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1. Introduction

Recent papers [1, 2] have introduced the concept known as compressive sensing (among

other related terms). The basic principle is that sparse or compressible signals can be

reconstructed from a surprisingly small number of linear measurements, provided that

the measurements satisfy an incoherence property (see, e.g., [3] for an explanation of

incoherence). Such measurements can then be regarded as a compression of the original

signal, which can be recovered if it is sufficiently compressible. A few of the many

potential applications are medical image reconstruction [4], image acquisition [5], and

sensor networks [6].

If the goal is to reconstruct sparse signals from the measurements, a natural

approach is to find the sparsest signal consistent with the measurements. Let Φ be

an M × N measurement matrix, and Φx = b the vector of M measurements of an

N -dimensional signal x. The approach would be to solve the following optimization

problem:

min
u
‖u‖0, subject to Φu = b. (1)

Here, the `0 norm ‖ · ‖0 simply counts the number of nonzero components. (This is a

standard abuse of terminology: ‖ · ‖0 is not a norm, not being positive homogeneous.)

In principle, this strategy is effective. For example, in the particular case of random

measurements, where the entries of Φ are drawn from a Gaussian distribution, and a

signal x with ‖x‖0 = K, then with probability 1 the problem (1) will have a unique

solution that is exactly u∗ = x, as long as M > K. If we have M ≥ 2K, we can

strengthen this statement to say that with probability 1, our choice of Φ will allow (1)

to perfectly recover all signals x satisfying ‖x‖0 ≤ K. Proofs of these statements can

be found in [6].

Unfortunately, solving (1) would appear to require combinatorial optimization, and

be utterly intractable to solve. In fact, it is provably NP-hard [7]. However, a remarkable

result of Candès and Tao [8] for random, Gaussian measurements is that we can recover

x with ‖x‖0 = K with high probability as the unique solution of the convex, basis

pursuit problem [9]:

min
u
‖u‖1, subject to Φu = b, (2)

provided M ≥ CK log(N/K) for some constant C. The required C depends on the

desired probability of success, which in any case tends to one as N → ∞. Because (2)

is convex, it can be solved efficiently, a much better situation than that of (1). The cost

is that more measurements are required, depending logarithmically on N . (Note that

the above is only a sufficient condition, but Donoho and Tanner [10] have computed

sharp reconstruction thresholds, so that for any choice of sparsity K and signal size N ,

the required number of measurements M for (2) to recover x with high probability can

be determined precisely. Their results replace log(N/K) with log(N/M), showing that

logarithmic growth in N is necessary.)
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Variants of these results have included Φ being a random Fourier submatrix, or

having values ±1/
√
N with equal probability. More general matrices are considered in

[3, 11]. Also, x can be sparse with respect to any basis, with u replaced with Ψu for

suitable unitary Ψ.

A family of iterative greedy algorithms [12, 13, 14] have been shown to enjoy a

similar exact reconstruction property, generally with less computational complexity.

However, these algorithms require more measurements for exact reconstruction than

the basis pursuit method.

In the other direction, it was shown in [15] that a nonconvex variant of basis pursuit

will produce exact reconstruction with fewer measurements. Specifically, the `1 norm is

replaced with the `p norm, where 0 < p < 1 (in which case ‖ · ‖p isn’t actually a norm,

though d(x, y) = ‖x− y‖pp is a metric):

min
u
‖u‖pp, subject to Φu = b. (3)

That fewer measurements are required for exact reconstruction than when p = 1 was

demonstrated by numerical experiments in [15], with random and nonrandom Fourier

measurements. A theorem was also proven in terms of the restricted isometry constants

of Φ (see section 2), generalizing a result of [16] to show that a condition sufficient for

(3) to recover x exactly is weaker for smaller p. The main result of this paper will that

for the case of random, Gaussian measurements, the above condition of Candès and Tao

generalizes to

M ≥ C1(p)K + pC2(p)K log(N/K), (4)

where C1, C2 are determined explicitly, and are bounded in p. Thus, the dependence of

the sufficient number of measurements M on the signal size N vanishes as p→ 0.

2. Restricted isometry properties

In [16], Candès and Tao introduce the notion of restricted isometry constants of a matrix.

