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We apply total-variation (TV) regularization methods to Abel inversion tomography.
Inversions are performed using the fixed-point iteration method and the regularization
parameter is chosen such that the resulting data fidelity approximates the known or
estimated statistical character of the noisy data. Five one-dimensional (1D) examples
illustrate the favorable characteristics of TV-regularized solutions: noise suppression and
density discontinuity preservation. Experimental and simulated examples from X-ray
radiography also illustrate limitations due to a linear projection approximation.
TV-regularized inversions are shown to be superior to squared gradient (Tikhonov)
regularized inversions for objects with density discontinuities. We also introduce an adaptive
TV method that utilizes a modified discrete gradient operator acting only apart from data-
determined density discontinuities. This method provides improved density level preservation
relative to the basic TV method.
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1. Introduction

The density reconstruction of objects from several radiographic views is a classic and
important tomography problem. A large subclass of problems is the interrogation of
manufactured items that consist of a small number of different materials. We present
here some results of our investigations on the application of total variation (TV)
regularization to the object reconstruction process. Our results show that the
choice of regularization can have significant impact on the interpretation of
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radiographs. This can be especially important in manufacturing, homeland security,
and high-energy particle beam applications.

The general inversion is typically formulated using the Radon Transform or related
approaches [3] and is regularized using any number of techniques. Vogel [2] presents a
good introduction to regularization of inverse problems. For objects with cylindrical
symmetry, tomographic applications require only a single viewing angle and the
Radon Transform reduces to the Abel Transform. In this study we consider objects
of one-dimensional (1D) description �(r). We leave discussions of applications to
objects of general cylindrical symmetry �ðr, zÞ to a future article. The continuous
Abel transform is

dðxÞ ¼ 2

Z 1

jxj

r�ðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � x2

p dr, ð1Þ

where d is a line-integral density relative to �. For example, if � is a volumetric density

then d is an areal density. Equation (1) has a well-defined inverse:

�ðrÞ ¼ �
1

�r

d

dr

Z 1

r

xdðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � r2

p dx: ð2Þ

A discrete version of equation (2) is the basis for Abel inversion tomography.
In practice, there are a number of difficulties to address. First, equation (1) is a

simplified description of typically very nonlinear experiments. Second, the inverse
problem can be ill-posed. Since radiographs are transmission intensity maps (or some
equivalent), the corresponding intrinsic material property is an attenuation
coefficient. Thus, obtaining an object density requires an additional transformation
either in the radiographic space (intensity to areal density) or in the object
description (attenuation to density). Both approaches are nontrivial requiring a detailed
understanding of the physics of interaction between particles in the interrogating beam
and the object materials. The simplest case – reconstructing an object made of a single
material – can usually be solved with good accuracy. However, multiple-material
situations cause this additional transformation to be nonunique, and significant prior
information about the object is necessary before the inverse Abel transform can be
utilized for quantitative evaluation.

A third difficulty is the ill-conditioning of the discrete inverse Abel transform. While
a given inversion is unique, small perturbations in d lead to large deviations in �. This is
because equation (2) defines an unbounded operator (see [1] for details). The inversion
must be regularized to obtain meaningful results from noisy data.

The discrete Abel transform can be formulated as a matrix P. If we consider the
object radial density values as a vector � of n elements and the areal density projections
as a vector d of m elements, then P is a nonsparse m� n matrix. This projection is
invertible if n � m, but is poorly conditioned when n � m. Condition numbers increase
linearly in n when n � 1. For example, a square matrix operator of size n� n has
condition number �1:75n.

Inverse Abel transform tomography is formulated as a functional minimization
problem:

874 T. J. Asaki et al.
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min
�

Fð�Þ ¼ min
�

kP�� dkd f þ �Rð�Þ
� �

, ð3Þ

where k � kdf is an appropriate data fidelity norm, and Rð�Þ is a regularization term
determined by a probability model of the types of objects we expect.

In this article, we focus on the use of regularization to address the important,
but ill-conditioned, inverse Abel Transform tomography problem. We demonstrate,
by example, the importance of the choice of R for recovering object density profiles
� from noisy areal density data d. In particular, we show that the use of TV regulariza-
tion has advantages over Tikhonov regularization in preserving material property
discontinuities in reconstructed objects.

