
FAST ALGORITHMS FOR NONCONVEX COMPRESSIVE SENSING: MRI
RECONSTRUCTION FROM VERY FEW DATA

Rick Chartrand

Los Alamos National Laboratory

ABSTRACT

Compressive sensing is the reconstruction of sparse images
or signals from very few samples, by means of solving a
tractable optimization problem. In the context of MRI, this
can allow reconstruction from many fewer k-space samples,
thereby reducing scanning time. Previous work has shown
that nonconvex optimization reduces still further the num-
ber of samples required for reconstruction, while still being
tractable. In this work, we extend recent Fourier-based algo-
rithms for convex optimization to the nonconvex setting, and
obtain methods that combine the reconstruction abilities of
previous nonconvex approaches with the computational speed
of state-of-the-art convex methods.

Index Terms— Magnetic resonance imaging, image re-
construction, compressive sensing, nonconvex optimization.

1. INTRODUCTION

1.1. Compressive Sensing and MRI

Results of Candès et al. [1] and Donoho [2] demonstrated that
sparse images can be reconstructed from fewer linear mea-
surements than previously thought possible, in what is now
known as compressive sensing (among other related terms).
The results take advantage of the sparsity inherent in real-
world images: the ubiquity of image compression points to
the existence of transforms converting a digital image into one
having relatively few values significantly different from zero.
Also, the success of total-variation regularization for image
restoration indicates that most images can be well approxi-
mated by those having a sparse gradient.

The approach has been to solve the following convex op-
timization problem:

min
u
‖Ψu‖1, subject to Φu = b. (1)

Here, b consists of the samples Φx where x is an image in 2-
or 3-D, Φ is the measurement or sampling operator, and Ψ is
a sparsifying operator, such as a wavelet transform or discrete
gradient. Then, provided Φ and Ψ are sufficiently incoherent
(roughly that rows of Φ can’t be sparsely expressed in terms
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of columns of Ψ, and vice versa; see [3]), the solution to (1)
will be exactly x, even when the linear system is severely un-
derdetermined. When the measurements are noisy, it is best to
relax the equality constraint and solve the following instead:

min
u
‖Ψu‖1 + (µ/2)‖Φu− b‖22, (2)

with µ a regularization parameter whose choice is dependent
on the noise level.

The application of compressive sensing to MRI recon-
struction was implicit in [1], which demonstrated perfect re-
construction of the Shepp-Logan phantom from Fourier-space
samples along 22 radial lines, amounting to 9% of k-space.
Explicit application was undertaken by Lustig et al. [4]. Both
phantoms and anatomical images were reconstructed well with
as little as 20% sampling, using patterns such as spirals and
randomly-positioned lines. (The increase over the sampling
of [1] is typical for real images, which are less sparse than
synthetic phantoms.) They obtained improved results by hav-
ing both a wavelet transform and a discrete gradient in the
objective.

1.2. Nonconvex Compressive Sensing

Numerical results in [5] showed that one can reduce the sam-
pling of Fourier space needed for reconstruction by replacing
the `1 norm in (1) with the `p quasi-norm, where 0 < p < 1:

min
u
‖Ψu‖pp, subject to Φu = b. (3)

This gives a nonconvex optimization problem, but one that
in practice appears to be solvable using simple algorithms
[5, 6]. Theoretical work [7, 8] has justified these observations,
with [8] also showing that the nonconvex approach increases
robustness to noise and image nonsparsity. An iteratively-
reweighted least-squares (IRLS) approach to `p minimization
was previously taken by Rao and Kreutz-Delgado [9], but
with unimpressive results due to getting trapped in local min-
ima. With both gradient descent [5] and IRLS [6], the key to
avoiding local minima is the successive regularization of the
`p objective, in a manner reminiscent of the graduated non-
convexity approach of Blake and Zisserman [10]. In recover-
ing sparse signals perfectly, these algorithms are able to find
the global minimum of the `0 analog of (1), though it has yet
to be proven that the global minimum of (3) itself is obtained.



In the MRI context, for the same Shepp-Logan phantom
synthetic example of [1] it was shown in [5] that the num-
ber of radial lines could be reduced from 22 to 10 (or 3.8%
of k-space). Trzasko and Manduca [11] reproduced this re-
sult with a faster algorithm, while also considering real MRI
data examples. Their approach uses an objective function that
approaches the `0 norm asymptotically, which creates a grad-
uated nonconvexity that appears to allow global convergence.
They obtain reconstructions with fewer samples than in [4],
and show that reconstruction quality is improved over `1 min-
imization. They obtain reconstructions of 256 × 256 images
in 1–3 minutes in MATLAB on a 3 GHz desktop computer.