Let Φ be an M × N matrix, where M < N , and L a positive number. Then δL is the

smallest number such that

(1− δL)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δL)‖x‖22 (5)

for all x such that ‖x‖0 ≤ L. Thus, δL quantifies how close to isometrically Φ acts

on L-sparse vectors, or how close to isometric M × L submatrices of Φ must be. The

following theorem illustrates the relevance of these constants.

Theorem 2.1 (Candès-Tao). Let x ∈ RN have sparsity ‖x‖0 = K, and suppose Φ is a

matrix satisfying the following:

δ3K + 3δ4K < 2. (6)

Then x is the unique minimizer of (2).
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It is clear from their proof that the constants 3, 4, and 2 can be replaced with b,

b+ 1, and b− 1 for any b > 1. If one increases b, there is a tradeoff between the increase

of δbK , and the weakening of the inequality that the constants must satisfy. There is

nothing special about the value b = 3, but the best value for any particular type of

matrix is not known.

The above sufficient condition is then shown [16] to be met with high probability

for random, Gaussian Φ, provided M ≥ CK log(N/K) for some constant C.

In [17], theorem 2.1 was generalized to the case of `p minimization:

Theorem 2.2. [17] Let x ∈ RN have sparsity ‖x‖0 = K, 0 < p ≤ 1, b > 1, and

a = bp/(2−p). Suppose that Φ satisfies

δaK + bδ(a+1)K < b− 1. (7)

Then the unique minimizer of (3) is exactly x.

Since bp/(2−p) < b for p < 1, the sufficient condition (7) is weaker than (6) when

p < 1. The following corollary appears in [15]:

Corollary 2.3. Given x with ‖x‖0 = K, suppose Φ is such that δ2K+1 < 1. Then there

is p > 0 such that the unique minimizer of (3) is exactly x.

The corollary says that the limiting case of theorem 2.2 as p → 0 is essentially

the `0 case. It follows from the theorem by simply choosing b sufficiently large, then p

sufficiently small.

In this paper, we consider a different notion of restricted isometry constant, based

on the fact that we are working with `p norms. For an M × N matrix Φ, L > 0, and

0 < p ≤ 1, we define the restricted p-isometry constant δL to be the smallest number

such that

(1− δL)‖x‖p2 ≤ ‖Φx‖pp ≤ (1 + δL)‖x‖p2 (8)

for all x such that ‖x‖0 ≤ L. We do not explicitly indicate the dependence of δL on p

(or Φ, as before), which should not cause confusion. Also, for the rest of the paper, the

definition of δL will be given by (8), and not (5). This newer notion quantifies how close

Φ is to an isometric embedding of L-dimensional subspaces of `2(RN) into `p(RM). A

similar definition in the case of p = 1 appears in [18], and is related to the Banach-Mazur

distance of Banach space theory.

We now generalize theorem 2.2 to the new setting.

Theorem 2.4. Let Φ be an M ×N matrix with M < N , x ∈ RN , and let K = ‖x‖0 be

the size of the support of x. Let 0 < p ≤ 1, b > 1, a = b2/(2−p), rounded up so that aK

is an integer (that is, a = db2/(2−p)Ke/K). Suppose that Φ satisfies

δaK + bδ(a+1)K < b− 1. (9)

Then the unique minimizer of (3) is exactly x.

The slight rounding up of a should have been done in theorem 2.2 (which first

appears in [17]) as well. In general this increases by one the number of columns in

submatrices of Φ governed by (8).
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Proof. We will prove something slightly stronger, that ‖Φx‖pp can be replaced with

(1/c)‖Φx‖pp in (8) for any c > 0. Although the isometry constants are not scale

invariant, the sufficient condition is. The proof generally modifies that of [19], but

with a simplification. (Specifically, equation (2.2) therein is not required.) We consider

a solution u of (3) (that one exists is geometrically obvious). Let h = u− x; we wish to

show that h = 0. For T ⊂ {1, . . . , N}, ΦT will denote the matrix equalling Φ in those

columns whose indices belong to T , and otherwise zero, and similarly for the vector hT .