2. Methods

We compute P as the parallel planar projection from a 2D object space onto a 1D data
space. Noise is treated as stationary Gaussian white noise. In practice, this
approach works well, but typical experiments are dominated by signal-dependent
Poisson noise. The examples that follow have different noise characteristics, so
our treatment of data fidelity can be expected to have mixed results. We consider
functionals of the form

Fð�Þ ¼
1

2

Z M

0

dr jP�� dj2 þ 2��

Z M

0

r dr jD�jp: ð4Þ

where � is supported on [0,M]. In particular, we consider p 2 f0, 1, 2g, corresponding
to the following regularization types: none, TV, and H1, respectively. The minimizing
solution of equation (3) depends on the choices of � and p. We select � that leads to
a solution with data fidelity norm equal to the known or estimated variance in the
data noise. Many problems may also benefit from a more careful approach to data
fidelity modeling that assumes correct statistics. For example, it is clear that most
radiography applications are governed by Poisson statistics. Such treatments are
outside the scope of this study.

Our approach is to use the largest invertible discrete linear projection operator P and
regularize the inversion. Given a data vector of length m, we reconstruct the object at
the same resolution. Thus, P is an m�m matrix. The methods outlined in the following
sections are not limited to this invertibility condition.

2.1. Inversion without regularization

The unregularized inversion is the p¼ 0 case of equation (4), as the second term of the
right hand side does not depend on �. This lack of regularization is appropriate
for situations in which no prior object knowledge is available. The object density
reconstruction is given explicitly by the pseudo-inverse � ¼ ðPTPÞ�1PTd. It is
expected to produce poor results in real scenarios due to the combination of noisy
data and ill-conditioning. In particular, we expect noise in the most stable directions
of P (the most unstable of P�1) to be amplified significantly and lead to poor inversions.

Abel inversion using TV regularization 875
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2.2. H1-regularization

The p¼ 2 case of equation (4) is the H1-regularization minimization. It can be shown
to be equivalent to applying the diffusion operator on the unregularized solution.
The equivalent diffusion time is inversely related to �. The result is a smooth reconstruc-
tion clearly biased against discontinuities in �. The same is true for all p>1 solutions.
The object density reconstruction is given explicitly by

� ¼ PTP� 4��rD2 � 4��D
� ��1

PTd: ð5Þ

For the gradient operator matrix, D, we use a simple forward differencing with
Neumann boundary conditions. If the inverse is nearly singular, it is advantageous to
use the solution methods outlined in the next subsection.

2.3. TV regularization

The p¼ 1 case of equation (4) is the TV regularization minimization. This regularization
is not biased against density discontinuities; it penalizes such density edges by a
reduction in amplitude, but not at the expense of smoothing the edge. Following
Vogel [4], we use the lagged-diffusivity fixed point method to find the minimum of
F �ð Þ. We compute the gradient and an approximate Hessian of the discrete cost
functional F that define a quasi-Newton step towards the minimum. Taking the
Gateaux derivatives of equation (4), we obtain

F 0 �ð Þ ¼ PT P�� dð Þ þ �L �ð Þ�, ð6Þ

and

F 00 �ð Þ ¼ PTPþ �L �ð Þ þ �L0 �ð Þ�, ð7Þ

where we adopt the notation R0 �ð Þ ¼ L �ð Þ�. In particular, if p¼ 2 then
L �ð Þ ¼ 2� rD2 þD

� �
. If p¼ 1, the nondifferentiability of R when D� ¼ 0 is problematic.

The difficulty is to overcome by choosing a suitably small parameter � and
defining R by

R �ð Þ ¼ 2�

Z 1

0

r dr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jD�j2 þ �2

q
: ð8Þ

Now R has a well-defined derivative from which L �ð Þ is identified:

L �ð Þ ¼ 2� rDþ Ið Þ �
Dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jD�j2 þ �2
p

 !" #
: ð9Þ

Since L �ð Þ depends explicitly on the solution �, we let the solution iterate ��þ1

depend on the previous solution ��. This is the origin of the term lagged-diffusivity.
The quasi-Newton iteration is given by

