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Proto-planet simulations seek to study and un-
derstand the physical processes involved in planet
and solar system formation. There has been a
growing interest in recent years in such simula-
tions due to discoveries of 210 extra-solar planets
(the first confirmed in 1988) with properties very
different from our own. In the simulations stud-
ied here, planets are modeled as discrete point
masses embedded in a two-dimensional disk of
gas revolving around a central star. Because of
the long time scales involved in planet formation,
well-resolved simulations take days or weeks to
run even on the fastest parallel computers. Com-
putationally, one of the main challenges is cal-
culating gravitational interactions of the gas disk
with itself (disk self-gravity) efficiently. If per-
formed directly, this calculation takes orders of
magnitude longer than all other calculations com-
bined. In this paper, we describe our algorithm
that accelerates the calculation of these interac-
tions. We implement a parallel tree-code specifi-
cally optimized and tailored to the disk geometry
used in our simulations [1]. For a typical simula-
tion, we find that our algorithm gives a speedup
of 300 - 500 times compared to direct summa-
tion. Also, we describe the interaction forces and
our model used to approximate and compute them
efficiently.

Algorithm

We developed a parallel tree-code, specifically
tailored and optimized for our disk geometry, to
calculate disk self-gravity forces [1],[2]. Tree-
codes accelerate force calculations by replacing
particle-particle interactions with particle-cluster
interactions, where a cluster is a group of par-
ticles in close proximity to one another. This

Snapshot of gas density during a simulation. No-
tice the low density ring near the planet (upper-
left part of figure), which is due to gravitational
collapse of mass onto the planet.

reduces the number of interactions from O(N?)
to O(NlogN), since each particle interacts with
O(logN) clusters. One of the major differences
between a general parallel tree-code and our opti-
mized code is that our tree structure is computed
once initially and is unchanging in time. We can
do this because our particle positions are fixed at
grid cell centers, which are unchanging in time.
Parallelization is done for a distributed memory
architecture, with data distributed in concentric
bands of equal numbers of grid points. Because
grid points are more densely packed on the inner
part of the disk, optimal load balancing is not au-
tomatic. A master-slave scheme is used to achieve
nearly ideal load balancing even if some proces-
sors compute faster than others.

We tested the performance of our tree-code,
both serial and parallel. Our serial tree-code is
checked to have the proper O(NlogN) complex-
ity scaling (where N is the number of spatial grid
points); this is important since a parallel algo-
rithm is only as efficient as its corresponding se-
rial algorithm. Parallel speedup is then checked
and parallel efficiency computed. For the grid
sizes of interest (400 x 1600 and 800 x 3200),
we find the parallel efficiency to be greater than
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90%, which is as good or better than any of the
results given in the literature. Finally, when we
compared our algorithm to direct summation, we
find that it performs 300 and 500 times faster (for
a 800 x 3200 grid), although it still accounts for
around 90 % of the CPU time.

Parallel efficiency vs. P (no. of processors) for parallel tree code
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Measured parallel efficiency for parallel tree-
code as a function of number of processors, P.
Notice that efficiency is more than 90 % except for
very small P (due to master-slave scheme) and is
higher for larger grids (which have a higher com-
putation to communication ratio).

Modeling interaction forces

The interaction force between particles in our
simulation is due to gravity; however, simply us-
ing F(d) = ;—21 is not desirable for the following
two reasons. First, numerical singularities would
occur when summing forces due to nearby parti-
cles. For this reason, a smoothing factor, €, is usu-
ally introduced, i.e. F(d) = ;0 +82 Second, even
though we are performing two-dimensional sim-
ulations, mass is not located sharply in the plane
of the disk, but is distributed normally in the third
(height) dimension. Thus, the force between two
points in the disk separated by a distance, d, is
also a function of the scale heights of the disk
at the two points, H; and H,. It is given exactly
by Fip(d) = Csp(d)F (d), where F(d) is the two-
dimensional force already given and C3p(d) is a
3D correction factor which is shown to be
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Csp(d) is very expensive to compute on the fly;
also, pre-computing and storing it in main mem-
ory is prohibitively slow and uses excessive stor-
age. A better strategy is to approximate C3p(d)
with an accurate and computationally inexpensive
model. We implement such a strategy which uses
a model of the form

xP + x%P
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W and p = 0.91. Our model
gives less than 1% error and requires computing
just one power and one square root function,
which is done on the fly. We plot Csp(d) and our

model overtop in the figure below.

where x =

C,p(d)vs. d-H,=1.0,H,=0.01,0.1,1.0,10.0, 100.0 + Model-1 fit
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Three-dimensional correction factor for interac-

tion forces used in disk self-gravity calculations.
Our model is plotted overtop the exact data for
comparison.
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