Let T0 be the support of x. By the triangle inequality for ‖ · ‖pp, we have

|‖x‖pp − ‖ − hT0‖pp| ≤ ‖x+ hT0‖pp. (10)

Since T0 ∩ T c0 = Ø, we have

‖x‖pp − ‖hT0‖pp + ‖hT c0 ‖
p
p ≤ ‖x+ hT0 + hT c0 ‖

p
p = ‖x+ h‖pp = ‖u‖pp

≤ ‖x‖pp, (11)

the last inequality holding because u solves (3). The result is that

‖hT c0 ‖
p
p ≤ ‖hT0‖pp. (12)

In other words, although u need not be sparse, a bound exists on the portion of u outside

the support of x.

Let L = aK. Arrange the elements of T c0 in order of decreasing magnitude of |h|
and partition into T c0 = T1∪T2∪· · ·∪TJ , where each Tj has L elements (except possibly

TJ). We do this because the restricted isometry condition gives us control over the

action of Φ on small sets. Denote T01 = T0 ∪ T1. We decompose Φh:

0 = ‖Φu− Φx‖pp = ‖Φh‖pp =
∥∥∥ΦT01hT01 +

J∑
j=2

ΦTjhTj

∥∥∥p
p

≥ ‖ΦT01hT01‖pp −
∥∥∥ J∑
j=2

ΦTjhTj

∥∥∥p
p
≥ ‖ΦT01hT01‖pp −

J∑
j=2

‖ΦTjhTj‖pp

≥ c(1− δL+K)‖hT01‖
p
2 − c(1 + δL)

J∑
j=2

‖hTj‖
p
2. (13)

Now we need to control the size of the ‖hTj‖2. We aim to use (12), for which we

must estimate the `2 norm in terms of the `p norm. For each t ∈ Tj and s ∈ Tj−1,

|h(t)| ≤ |h(s)|, so that

|h(t)|p ≤ ‖hTj−1
‖pp/L. (14)

Then

|h(t)|2 ≤ ‖hTj−1
‖2p/L2/p, (15)

‖hTj‖22 ≤ L‖hTj−1
‖2p/L2/p, (16)

‖hTj‖
p
2 ≤ ‖hTj−1

‖pp/L1−p/2, (17)
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so that
J∑
j=2

‖hTj‖
p
2 ≤

( J∑
j=1

‖hTj‖pp
)
/L1−p/2 =

( J∑
j=1

∑
t∈Tj

|h(t)|p
)
/L1−p/2

= ‖hT c0 ‖
p
p/L

1−p/2. (18)

Now we may use (12), and then convert back from `p to `2 by means of Hölder’s

inequality:

‖hT0‖pp =
∑
t∈T0

|h(t)|p · 1 ≤

(∑
T0

|h(t)|2
) p

2
(∑

T0

1

)1− p
2

= ‖hT0‖
p
2K

1−p/2. (19)

Combining, we obtain

J∑
j=2

‖hTj‖
p
2 ≤ ‖hT0‖pp/L1−p/2 ≤ ‖hT0‖

p
2

(K
L

)1− p
2

= ‖hT0‖
p
2/a

1−p/2

= ‖hT0‖
p
2/b. (20)

Putting together with (13), we have

0 ≥ c(1− δL+K)‖hT01‖
p
2 − c(1 + δL)‖hT0‖

p
2/b

≥ c (1− δL+K − (1 + δL)/b) ‖hT01‖
p
2. (21)

The condition (9) of the theorem ensures that the scalar factor is positive, so hT01 = 0.

In particular, hT0 = 0; then h = 0 follows from (12).

Since 2/(2− p) = 1 + p/(2− p), the dependence of (9) on p is the same as that of

(7). In the next section, we will determine how many random, Gaussian measurements

are needed for (9) to be satisfied with high probability.

3. Restricted p-isometry property of random, Gaussian matrices

Henceforth, Φ will denote an M × N matrix whose entries are i.i.d. Gaussian random

variables, specifically ϕij ∼ N(0, σ2). Our results will not depend on the choice of σ.

Note that for x ∈ RN , we can write

‖Φx‖pp =
M∑
i=1

|(Φx)i|p =
M∑
i=1

|Wi|p, (22)

where each Wi =
∑N

j=1 xjϕij is a Gaussian random variable of mean zero and variance

‖x‖22σ2. We have that ‖Φx‖pp is a sum of independent random variables Xi = |Wi|p,
having an identical distribution whose properties are straightforward to calculate. For

example, its mean is µ = E(X) = ‖x‖p2σp2p/2Γ(p+1
2

)/
√
π, and its density function is

fX(t) =

√
2

p‖x‖2σ
√
π
t

1
p
−1e
− t2/p

2‖x‖22σ
2 (23)
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for t > 0 and otherwise zero. These can be obtained via changes of variable in the

integrals defining them in terms of the Gaussian distribution. In the sequel we shall

find it simpler to work with the Gaussian density than with fX .

