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The word turbulence invokes an image of vio-
lent, agitated, incoherent motion at all scales and
in all parts of a fluid. On the surface, it seems
clear that the flow in river-rapids is different from
a tornado which in turn is different from the con-
trolled flow in a laboratory wind-tunnel. Is it
therefore reasonable to expect that a universally
quantifiable “turbulence” phenomenon exists ir-
respective of how the flow is generated?
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A: Each colored line of connected dots is the non-
dimensionalized third-order longitudinal struc-
ture function measured along a particular direc-
tion in one of our simulated flows. The lines are
dramatically different from each other, especially
at the large scales, which tells us the degree of
asymmetry is very pronounced. B: The solid line
is the same statistic, averaged over many direc-
tions in the “shaken” flow. The dotted line is the
averaged quantity for the “stirred” flow. They are
practically identical at all scales.

In 1941, A.N. Kolmogorov postulated that at
sufficiently high Reynolds numbers, the statis-
tics of the so-called “inertial range” of spatial
scales which are much smaller than the large
scales (which are usually highly anisotropic and
non-universal) and much larger than the dissipa-
tive scales (where the fluid viscosity begins to
play a role), have universally isotropic behavior.

Based on this and a few other physically plau-
sible, though unproven hypotheses, Kolmogorov
derived the exact statistical law for third-order
two-point statistics – the so-called “4/5ths-law”
[1]

〈(δuL(r ,x))3〉 = −4
5

εr (1)

δuL(r ,x) = [u(x+ r)−u(x)] · r̂
r̂ = r/r

where 〈·〉 denotes ensemble or long-time aver-
ages. The length scaler must lie in the inertial
range. The lefthand side of Eq.1 is the well-
known third-order longitudinal structure function
and is a measure of the flux of energy through
scales of sizer. The mean energy dissipation rate
of the flow, computed from ensemble or long-
time averages, is given byε. The 4/5ths law is
one of the few exact, non-trivial results known in
the theory of statistical hydrodynamics.

A local version of the 4/5ths law was recently
derived by G.L. Eyink [2]. The statement is that
the K41 4/5ths law holdsinstantaneouslyin any
chosen region of a high-Reynolds number flow if
i)r is less than the size of that region and ii)the
mean dissipation rate is computed over the said
region and iii)the velocity differences in1 are av-
eraged over all angles of the sphere of radiusr.
This version of the K41 result does not require
isotropy or homogeneity of the flow. The region
considered may be of any size as long as the scale
r is chosen to be smaller than it. Long-time or
ensemble averages are also not required as in the
original K41 theory [3]. The Eyink [2] version of
K41 is truly local in space and time.

We are motivated in the present work by
the existence of isotropic statistics embedded in
anisotropic data as suggested by the work [2] de-
scribed above. We performed fully resolved sim-
ulations of two different anisotropic flows in a pe-
riodic box of 512 grid points to a side. The large-
scale anisotropy was generated by forcing each of
our simulations in such a manner as to generate
very different coherent shapes in the large scales.
One flow had large scales which were allowed
to change spatial orientation and intensity very
rapidly – rather like the behavior of liquid being
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thoroughly shaken in a cocktail shaker. The other
flow had long-lived large-scale structures with
very slowly changing orientations – this would be
something like the swirling structures seen in a
steadily stirred cocktail. After the flows achieved
statistical equilibrium, their small-scale Reynolds
numbers were approximately the same value. We
measured the third-order longitudinal structure
function as a function of scale sizer in 73 dif-
ferent directions in the flows. We first observed,
not surprisingly, that the large-scale asymmetries
in each case caused the small scale statistics of the
inertial range to depend strongly on the direction
along which they were measured (see Fig 1A).
Furthermore, the different large scale symmetries
imposed on the two flows resulted in them acquir-
ing different small scale symmetries. In short, the
two flows looked rather different from each other
for any particular choice of measurement direc-
tion.

We developed a new technique which allows us
to approximate the full spherical average of the
local 4/5th law [2] by averaging the statistics over
arbitrarily many directions. We use a method of
taking the average over angles which avoids the
expense and effort of interpolating the square-grid
data over spherical shells, which was how this
procedure has been attempted in the past. Re-
markably, we saw that the statistics of both flows,
averaged in this way, converged to practically in-
distinguishable values atall scales (see Fig 1B).

Our diagnosis showed that irrespective of the
degree or type of asymmetry and disorder in the
large scales, there is a universal, spherically sym-
metric component to turbulent flows. In particu-
lar, if two flows have nearly the same small-scale
Reynolds number, and the same geometry, they
also haveidentical underlying isotropic compo-
nent atall scales, at least as far as the third-order
energy statistics are concerned [4].

We are presently advancing this work by us-
ing our averaging technique to study the heli-
cal, parity-violating statistics of flows and much
progress has been made in this direction [6]. The
method is also general enough that it may be used
to extract isotropic contributions to statistics of
arbitrary order both in turbulence and quite possi-

bly in other nonlinear physical systems as well.
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