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Total Variation (TV) regularization has become
a very popular method for a wide variety of image
restoration problems, including denoising, decon-
volution, and tomography [1, 2, 3]. Given data f
and a forward problem represented by linear op-
erator K, the standard `2-TV regularized solution
is the minimum of the functional

T (u) =
1
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Z
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Z
Ω

|∇u|dx,

where the first term is the data fidelity term which
ensures that there is approximate correspondence
between solution u and data f , the second term
is the regularization term which penalizes solu-
tions containing large jumps (which often corre-
spond to noise artifacts), and λ is a weighting fac-
tor which balances the competing requirements of
the two terms.

Original image

Image with 10% shot noise. SNR: 1.1db

Recently, a number of researchers have begun
to consider modifications to this functional, with
particular interest on `1-TV [4]
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which has a number of advantages over the stan-
dard `2-TV, including superior performance with
non-Gaussian noise such as salt and pepper noise
[4], and applications including cDNA microarray
image processing [5], and illumination normal-
ization. While efficient algorithms are available
for solving `2-TV problems, the development of
effective methods for computing solutions to `1-
TV problems has lagged behind the advances in
theoretical understanding of their properties and
advantages.
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Convergence of weighted approximation to `1-TV
functional.

We have developed a new algorithm for solving
a generalized TV functional of the form

T (u) =
1
p
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which includes both the standard `2-TV and the
recent `1-TV as special cases. This algorithm,
closely related to the Iteratively Reweighted Least
Squares (IRLS) [6] method, represents the norms
in the data fidelity and regularization terms,
which are difficult to minimize when p,q 6= 2, by
weighted versions of `2 norms, which are easily
minimized. At each iteration of the algorithm,
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these weights are updated to obtain the desired
norms. In addition to its flexibility, allowing it to
solve a TV functional tuned for specific types of
data and noise models, this method also provides
a very fast algorithm for the l1-TV formulation,
comparable to the state of the art for the denois-
ing problem (when operator K is the identity), and
significantly faster than any other algorithm of
which we are aware for more general problems,
such as deconvolution.

Denoised using `2 TV. SNR: 12.8db

Denoised using `1 TV. SNR: 31.4db

Our work has been presented at a recent con-
ference [7], and a journal paper describing the
method is in preparation. A software implementa-
tion [8] is available under an open-source license.
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