We thus adopt the perspective of ‖Φx‖pp as a random variable, and will use

probabilistic methods to prove the main theorem of the paper:

Theorem 3.1. Let Φ be an M ×N matrix whose elements are i.i.d. random variables

distributed normally with mean zero and variance σ2, where M < N . Then there are

constants C1(p) and C2(p) such that whenever 0 < p ≤ 1 and

M ≥ C1(p)K + pC2(p)K log(N/K), (24)

the following is true with probability exceeding 1− 1/
(
N
K

)
: For any x ∈ RN with sparsity

‖x‖0 = K, x is the unique solution of (3) (where b = Φx).

The main approach of the proof will be as follows:

(a) for a fixed sparse x, bound the probability that (8) fails;

(b) deduce bounds on the probability that (8) fails (as a condition uniform in x); then

(c) determine M sufficiently large for theorem 2.4 to hold with high probability.

Similar approaches can be found in [16, 18], but with substantially different methods

used to fulfill them. Since (6) can be regarded as a statement about the singular values of

Φ, Candès and Tao [16] invoke powerful concentration of measure results [20] concerning

singular values in order to achieve (a). Since we are working in the context of (9), such

an approach is not available to us. Similarly, Donoho [18] uses concentration of measure

applied to a weighted `1 norm, possible since this defines a Lipschitz function. The

analogue for our case would involve a pth power of a weighted `p norm, which is not

Lipschitz. (It is Lipschitz with respect to the metric induced by ‖·‖pp; however, applying

concentration of measure would require knowing the concentration function of Gaussian

measure with respect to this metric; see [20]. Determining this concentration function

would require solving a difficult isoperimetric problem, which may be of independent

interest.) Like Donoho’s, our approach to (b) will generalize the proof of Dvoretzky’s

theorem found in Pisier’s book [21], but following Donoho’s argument would not yield

a sufficiently sharp result when p is small.

We begin with (a), which we regard as a large deviation inequality for the random

variable ‖Φx‖pp. Since this is the sum of M independent random variables, what is

needed can be thought of as a quantitative, nonasymptotic form of the central limit

theorem. Known bounds on the tails of
∑

iXi in terms of the tails of the Xi, such

as those arising from Hermitian or Edgeworth expansions [22], were not quite sharp

enough. Instead we will make use of the theory of subgaussian variables (see [23]), those

having tails dominated by a Gaussian density function. The density fX above shows

that the tails of the random variable X = |W |p = |σ‖x‖2Z|p, where Z is standard-

normally distributed, are much thinner than Gaussian. The consequence is that X is

ϕ-subgaussian with ϕ(t) = t2/(2−p) for large t, but in the end this turns out to yield an

inferior bound [23, Corollary 2.4.2].
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Lemma 3.2. Let 0 < p ≤ 1, η > 0, 1 ≤ L ≤ N , x ∈ RL, Ψ an M × L submatrix of Φ

as in theorem 3.1. Define µp = µ/‖x‖p2, which is independent of x. Then

(1− η)Mµp‖x‖p2 ≤ ‖Ψx‖pp ≤ (1 + η)Mµp‖x‖p2, (25)

with probability exceeding 1− PM,p(η) = 1− 2e
− η

2M

2pc2p , where

cp ≤ (31/40)1/4
[
1.13 +

√
p
(Γ(p+1

2
)

√
π

)−1/p]
. (26)

Note that αp := (Γ(p+1
2

)/
√
π)1/p is an increasing function of p, bounded below by

e−γ/2/2 ≈ 0.375.

