in the cell
(see Figure 3.4), and then integrating the interpolated vector field over each
triangle, and then averaging these results.

Let us look at the triangle given by deleting the point labeled by 2 from
the cell. This triangle is defined by the tangent vectors T’g(O) and T;,(O) given
in (3.4) and (3.5). We will assume that the vector field V is constant in this
triangle and defined by last expression in (3.22) at £ =n = 0:

(V- Ne(0)) Te(0) + (V- N,(0)) T,(0)

V= 70.0) : (3.24)

If two vector fields V and W have this representation, then the definition of
the unit tangents (3.12), the biorthogonality conditions (3.13), the definition
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of ¢ in (3.14), and the degrees of freedom given in (3.23) give following
expression for the inner product of two vectors at £ =n = 0:

o o VW +VpWp+ (Ve Wp + Vp Wi) cos(¢o)
V.-w !
sin“(¢p)

Integration of this constant expression over triangle will gives Ap V.-w
where A p is area of triangle having sides L and D (see Figure (3.4)). If we
proceed to the triangle obtained by deleting point 3 from the cell, then we
replace D by U and then the angle that appears in the formula is 7 — ¢;.
But cos(m — ¢1) = —cos(¢y) and sin(m — ¢1) = sin(¢y). So if we run over the
four corners and take an average we get

(3.25)

o VW, +VpWp + (Vi Wp + Vp Wp) cos
<V7W> = <ALD LL LD ( QL D D L) (¢0)
sin”(¢o)
Vo W + Vi Wi — (Vg W + Vi Wyr) cos(¢1)
+ Avyr 3
sin”(¢1)
VeWgr + Vi Wy + (Ve Wy + Viy Wg) cos(p2)
ARU . 9
sin”(¢2)
VD WD + VR WR - (VD WR + VR WD) COS(¢3)
Apr ) 2.
sin”(¢3)

An analysis of this expression is given in [16] and shows that if the a cell is
convex then the cell inner product is symmetric and positive definite.

3.6 The New Inner Product

The new inner product is also based on an interpolation, but an interpolation
that is more complex than that used for the standard standard inner product,
which hopefully produces a more accurate inner product.

3.6.1 The Interpolation Problem

The problem is that we are given the normal components of a vector field on
the four faces of the cell, that is, we are given Vp, V7, V;, and Vi and we are
required to find a vector field V' (&, n) such that

(0,1) - 7 (0) = Vi, V(1,7
67 O) . ﬁﬂ(o) = VD ) ‘7(67 1

=

) - te(1) = Va, (3.26)
)ity (1) = Vi (3.27)
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The flux of the vector field through an face of the cell is given by the
product of the length of the side of the cell times the normal component of
the vector field. Now if each equation in (3.26) is multiplied by the length of
an appropriate normal vector, then the flux of the desired vector field must
satisfy

V(0,1) - Ne(0) =SV, V(1,m)- Ne(1) = S Vi, (3.28)
V(£,0)-Ny(0)=SpVp, V(1)-N,(1) =Sy Vi . (3.29)

A critical observation is that (3.6) and (3.7) give Ne(€) linear in £ and
N,(n) linear in 7. So if the vector field V(£,7) = V is constant, that is, if
in Cartesian coordinates, V = (V, V) with V,, and V,, constant, then the
normal fluxes V - Ng(ﬁ) and V- ]\_/i,7 (n) are linear functions, which is certainly
not true for the normal components of the vector field itself. So we will
use linear interpolation on the fluxes so that our interpolation is exact for
constant vector fields:

V(&) Ne(€) = S,Vi(1—€)+ SpVat, (3.30)
VEn) -Ny(n) = SpVp (1 —n)+SuVun. (3.31)

Now using the last expression in (3.22) we can represent interpolated vector
field in following form

(S VL (1 =& + SrVrE) Tf(n) +(SpVp (1 —n)+ SuVun) Tn(g)
J(& ) '
(3.32)

We wrote the interpolated vector field in this form so that it is clear that
the formula contains no radicals; the interpolated field is a rational function
of the logical space variables, and linear function of our degrees of freedom
- Vi, Vg, Vb, Vy. Note that the interpolation (3.32) is exact, not just for
constant vector fields, but for any vector fields that have linear flux, as in
(3.30).

It is useful to interpret the derived interpolation formula in terms of the
theory of mixed finite elements. When constructing finite element spaces for
the mixed finite element method, it is common to use the Piola transform
to define the Raviart-Thomas space of elements. The purpose of the Piola
transform is to map vectors in logical space to vectors in physical space
in a way that preserves normal fluxes (see paper [1] by Arbogast, Dawson,
Keenan, Wheeler, and Yotov).

