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ABSTRACT

The theory of compressive sensing has shown that sparse
signals can be reconstructed exactly from many fewer mea-
surements than traditionally believed necessary. In [1], it was
shown empirically that using `p minimization with p < 1 can
do so with fewer measurements than with p = 1. In this paper
we consider the use of iteratively reweighted algorithms for
computing local minima of the nonconvex problem. In par-
ticular, a particular regularization strategy is found to greatly
improve the ability of a reweighted least-squares algorithm to
recover sparse signals, with exact recovery being observed for
signals that are much less sparse than required by an unreg-
ularized version (such as FOCUSS, [2]). Improvements are
also observed for the reweighted-`1 approach of [3].

Index Terms— Compressive sensing, signal reconstruc-
tion, nonconvex optimization, iteratively reweighted least
squares, `1 minimization.

1. INTRODUCTION

Recent papers [4, 5] have introduced the concept known as
compressive sensing (among other related terms). The basic
principle is that sparse or compressible signals can be recon-
structed from a surprisingly small number of linear measure-
ments, provided that the measurements satisfy an incoherence
property (see, e.g., [6] for an explanation of incoherence).
Such measurements can then be regarded as a compression of
the original signal, which can be recovered if it is sufficiently
compressible. A few of the many potential applications are
medical image reconstruction [7], image acquisition [8], and
sensor networks [9].

The first algorithm presented in this context is known as
basis pursuit [10]. Let Φ be an M × N measurement ma-
trix, and Φx = b the vector of M measurements of an N -
dimensional signal x. The reconstructed signal u∗ is the min-
imizer of the `1 norm, subject to the data:

min
u
‖u‖1, subject to Φu = b. (1)
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A remarkable result of Candès and Tao [11] is that if, for
example, the rows of Φ are randomly chosen, Gaussian dis-
tributed vectors, there is a constant C such that if the support
of x has size K and M ≥ CK log(N/K), then the solution
to (1) will be exactly u∗ = x with overwhelming probability.
The required C depends on the desired probability of success,
which in any case tends to one as N →∞. Donoho and Tan-
ner [12] have computed sharp reconstruction thresholds for
Gaussian measurements, so that for any choice of sparsity K
and signal size N , the required number of measurements M
for (1) to recover x can be determined precisely.

Variants of these results have included Φ being a random
Fourier submatrix, or having values±1/

√
N with equal prob-

ability. More general matrices are considered in [6, 13]. Also,
x can be sparse with respect to any basis, with u replaced with
Ψu for suitable unitary Ψ.

A family of iterative greedy algorithms [14, 15, 16] have
been shown to enjoy a similar exact reconstruction property,
generally with less computational complexity. However, these
algorithms require more measurements for exact reconstruc-
tion than the basis pursuit method.

In the other direction, it was shown in [1] that a nonconvex
variant of basis pursuit will produce exact reconstruction with
fewer measurements. Specifically, the `1 norm is replaced
with the `p norm, where 0 < p < 1 (in which case ‖ · ‖p isn’t
actually a norm, though d(x, y) = ‖x− y‖p

p is a metric):

min
u
‖u‖p

p, subject to Φu = b. (2)

That fewer measurements are required for exact reconstruc-
tion than when p = 1 was demonstrated by numerical ex-
periments in [1], with random and nonrandom Fourier mea-
surements. A theorem was also proven in terms of the re-
stricted isometry constants of Φ, generalizing a result of [17]
to show that a condition sufficient for (2) to recover x exactly
is weaker for smaller p. More recently, for the case of random,
Gaussian measurements, the above condition of Candès and
Tao has been shown (using different methods) [18] to gener-
alize to

M ≥ C1(p)K + pC2(p)K log(N/K), (3)

where C1, C2 are determined explicitly, and are bounded in
p. Thus, the dependence of the sufficient number of mea-



surements M on the signal size N decreases as p → 0. The
constants are not sharp, however.