Proof. We approach (25) as a large-deviation inequality for the random variable ‖Ψx‖pp,
a sum of M independent copies of the random variable X = |σ‖x‖2Z|p, Z ∼ N(0, 1)

as described above in the case of the full matrix Φ. Such inequalities are simple to

establish for random variables satisfying Eeλ(X−µ) ≤ eτ
2λ2/2 for all λ. The left side of

this inequality is the moment-generating function of X − µ, and the inequality is the

definition of X − µ being subgaussian. We now seek to determine an upper bound for

such a τ . We will employ theorem 1.3 of [23], which gives the bound

τ ≤ sup
k≥1

(3.1)1/4
[ 2kk!

(2k)!
E(X − µ)2k

] 1
2k

. (27)

Examination of the proof of this theorem shows that the constant (3.1)1/4 can be lowered

for k = 1 to
√

7/6.

We estimate E(X − µ)2k:

E(X − µ)2k =

∫ ∞
−∞

(|x|p − µ)2k e−
x2

2σ2

√
2πσ

dx

=
1

σ
√
π/2

∫ ∞
0

(xp − µ)2ke−
x2

2σ2 dx. (28)

We break this integral into two parts: I1 from 0 to µ1/p, I2 the rest.

I1 ≤
1

σ
√
π/2

∫ µ1/p

0

(xp − µ)2k dx =
1

σ
√
π/2

∫ 1

0

(µu− µ)2kµ
1/p

p
u1/p−1 du

=
µ2k+1/p

pσ
√
π/2

∫ 1

0

(1− u)2ku1/p−1 du =
µ2k+1/p

pσ
√
π/2

B(2k + 1, 1/p). (29)

In bounding the Beta function, we will need to strike a balance between desirable

dependence on p, and controlling the growth in k:

B(2k + 1, 1/p) =
Γ(2k + 1)Γ(1/p)

Γ(2k + 1 + 1/p)
= p

2k∏
j=1

j

j + 1/p

= pk+1

k∏
j=1

j

pj + 1

2k∏
j=k+1

j

j + 1/p
≤ pk+1

k∏
j=1

j
2k∏

j=k+1

1

= pk+1k!. (30)
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Thus

I1 ≤
µ2k+1/ppkk!

σ
√
π/2

. (31)

For I2, we will apply the mean value theorem to g(t) = tp on the interval [µ1/p, x],

obtaining

xp − µ = (x− µ1/p)g′(ξx) ≤ (x− µ1/p)pµ1−1/p. (32)

Then

I2 ≤
p2kµ2k−2k/p

σ
√
π/2

∫ ∞
µ1/p

(x− µ1/p)2ke−
x2

2σ2 dx

=
p2kµ2k−2k/p

σ
√
π/2

∫ ∞
0

x2ke−
(x+µ1/p)2

2σ2 dx ≤ p2kµ2k−2k/p

σ
√
π/2

∫ ∞
0

x2ke−
x2

2σ2 dx

=
p2kµ2k−2k/p

σ
√
π/2

∫ ∞
0

(σ
√

2u)2k−1e−u2σ2 du

= p2k2kµ2k−2k/pσ2kΓ(k + 1/2)/
√
π = p2kµ2kα−2k

p

(2k)!

22kk!
, (33)

noting µ1/p/σ =
√

2αp. Thus

E(X − µ)2k ≤ 2pkµ2kαpk!/
√
π + p2kµ2kα−2k

p

(2k)!

22kk!
. (34)

Now we multiply through by 2kk!/(2k)!. For the first term, we use Stirling’s

approximation [24]:

2k(k!)2

(2k)!
≤ 2k2πk2k+1e−2ke

1
6k

√
2π(2k)2k+1/2e−2k

=

√
πke

1
6k

2k
. (35)

Then we have[ 2kk!

(2k)!
E(X − µ)2k

] 1
2k

≤ µ
√
p/2[2αp

√
ke

1
6k + pkα−2k

p ]
1
2k

≤ µ
√
p/2[(2αp)

1
2kk

1
4k e

1
12k2 +

√
p/αp]. (36)

The first term does not depend strongly on p, so we bound αp by its largest value

α1 = 1/
√
π > 1/2. Hence (2αp)

1
2k is decreasing in k, as is e

1
12k2 . Since log k/k is

decreasing for k > e, in maximizing (36) we need only consider k = 1, 2, and 3. Taking

into account the remark following (27), the largest value is calculated to be for k = 3.