V(En) =
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We will translate the results [1] to our notation and show that there is is
simple correspondence between the elements they choose and our interpolated
vector fields. We begin by assuming that we are given the components of
a vector (W, W,) in logical space and then define the components of the
vector (W, W),) in physical using the Piola transform given in Formula (4.1)
of Section 4 of [1]. In our notation, this is

Hgy]:%mi ZHEVE] (3.33)

This can be rewritten as

W = WéTéiwnTn

Because the Piola transform preserves normal fluxes and W, and W, are
the normal fluxes in logical space,

(3.34)

—

We= (W -ii¢) INe|, Wy = (W -7i,) [Ny (3.35)

and then (3.34) becomes

o (W -dte) [N e+ (W -7y [N, T (3.36)
J
This is the same as our formula (3.22). In [1] W, and W, are given on the
faces of the cell and then W; is interpolated linearly with respects to £ and
W, is interpolated linearly with respects to . Then the finite elements in
physical space are obtained from the Piola transform.

Our degrees of freedom are the normal components of vectors given on
the faces of a cell as in Formula (3.26) and then we linearly interpolate the
fluxes as in Formula (3.30). Because of (3.35), this is the same as linearly
interpolating W, and W, which is what is done in [1]. Therefore our our
representation of the vector field in the cell in terms of the given data is the
same as that obtained using the Piola transform in finite elements. So if we
were to use the Piola transform to define the vector fields in physical space,
then use the usual dot product for these vector fields, then the resulting dot
product will be the same as ours.

Our hope is that using new inner product based on (3.32) in framework of
SOM will give us more accurate finite difference method. In the next section
we test these ideas numerically.

22



3.6.2 Formulas for the Cell Inner Product

If V(€,7m) is a vector field interpolated from the data V using (3.32), and
(&(z,y),n(z,y)) is the inverse transformation of (3.1), then

—

V(w,y) = V(E(z, ), n(z,y))

is the interpolated vector field in physical space. If W is another such field,
then the cell inner product is

=

V) = [ V) W ygydedy = [ [ 76 W(en) J(€.n)dedn.

(3.37)
This expression is a symmetric bilinear form in terms of our degrees of free-
dom - Vi, Vg, Vp, Viy and Wy, Wg, Wp, Wy - and thus has at most ten
independent components. Expression (3.32) explicitly gives

Wiy = (S% [ (1—§é|fg<n>|2d§dn>%m
n (SLS // (1-¢ 5|Tf Ul dgdn)VLWR

. (SLSD// (1-¢) 1—(2’()07) f@))dwn)%%

TR (3.38)

Formula (3.37) makes it clear that the bilinear form is positive definite.
Formula (3.38) shows that all of the integrands have the form

P(&,n)
J(&n)

where the Jacobian J is linear with respect to £ and n and P is at most a
quartic polynomial in & and 7. Such integrals can be done in closed form
and, in fact, P is far from a general quartic polynomial.

What we need for our numerical code is a subroutine that has output
the coefficients of the bilinear form and input the coordinates of the vertices
of the cell. We created a computer algebra program to derive the formulas
for the coefficients of the bilinear form. Attempting a direct computation

(3.39)
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easily overwhelms two computer algebra systems, so the computation is done
by significantly simplifying the integrand before doing the integrals. Also,
because the Jacobian has the particular linear form (3.3), the integrals will
have a different form if b = 0 or ¢ = 0 or if both are zero. Because we assume
that J(&,n) is greater than zero on the closed unit square, a > 0, so we set
r =b/a and s = ¢/a. If we assume that rs # 0, and then the ten resulting
integrals have the form

A+ Blog(l+r)+Clog(l+s)+ D log(l+r+s), (3.40)

where A, B, C', and D are polynomials in the coordinates of the corner point
of the cells. In fact, because the formulation is translation invariant, the
coefficients are polynomials in the squares of the distances between the corner
points of the cells. A subroutine based on these formulas suffers seriously
from catastrophic cancellation when r, s, or both are small. Consequently,
we also derived formulas for these cases using Taylor series in r and s to
remove the singularities. The careful simplification of the resulting formulas
is critical for creating a numerically stable subroutine.

4 SOM in General Grids

The importance of the new inner product is its possible use in more accurately
solving boundary value problems, so we will compare the accuracy of the
solution and fluxes for the Poisson equation when we use the standard and
new inner products in the SOM. To apply the SOM, we write the Poisson
equation as a first order system equations

diviWV = f, (4.1)
W = —Kgradu,

and then use Dirichlet boundary conditions on u to define the the boundary
value problem. Here W is the flux, f is the source, K is the conductivity
tensor, and u is the potential.

Recall the the SOM need us to define two discrete inner products and a
discretization of the divergence operator. We have defined two inner product
for vector fields, and the cell inner product for two scalars fo and g¢, defined
at a cell center, is

fege A (4.3)
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where A is the area of the cell. In terms of the normal components of vectors,
the discretization of the divergence is

leW - (WRSR — WL SL) + (WU SU — WD SD)

(4.4)

The discretization of the balance equation (4.1) is especially simple and sim-
ilar to one for tensor product grids (2.30)

(WRSR— WL SL) + (WUSU —WD SD) .
A _fC'7

where A is area of the quadrilateral and fo is the value of function f at
the center of the cell. Given the discrete inner products and divergence, the
SOM automatically generates a discretization of the flux operator — K grad.