2. ALGORITHMS FOR NONCONVEX
COMPRESSIVE SENSING

Early papers considering iteratively reweighted least squares
(IRLS) approaches include [19, 20]. IRLS for solving (2) has
mostly been considered for p ≥ 1. The case of p < 1 was
studied by Rao and Kreutz-Delgado [2]. The approach is to
replace the `p objective function in (2) by a weighted `2 norm,

min
u

N∑
i=1

wiu
2
i , subject to Φu = b, (4)

where the weights are computed from the previous iterate
u(n−1), so that the objective in (4) is a first-order approxi-
mation to the `p objective: wi = |u(n−1)

i |p−2. The solution
of (4) can be given explicitly, giving the next iterate u(n):

u(n) = QnΦT
(
ΦQnΦT )−1b, (5)

where Qn is the diagonal matrix with entries 1/wi =
|u(n−1)

i |2−p. This comes from solving the Euler-Lagrange
equation of (4), using the constraint to solve for the Lagrange
multipliers, then substituting this value into the solution. The
result is a fixed-point iteration for solving the Euler-Lagrange
equation of (2).

In this paper, we are considering 0 ≤ p ≤ 1. The case of
p = 0 corresponds to an objective of

∑
log(|ui|2). Given that

p−2 will be negative, the weights wi are undefined whenever
u

(n−1)
i = 0. A common approach for dealing with this issue

is to regularize the optimization problem, by incorporating a
small ε > 0. For example, below we consider the damping
approach:

wi =
(
(u(n−1)

i )2 + ε
)p/2−1

. (6)

As observed in [2], the iteration (5) depends only on 1/wi,
which if defined directly as |u(n−1)

i |2−p is well defined for
any value of u

(n−1)
i . In principle, no regularization is needed.

For many systems, however, the matrix being inverted in (5)
is too ill-conditioned to allow accurate computation of u(n).

In Section 3, we perform experiments that show that the
strategy of using a relatively large ε in (6), then repeating the
process of decreasing ε after convergence and repeating the
iteration (5), dramatically improves the ability of IRLS to re-
cover sparse signals. Exact recovery becomes possible with
many fewer measurements, or with signals that are much less
sparse. This ε-regularization strategy was used effectively
with a projected gradient algorithm in [1].

It must be noted that (2) is a nonconvex optimization prob-
lem when p < 1, and all of the algorithms considered here
are only designed to produce local minima. However, the fact

that in practice we are able to recover signals exactly, com-
bined with theoretical results [1, 18] that give circumstances
in which (2) has a unique, global minimizer that is exactly
u∗ = x, strongly suggests that the computed local minimiz-
ers are actually global, at least under a broad set of circum-
stances. A possible explanation for this in the context of the
ε-regularization strategy is that adding a relatively large ε in
the weights results in undesirable local minima being “filled
in.” Since it is known that the sparsity of x and the incoher-
ence of Φ combine to make x the global minimum of (2), it
is also plausible that the basin containing x will be deeper,
and less likely to be filled in than other, local minima. With
a large ε, we observe our algorithm to converge to a reason-
ably nearby point; once u is in the correct basin, decreasing ε
allows the basin to deepen, and u approaches x more closely,
converging to x as ε → 0. We hope to turn these notions into
a proof of convergence of the ε-regularized IRLS algorithm to
the global minimum of (2).

As partial justification, we show that x will be a fixed
point of the procedure described above.

Theorem 2.1. Let x ∈ RN be a vector of sparsity ‖x‖0 =
K. Let Φ be an M × N matrix with the property that every
collection of 2K columns of Φ is linearly independent. Let
εj ∈ (0, 1) be a sequence converging to zero. For each j, let
u∗,j be the unique solution of the strictly convex optimization
problem (4), where the weights wi are given by wi = (x2

i +
εj)p/2−1, 0 ≤ p < 2, and b = Φx. Then u∗,j → x.

The property assumed of Φ is called the unique represen-
tation property by Gorodnitsky and Rao [21], who observe
that it implies that x is the unique solution of Φu = b hav-
ing sparsity ‖u‖0 ≤ K. Among many other examples, this
property will hold with probability 1 for a random, Gaussian
matrix Φ provided M ≥ 2K.

Proof. First, the sequence (u∗,j) is bounded. In fact, a known
property of IRLS is boundedness independent of the weights;
see [22].