We thus have

τ ≤ µ
√
p/2(3.1)1/4[(2α1)

1
6 3

1
12 e

1
108 +

√
p/αp]

≤ µ
√
p(31/40)1/4[1.13 +

√
p/αp]. (37)

Finally, we apply theorem 1.5 of [23], which for our setting says that

P{|
M∑
i=1

(Xi − µ)| ≥ t} ≤ 2e−
t2

2Mτ2 . (38)
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This theorem comes from estimating the moment-generating function of the sum,

making use of the special form for the estimate of the MGF of X−µ, and then applying

a standard argument using Markov’s inequality. An entirely equivalent approach is to

apply Cramér’s theorem, using the simple form of the Legendre-Fenchel transform of

the logarithm of the estimate of the MGF; see [25]. In any case, applying (38) with

t = ηMµ completes the proof of the lemma.

Now we turn to (b) in the proof strategy for theorem 3.1. Our approach is a

generalization of the proof of Dvoretzky’s theorem in [21]. Dvoretzky’s theorem was

generalized by Dilworth to the case of the `p quasi-norm [26]; however, better bounds

result by considering the metric induced by ‖ · ‖pp instead.

Lemma 3.3. Let 0 < p ≤ 1, Ψ an M ×L submatrix of Φ as in theorem 3.1. Let δ > 0.

Choose η, ε > 0 such that η+εp

1−εp ≤ δ. Then

Mµp(1− δ)‖x‖p2 ≤ ‖Ψx‖pp ≤Mµp(1 + δ)‖x‖p2 (39)

holds uniformly for x ∈ RL with probability exceeding 1− (1 + 2/ε)LPM,p(η).

Proof. Let S be the unit sphere of the `2 norm in RL. Let A be an ε-net of S (with

respect to the `2 metric) having at most (1 + 2/ε)L points. Then the probability that

(25) fails for any x ∈ A is at most (1 + 2/ε)LPM,p(η). Assume now that Ψ is such that

the tail bound (25) holds uniformly on A.

First, let x ∈ S. Then we can find x0 ∈ A such that ‖x − x0‖2 ≤ ε. Letting

ε1 = ‖x − x0‖2, we have that (x − x0)/ε1 ∈ S. Then we can find x1 ∈ A within ε of

this quantity; continuing in this fashion, we obtain sequences (εn) and (xn) ⊂ A such

that |εn| ≤ εn, and ‖x−
∑N

n=0 εnxn‖2 ≤ εN+1, where ε0 = 1 for notational convenience.

Therefore x =
∑∞

n=0 εnxn. (Note that if any εn is zero, we can terminate the series at

the preceding term and obtain an element of A, which only strengthens what follows.)

Now we calculate, denoting c = Mµp, using that we know the tail bound (25) holds

for each xn, and that xn ∈ S:

‖Ψx‖pp =
∥∥∥ ∞∑
n=0

εnΨxn

∥∥∥p
p
≤

∞∑
n=0

‖εnΨxn‖pp =
∞∑
n=0

|εn|p‖Ψxn‖pp

≤
∞∑
n=0

εnp(1 + η)c =
(1 + η)c

1− εp
=

(
1 +

η + εp

1− εp

)
c. (40)

Also, since by the triangle inequality∣∣‖Ψx‖pp − ‖Ψx0‖pp
∣∣ ≤ ‖Ψx−Ψx0‖pp, (41)

we obtain similarly

‖Ψx‖pp ≥ ‖Ψx0‖pp −
∥∥∥ ∞∑
n=1

εnΨxn

∥∥∥p
p
≥ (1− η)c− (1 + η)cεp

1− εp

=

(
1− η + εp

1− εp

)
c. (42)
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Now let x 6= 0 be arbitrary. Then x/‖x‖2 ∈ S, so(
1− η + εp

1− εp

)
c ≤ ‖Ψx/‖x‖2‖pp ≤

(
1 +

η + εp

1− εp

)
c, (43)

so

(1− δ)c‖x‖p2 ≤ ‖Ψx‖pp ≤ (1 + δ)c‖x‖p2. (44)

We therefore have that (44) holds uniformly on RK with probability exceeding

1− (1 + 2/ε)LPM,p(η).

We can now bring the pieces together and complete the proof of our main theorem.