876 T. J. Asaki et al.
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��þ1 ¼ �� þ s�

¼ �� � HessF �ð Þ½ 	
�1DF ��ð Þ

� �� � PTPþ �L ��ð Þ
� ��1

PT P�� � dð Þ þ �L ��ð Þ��
� �

: ð10Þ

where in the correction term s� we use the approximate Hessian which omits the L0 �ð Þ�
term. While Newton methods are expected to have quadratic convergence, the use of
a lagged-diffusivity and approximate Hessian guarantee only linear convergence [2].
Methods with faster convergence (for example, primal dual) require larger
computational overhead. For the small problems of interest here (n < 103), linear
convergence is sufficient. Typically �20 iterations are sufficient to reach our
convergence criterion ks�k2=k��k2 < 10�3.

The discretization of equation (10) Newton is straightforward. First, we define the
diffusivity function

� ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jD�j2 þ �2
p , ð11Þ

so that

L �ð Þ ¼ �Dþ rD � �D: ð12Þ

We then use simple forward differencing to construct the discrete gradient operator.
The use of second-order methods can present difficulties when attempting to recover
discontinuities. See [1] for a detailed discussion of the functional F when p¼ 1.

2.4. Adaptive TV regularization

Since most static objects have only piecewise continuous densities, we would like to use
a regularization with the edge-preserving quality of TV and absolute amplitude smooth-
ing quality of H1. To this end, we present a fourth regularization method which we
designate as adaptive total variation (aTV). In this approach, TV-regularized solutions
are used to identify object radial locations of suspected density discontinuities. Then,
an H1 regularized inversion on the data set apart from these locations completes the
analysis.

To accomplish this we mask the discrete gradient operator according to an edge
location set that identifies suspected object discontinuities. This edge location set E is
represented by a diagonal matrix of diagonal entry 0 if the object has a suspected den-
sity discontinuity at the location and entry 1 otherwise. The masked gradient operator is
then D
 ¼ D � E. The aTV solution is found by the following algorithm:

(i) Determine �TV, the regularization parameter that provides the desired TV
reconstruction, and �� ¼ �max � �min, the density range of the TV
reconstruction.

(ii) Set E equal to the identity matrix so that D
 ¼ D � E ¼ D.
(iii) Set the discontinuity threshold t ¼ ��:
(iv) Set � > �TV:
(v) Compute the TV regularized solution � using � and D*.

Abel inversion using TV regularization 877
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(vi) Compute the masked gradient operator matrix D*. First set E¼ I, then
set Ei, i ¼ 0 if �iþ1 � �i > t. Now D
 ¼ D � E.

(vii) Update t.
(viii) Repeat steps 5–7 until convergence criteria are met on either the solution � or on

the threshold t.
(ix) Compute the H1 regularized solution � using a very large � and the final masked

gradient operator matrix D*.

The choice of t within the inner iteration is somewhat of an art, though certain
principles apply. The threshold t is initially large relative to expected density
discontinuities and lowered at each iteration down to a value somewhat larger than
the estimated or known noise level � in the reconstruction �. The regularization
parameter � is set large relative to �TV. The large initial parameter values allow only
the largest density discontinuities to be recognized at early iterations. Incremental
adjustments combined with a masked gradient operator allow discontinuities on smaller
and smaller size scales to be identified. The examples in the following section use the
following parameters.

� ¼ 2�TV, ð13Þ

and

tk ¼ 2½�þ 2�kð��� 2�Þ	, k ¼ 1, 2, . . . , 10, ð14Þ

where k is the aTV iteration index.

3. Examples and discussion

We show results of the four regularized inversion methods applied to both synthetic and
real data. In all cases we work with objects of 1D description �(r) and corresponding
1D data d(x).