Next, fix k such that xk = 0. Then

N∑
i=1

wi(u
∗,j
i )2 ≥ wk(u∗,jk )2 = (u∗,jk )2/ε

1−p/2
j , (7)

while by the optimality of u∗,j ,

N∑
i=1

wi(u
∗,j
i )2 ≤

N∑
i=1

wix
2
i ≤ ‖x‖p

p. (8)

Combining, we obtain

(u∗,jk )2 ≤ ε
1−p/2
j ‖x‖p

p → 0. (9)

So we see (u∗,j) tends to zero off the support of x. Then any
limit point u0 of (u∗,j) will be a solution of Φu0 = b having
at most K nonzero components. By the remarks preceding
the proof, it must be that u0 = x. Therefore u∗,j → x.



Fig. 1. Plots of recovery frequency as a function of K. Regu-
larized IRLS has a much higher recovery rate than unregular-
ized IRLS, except when p = 1 when they are almost identical.
Regularized IRLS recovers the greatest range of signals when
p is small, while unregularized IRLS performs less well for
small p than when p = 1.

Candès, Wakin, and Boyd have proposed an iteratively
reweighted `1 minimization algorithm corresponding to the
p = 0 case above [3]. Below we compare our ε-regularized
IRLS results to a similar, ε-regularized iteratively reweighted
`1 minimization algorithm for a few values of p.

3. NUMERICAL EXPERIMENTS

For our experiments, for each of 100 trials we randomly select
entries of a 100 × 256 matrix Φ from a mean-zero Gaussian
distribution, then scale the columns to have unit 2-norm. For
each value of K, we randomly choose the support of x, then
choose the components from a Gaussian distribution of mean
0 and standard deviation 2. The same Φ and x would then
be used for each algorithm and choice of p. For ε-regularized
IRLS, ε is initialized to 1 and u(0) initialized to the minimum
2-norm solution of Φu = b. The iteration (5) with weights
defined by (6) is run until the change in relative 2-norm from
the previous iterate is less than

√
ε/100, at which point ε is

reduced by a factor of 10, and the iteration repeated begin-
ning with the previous solution. Decreasing ε too soon re-
sults in much poorer recovery performance. This process is
continued through a minimum ε of 10−8, below which the
matrix being inverted in (5) can become ill-conditioned. For
this reason, the “unregularized” IRLS is implemented as ε-
regularized IRLS, but with a single ε of 10−8.

Results are shown in Figures 1 and 2. We see that ε-
regularized IRLS is able to recover signals with many more
nonzero components when p = 0, in comparison with un-
regularized IRLS, or with ε-regularized IRLS with p = 1.
For p = 1, the two algorithms perform almost identically,
but then unregularized IRLS decays as p decreases, while ε-
regularized IRLS improves.

For comparison with the proposed IR`1 approach of Candès,
Wakin, and Boyd, we implemented the above procedure, ex-
cept at each iteration the weighted least squares step (4) was

Fig. 2. Same data as in Figure 1, but with every p shown.
Unregularized IRLS is best at p = 0.9, then decays quickly
for smaller p, Regularized IRLS improves as p gets smaller,
and recovers many more signals than unregularized IRLS.

Fig. 3. Comparison of IR`1 with IRLS, both ε-regularized.
The recovery rate is near 1 for the same values of K, while
IRLS has a slightly higher recovery rate for larger K, except
for p = 1 where the two are essentially the same.



replaced with solving the following weighted-`1 problem:

min
u

N∑
i=1

wi|ui|, subject to Φu = b, (10)

where the weights are given by

wi =
(
|u(n−1)

i |+ εj

)p−1
. (11)

We used a Mosek-based, interior-point linear programming
solver to solve (10). The results are somewhat better than
those in [3]; see Figure 3. The recovery rate remains near
1 for as many signals as ε-regularized IRLS. For larger K,
the recovery rate of IR`1 is just slightly lower than that of
IRLS, except for p = 1 where the difference is negligible.
Since IRLS is computationally simpler, our results suggest
that IRLS is the better approach.
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