Proof of theorem 3.1. We need to determine how large M must be for (9) to hold

with high probability, which we have chosen to mean failure probability at most

1/
(
N
K

)
. In applying our lemmas, we will make use of the remark beginning the proof

of theorem 2.4, with c = Mµp. It will be simpler to show the stronger condition

that δ(a+1)K < (b − 1)/(b + 1). Leaving b undetermined for the moment, we let

L = (dae + 1)K = (db
2

2−p e + 1)K. (Rounding up (a + 1)K instead would not yield

constants independent of K.) Let η = r(b−1)/(b+1) for r ∈ (0, 1) to be chosen shortly,

and let εp = (1− r)(b− 1)/2b. We have (η + εp)/(1− εp) ≤ (b− 1)/(b+ 1). (We should

really require strict inequality, perhaps by letting η = r0(b − 1)/(b + 1) for r0 < r, but

the lack of sharpness in our estimates will render this unnecessary.) Then by lemma 3.3,

an upper bound for the probability that any M ×L submatrix of Φ fails to satisfy (39)

is (
N

L

)
(1 + 2/ε)L2e

− η
2M

2pc2p . (45)

We want this quantity to be bounded above by 1/
(
N
K

)
≥ KK

NKeK
. For this it suffices that

M ≥
2pc2p
η2

[
L
(

log
N

L
+ 1 + log

3

ε

)
+ log 2 +K

(
log

N

K
+ 1
)]

=
2pc2p

r2 (b−1)2

(b+1)2

[
K(db

2
2−p e+ 1)

(
log

N

K
+ log

1

db
2

2−p e+ 1
+ 1 + log 3 +

1

p
log

2b

(1− r)(b− 1)

)
+ log 2 +K

(
log

N

K
+ 1
)]

=
(2c2p(b+ 1)2

r2(b− 1)2
(db

2
2−p e+ 1) log

2b

(1− r)(b− 1)

)
K

+ p
(2c2p(b+ 1)2

r2(b− 1)2

)[
log 2 +

(
(db

2
2−p e+ 1)(log 3− log(db

2
2−p e+ 1) + 1) + 1

)
K

+
(

(db
2

2−p e+ 1) + 1
)
K log

N

K

]
. (46)
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We can substitute any b > 1 and r ∈ (0, 1), and the theorem follows. These are

free parameters, which can be chosen independently for each p. To be somewhat more

concrete, we choose values minimizing the constant C1 at p = 0, which means minimizing

(b+ 1)2db+ 1e
r2(b− 1)2

log
2b

(1− r)(b− 1)
. (47)

A numerical computation yields an approximate minimum value of 52.57 at r = 0.849

and b = 5. Substituting gives the sufficient condition

17.6c2p(d5
2

2−p e+ 1)K

+p6.25c2p

[
log 2 +

(
(d5

p
2−p e+ 1)(log 3− log(d5

p
2−p e+ 1) + 1) + 1

)
K +

(d5
p

2−p e+ 2)K log
N

K

]
. (48)

The above gives an estimate of C1(0) ≤ 119, which is rather far from sharp.

Numerical experiments (see section 4) suggest a value less than 3. The proof has

many sources of non-sharpness, from the various estimates, to the exponential-Markov

inequality argument behind theorem 1.5 of [23] which is never sharp. Although much

of the above can be tightened somewhat, it is doubtful that our approach can give

sharp constants. However, our efforts have yielded a condition that shows clearly that

decreasing p allows fewer measurements to be sufficient for (3) to successfully recover

sparse signals, with the dependence on N vanishing as p→ 0.

We note further that our restricted isometry approach yields a condition sufficient

for (3) to recover all sufficiently sparse signals, with high probability for a given choice

of Φ. Such a uniform recovery probability is desirable for many applications. However,

what our approach is unable to obtain is a condition sufficient for a choice of Φ to recover

a single sparse signal x with high probability. In situations where such a nonuniform

condition would be adequate, a substantially weaker condition should be sufficient. In

the case of p = 1, the polytope approach of Donoho and Tanner [10] gives both sharp

recovery thresholds and estimates for both uniform and nonuniform recovery. It would

be valuable to extend this approach to the nonconvex setting.