3.1. Synthetic Example 1

The first example is the reconstruction of an object of 10 nested varying density rings.
The object, data, and reconstructions are shown in figure 1. The object density profile
(a) is given by n¼ 200 ring densities. The corresponding projection data (b) is a synthe-
tically generated areal density with added Gaussian noise. The variance of the noise is a
uniform 1.5% of the maximum noiseless data value. The noisy data is shown in black
and the noiseless data is shown in gray. In each of the remaining subfigures, the actual
object is shown in gray and a reconstruction is shown in black: (c) unregularized; (d)H1;
(e) TV; and (f) aTV. As expected, the unregularized reconstruction is overwhelmed by
noise amplification through the ill-conditioned inverse projection [4]. A smoothing
regularizer does very well at reducing high frequency noise artifacts and even preserves
the general character of the object, but the same regularizer is unable to capture density
discontinuities, smoothing the edges. The TV regularizer captures many of the discon-
tinuities. The aTV regularization procedure does the best of all. It best identifies all dis-
continuities and best preserves the actual density levels to within that given by the local

878 T. J. Asaki et al.
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data. Figure 2 shows the results of several stages in the iterative aTV process along the
path from figure 1(e)–(f). Figure 2(a) shows the original TV-regularized reconstruction,
and is identical to figure 1(e). Figures (b)–(g) show intermediate reconstructions along
with the current catalog of edge locations (vertical dashed lines). At each iteration, as
the edge location detection threshold is lowered, the edge location set and gradient
operator matrix are updated. Only the first six aTV iteration results are shown, as
the remaining computations do not affect the edge location set in this example.
Figure (h) shows the results of the final H1 regularized solution; it is the result
shown in figure 1(f).

3.2. Synthetic Example 2

The second example is the reconstruction of an object with a mixture of piecewise
smooth and piecewise constant density variations. The object, data, and reconstructions
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Figure 1. Regularized inversion examples on a synthetic data set generated from a simple nested-ring
computational test object. The object density is defined at 200 radial positions and consists of 10 individual
density values. The density profile of the object (a) is projected onto one-dimension (b, gray) and Gaussian
noise is added to obtain a synthetic 1D radiograph (b, black). The remaining figures are four regularized
object density reconstruction examples (black) against the object reference (gray): (c) unregularized; (d) H1;
(e) TV; and (f) aTV.
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are shown in figure 3. The object is of similar description to the previous object. This
object is more complex in that it has some regions of smoothly varying density and den-
sity discontinuities are not regularly spaced. The data is synthetic with added Gaussian
noise of variance 1.0% of the maximum noiseless data value. The reconstructions are
ordered as in the previous example. We note that the TV-based regularizers again per-
form better. Even the smallest object features are partially recovered. This suggests that
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Figure 2. Sample iterative steps during the adaptive TV reconstruction of simulated object #1. The original
TV reconstruction (a) is iteratively modified through a procedure that identifies density discontinuity
locations. Figures (b)–(g) show intermediate reconstructions and identified edges are shown as vertical dashed
lines. The final figure (h) shows the final reconstruction where H1 regularization has been applied to all
regions not considered to be edge locations.
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our regularizer and data fidelity metric are excellent choices. Figure 3(e) does show
staircasing, in which regions of nonzero slope are recovered as a series of piecewise
constant values over multiple pixels.

3.3. Simulated Example 1

The third example is an edge-detection exercise from a simulated X-ray radiograph
of a set of nested spherical shells. Figure 4 shows the radiograph (a), computed
radial areal density (b), and reconstructions (c) and (d). Radiographs were numeri-
cally simulated using the Monte Carlo code MCNP1 with X-ray scattering
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Figure 3. Regularized inversion examples on a synthetic data set generated from a variable density compu-
tational test object. The object density is defined at 200 radial positions. The density profile of the object (a) is
projected onto 1D (b, gray) and Gaussian noise is added to obtain a synthetic 1D radiograph (b, black). The
remaining figures are four regularized object density reconstruction examples (black) against the object
reference (gray): (c) unregularized; (d) H1; (e) TV; and (f) aTV.