The structure of the discrete analog of flux equation (4.2) for general
grid is also similar to one for tensor product grid (2.32), however now the
two equations defining the flux contain fluxes from both the up and down
sides and the left and right sides. In Figure 4.1 we display the stencils for
computing the fluxes. In both a) and b) the left figure gives the stencil of the
first equation while the right figure gives the stencil for the left equation (the
equation at the central circle of diamond involves all of the marked points).
So the stencil for the new inner product is only a slight extension of the
stencil for the standard inner product.

We have an existing code that implements the SOM in general grids that
is described in detail in [14]. This code only needs the stencils for the inner
products for scalars, vectors, and the divergence and automatically derives
the needed information about the flux. So no closed-form formula is needed
for the flux. Our computer algebra program provided the formulas for and a
subroutine to evaluate the stencils for the new inner product.

5 Numerical Results

Our final goal is not to just have a more accurate inner product or gradi-
ent, but to have an more accurate solution of Laplace equation based on
these ingredients, so we tested the new ideas on five Laplace equation exam-
ples. Note that the SOM method has been extensively tested in [15, 16], so
this section only contains a few examples to illustrate the convergence rates
for the fluxes and to compare the two inner products. The test problems
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Figure 4.1: Stencils for standard and new discrete gradients, a) Standard
inner product, b) New inner product
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Figure 5.1: The Test Grids
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involve three grids, a smooth grid, a randomly disturbed grid, and a non-
differentiable grid. There are two test solutions, one that is smooth and one
that is piecewise smooth, continuous but not continuously differentiable.

A smooth grid is obtained by mapping a of uniform grid in the unit cube
[0,1] %[0, 1] in the (£, n) computational space into the unit cube in the (z,y)
physical space using

z(&,n) =£4+0.1sin(27&) sin(27n), y(& n) =n+0.1sin(27E) sin(27n).

(5.1)
A random (non-smooth) grids such as the one shown in Figure 5.1 b) are ob-
tained by moving the nodes of a uniform square grid in uniformly-distributed
random directions and with amplitude uniformly distributed in an interval
20% of initial grid size.

The piece-wise smooth grid given in Figure 5.1 d) was used in the paper
[2]. Note that block grids play an important role in many applications where
the material changes abruptly, such as in ground-water modeling. This grid
obtained by dividing the computational domain into four blocks as shown
on Figure 5.1 ¢) and then a grid is generated on each block using transfinite
interpolation [10]. Consequently, except in trivial cases, the global map of
unit square to computational domain is continuous but not differentiable on
the internal boundaries of each block.

The test problems use the inhomogeneous steady-state diffusion equation
with inhomogeneous Dirichlet boundary conditions, where the inhomoge-
neous terms are computed from a given exact solution. The smooth solution
is

u(z,y) = 2* +y?, (5.2)
in domain [0,1] x [0,1] and constant diffusion coefficient. The piecewise-
smooth test problem is taken from MacKinnon and Carey [11] (see also [16]),
where the diffusion equation has a constant right-hand side of one, and the
diffusion coefficient is equal to k; for x < 0 and to ky for z > 0 (we use k; = 1
and ky = 5). The exact solution is one dimensional:

ala‘;—l—blx, 0<z<4i,
u(m):{ , ) ; (5.3)
a2%+62x+02, §§IL'§]_,
where
-1 ko k1
i=—, b =-025(3 ——— by=—"0y, = —(by+0.5 )
a 3 1 (3 as+ay) T+ oy 2 s 1 C2 (b240.5 as)
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The errors for both the solution and the flux are computed using Lo
norms. The continuum solution was discretized by taking the function values
at the center of the cell to be the average of the function over the cell, while
the normal flux was taken as point values of continuum normal flux at the
center of a cell face. We now give the data for five test problems:

e Problem 1 (Table 5.1) uses the smooth grid 5.1 a) and the smooth
solution (5.2).

e Problem 2 (Table 5.2) uses the piece-wise smooth grid 5.1 d) and the
smooth solution (5.2).

e Problem 3 (Table 5.3) uses the random grid 5.1 b) and the smooth
solution (5.2).

e Problem 4 (Table 5.4) uses the smooth grid 5.1 a) and the piece-wise
smooth solution (5.3).

e Problem 5 (Table 5.5) uses the random grid 5.1 b) and the piece-wise
smooth solution (5.3).

The conclusions are that the solution values have a second-order conver-
gence rate for both inner products but the new inner product is 2-3 times
more accurate. On smooth and piece-wise smooth grids the fluxes have a
second-order convergence rate for both inner products. On random grids
the fluxes have a first-order convergence rate for both inner products. In
both cases the new inner product gives more accurate fluxes. Note that
second-order accuracy for the solutions using the standard inner product
was confirmed in [16].
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