4. Numerical experiments

In this section we run empirical tests checking how many random, Gaussian

measurements are needed for (3) to reconstruct a sparse signal. We solve (3) using

an iteratively-reweighted least squares (IRLS) method. We begin with the minimum

`2-norm solution of Φx = b, u(0) = A+b, and set ε0 = 1. We then let u(n+1) be the

solution of

min
u

N∑
i=1

wiu
2
i subject to Φu = b, (49)
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where the weights are given by

wi = ((u
(n)
i )2 + εj)

p/2−1. (50)

The solution can be given explicitly as

u(n+1) = QnΦT (ΦQnΦT )−1b, (51)

where Qn is the diagonal matrix with entries 1/wi. This iteration is continued until

convergence, deemed to be when the relative `2-norm change from the previous iterate

is less than
√
εj/100. The whole process is then repeated with εj+1 = εj/10, with

u(0) being the solution at the previous stage, through a minimum ε of 10−13. This is

the algorithm used in [27], and uses a similar ε-regularization strategy as used in the

projected gradient algorithm in [15]. The algorithm differs from the FOCUSS algorithm

of Rao and Kreutz-Delgado [28] only in the use of ε. Results in [27] show this ε approach

to give drastically better sparse recovery results than the FOCUSS algorithm.

We fix N = 256 and K = 40. For each of 100 trials, we randomly select the entries

of a 140×256 matrix A from a Gaussian distribution with mean zero and unit variance,

randomly select which 40 components of x will be nonzero, and randomly select their

values from a mean-zero, unit-variance Gaussian distribution. We then use the above

algorithm to solve (3), with Φ consisting of the first M rows of A, for each M from 60

to 140. This is all done for each p ∈ {0.01, 0.02, . . . , 1}, with the same matrices A and

signals x used for each p. We also do it for p = 0, which amounts to minimizing the

objective
∑

i log(u2
i + 10−13).

The results are in figures 1 and 2. On the one hand, reducing p below 1 clearly

reduces the number of measurements needed for perfect recovery, and the improvement

is nearly monotonic in p. On the other hand, there is almost no improvement for p much

below 1/2. This is in contrast with the form of our theoretical results; this suggests the

possibility that for small p, more measurements may be needed for the algorithm to

converge to the global solution than are needed for the global minimizer to equal the

sparse signal.

We consider the signal successfully recovered when the sup-norm error is below

10−4. We always find in such instances that further iteration of the algorithm through

smaller values of ε results in still smaller sup-norm errors, generally below 10−13. For the

number of outer iterations chosen, figure 3 shows that when the signal x is recovered,

smaller values of p give much smaller reconstruction errors. Thus, using smaller p

results in either a more accurate solution, or a solution of specified accuracy obtained

more quickly. We also note that the number of iterations needed for convergence for

each value of ε also increases as p increases.

Of course, the algorithm can only be expected to produce a local minimum of (3).

However, that we have results that give circumstances under which the global solution

of (3) is x, strongly suggests that when our solution is exactly x we are computing a

global solution, at least under a reasonable set of circumstances.
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Figure 1. Plots of exact recovery frequency versus the number of measurements, for a
few values of p. The signals have N = 256 components, K = 40 of them being nonzero.
Compared with p = 1, we see a dramatic decrease in the number of measurements
needed for p even slightly less than 1. Reducing p much below 1/2 gives only a slight
increase in the recovery frequency, and does not reduce the number of measurements
needed for recovery to always be observed.

Figure 2. Same data as in figure 1, but with every p shown. The perfect recovery
threshold is surprisingly flat for p < 1/2; this suggests that the algorithm may not be
converging to the global minimum as often for smaller p.
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Figure 3. The smallest, median, and largest sup-norm error among successfully
recovered signals x. Decreasing p results in a much more accurate solution for the
same number of outer iterations.

5. Conclusions

The results in this paper and in [15] give several ways in which `p minimization can be

seen to allow recovery of sparse signals using fewer measurements than `1 minimization.

Our condition for how many random, Gaussian measurements are sufficient with a

combinatorially-small probability of failure, though not sharp, shows a clear structural

dependence of the number of measurements on the value of p. In addition to decreasing

as p decreases, the dependence of the number of measurements on N vanishes as p→ 0.

These findings are partially supported by our numerical experiments, in that reducing p

reduces the number of measurements needed for perfect recovery, but seemingly by less

than expected for small p. We also find that when sparse recovery is successful, fewer

iterations of our process are required to give very complete convergence when p is small.
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