1MCNP is a particle transport code that includes detailed physics treatments of photo-atomic and photo-elec-
tron interactions. It correctly treats Bremsstrahlung photons created from recoil or ejected electrons as well as
photon scattering. It allows high-fidelity simulations of actual experimental conditions including source
particulars and experiment geometry. Our simulated radiographs were provided by Jeff Favorite of the
Applied Physics Division at Los Alamos National Laboratory.
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suppressed. The simulated source is a bi-chromatic cobalt-60 source set at a dis-
tance sufficient to adequately approximate a parallel beam. The object is a set of
four nested spheres whose boundary locations are indicated by vertical grid lines
in the reconstruction figures. In this case, we must convert the radiograph from
intensity (I) to areal density. Without explicit prior knowledge of the object, the
areal density is not uniquely determined. Instead, we use an exponential attenuation
approximation (d / �ln I=I0ð Þ) and invert assuming that the object is a single mate-
rial. The relative noise level is very small in this simulation with a standard devia-
tion of approximately 0.01% of the maximum areal density value. We find that
density edges are accurately reconstructed using a TV prior, but poorly defined
using a smoothing regularizer. Because of the absence of calibration data, we do
not attempt to recover densities.
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Figure 4. Edge detection example from a simulated X-ray experiment. In this example the simulation
does not account for X-ray scattering. The four figures are: (a) false color radiograph; (b) computed
radial areal density; (c) H1 regularized inversion; and (d) aTV inversion. Locations of actual
object density discontinuities are shown as vertical gridlines. The horizontal gridline indicates the zero density
level.
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3.4. Simulated Example 2

The fourth example is nearly identical to that of the previous example. The data now
includes X-ray scattering effects but the reconstruction process is the same and
does nothing to account for the differences. Figure 5 shows (a) a false-color
radiograph, (b) computed radial areal density, (c) H1 regularized reconstruction, and
(d) a TV-regularized reconstruction. No attempt was made to correct for scattering
effects. We find that locations of material boundaries (density discontinuities) are still
very well determined. The main effect of the scattering is to render impossible a
quantitative analysis of the individual densities. In this relatively noiseless scenario,
the material boundaries could be obtained from derivative information on the H1

solution. However, the previous examples show that this is not generally the case.
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Figure 5. Edge detection example from a simulated X-ray experiment. This example includes the effects of
X-ray scattering. The four figures are: (a) false color radiograph; (b) computed radial areal density; (c) H1

regularized inversion; and (d) aTV inversion. Locations of actual object density discontinuities are shown as
vertical gridlines. The horizontal gridline indicates the zero density level.
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3.5. Experimental example

The fifth example is the reconstruction of a similar spherical computational test
object from an actual X-ray radiograph.2 Figure 6 shows (a) a false-color
radiograph, (b) radial areal density, (c) H1 regularized reconstruction, and (d) aTV
regularized reconstruction. Locations of the actual spherical shell boundaries are indi-
cated by vertical gridlines in the reconstructions. We find that theH1 solution has a very
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Figure 6. Edge detection example on a spherical nondestructive testing example object examined by an
actual X-ray experiment. The four figures are: (a) false color radiograph; (b) computed radial areal density;
(c) H1 regularized inversion; and (d) aTV inversion. Locations of actual object density discontinuities are
shown as vertical gridlines. The horizontal gridline indicates the zero density level.

2 The radiograph was acquired by Hans Snyder and David Miko of the Nuclear Nonproliferation Division at
Los Alamos National Laboratory.
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difficult time distinguishing even qualitative object geometry. The aTV solution is sig-
nificantly better in identifying all material boundaries. It does, however, retain two
intermediate boundaries suggesting a more complex structure than in the real object.
We attribute this effect to a combination of the scattering distortion effects, uncertainty
in beam intensity correction across the image plane, and measurement noise. The effects
of scattering are pronounced in the central region of the reconstructions; the interior
and exterior densities of the actual object are both zero.

4. Conclusion

It is expected that any regularization based on prior knowledge of objects to be recon-
structed will provide suppression of inversion amplified data noise and visually pleasing
results relative to an unregularized solution. The particular choice of regularization,
however, has significant influence on the details of the final result. We have shown
that TV-based regularizations are much better choices for reconstructing objects of
piecewise smooth density, especially if the location of density edges are an important
reconstruction feature.

We have presented methods for the applying TV regularization to 1D Abel inversion
problems with regularization in the two-dimensional object space. Our approach
involves the use of a lagged diffusivity fixed point analysis. We also introduced a
simple adaptive gradient operator approach for identifying density discontinuities
and applying zero-cost penalty in the edge location set of the regularization cost
functional.

Current and future work includes (1) the use of data fidelity that reflects known data
characteristics, (2) extensions to 2D cylindrically-symmetric object descriptions �ðr, zÞ,
(3) arbitrary orientation of the object symmetry axis, and (4) arbitrary beam geometry
(nonparallel).
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