New algorithms for MRI reconstruction via `1 minimiza-
tion that are much faster than their predecessors have been de-
veloped by Ma et al. [12] and Goldstein and Osher [13]. They
both are able to replace iterative linear solvers with Fourier-
domain computations, with substantial time savings. In this
work we generalize these approaches to the nonconvex set-
ting of `p minimization with p < 1. As before we find that
this reduces the number of k-space samples needed for re-
construction of a given quality. The resulting algorithms are
much faster than any existing algorithms for nonconvex com-
pressive sensing. The computation time is dominated by a few
FFT computations per iteration, resulting in desirable scaling
to large images that will make 3-D reconstructions much more
feasible than before.

2. ALGORITHM

Now we present our algorithm approach, beginning with a
generalization of an operator-splitting algorithm of Ma et al.
[12], which is equivalent to the case of p = 1 in what fol-
lows. Our derivation generalizes that of the related algorithm
of Yang et al. [14]. We present the 2-D version, with extension
to 3-D being straightforward. For the time being fix β > 0
and any real p, and define a regularized `p objective by

ϕ(t) =
{

γ|t|2 if |t| ≤ α
|t|p/p− δ if |t| > α.

(4)

Here t can be a scalar or 2-D vector (in which case |t| is the
length of t), the parameters γ and δ are chosen to make ϕ a
C1 function, and α will be chosen shortly. For convenience
we adopt the unusual convention that when p = 0, |t|p/p will
mean log |t|.

Next, we show that there is a function ψ satisfying

ϕ(t) = min
s
{ψ(s) + (β/2)‖s− t‖22}. (5)

Yang et al. [14] exploit convex duality and calculate for p = 1
that ψ(s) = |s| (in our notation). In our case, φ is not convex,
but by taking α = β1/(p−2) (or larger), the auxiliary function
f(t) = |t|2/2 − (1/β)ϕ(t) is convex. Letting g = f∗ be the
convex conjugate (or Legendre-Fenchel transform) of f , the
convexity and continuity of f ensures that f = g∗ = f∗∗ as

well. Simple manipulations then show that (5) is satisfied by
ψ(s) = β(g(s)−|s|2/2). Moreover, the minimizer of (5) will
be given by s∗ = ∇f(t) [15, p. 476], which can be shown to
be given by what we call the p-shrinkage operator Spα:

Spα(t) = max{|t| − α|t|p−1, 0}t/|t|. (6)

This generalizes the shrinkage operator used in several com-
pressive sensing algorithms as well as soft wavelet threshold-
ing. It will not be necessary to compute ψ explicitly. This can
be done for special values of p such as 0 and 1/2, which can
then be used to derive stopping conditions from optimality
conditions as in [14]. We will pursue this in future work.

We now incorporate the above into our algorithm. As in
[4] we use an objective with both a discrete gradient Du and
an orthogonal wavelet transform Ψu:

min
u

∑
i

(
ϕ((Du)i) + λϕ((Ψu)i)

)
+ (µ/2)‖Φu− b‖22. (7)

We find it sufficient to use λ = 1 (or 0 for gradient-sparse
images). Now we apply the splitting and obtain

min
u,v,w

∑
i

(
ψ(vi) + λψ(wi)

)
+ (βD/2)‖v −Du‖22

+ (βW /2)‖w −Ψu‖22 + (µ/2)‖Φu− b‖22, (8)

where i ranges over all pixels of the image. Note that each vi
is vector-valued while the ui andwi are scalars. For fixed βD,
βW , and µ, we solve this iteratively by solving for each of u,
v, andw in turn while holding the other two fixed. The benefit
of the splitting approach is that each of the three subproblems
is simple and computationally fast to solve. The v and w sub-
problems are both separable, involving the p-shrinkage oper-
ator (6) applied to each pixel separately, making the computa-
tion vectorized and parallelizable. The solution to the u sub-
problem can be computed directly using FFTs and an FWT,
avoiding the need for an expensive linear solver.

By letting βD, βW →∞, v is forced to approach Du and
w to approach Ψu, making the solution to (8) approach that of
(7). Ma et al. use a continuation approach, starting with small
β values and then increasing them geometrically, using the
solution at each stage to initialize the next stage. Instead, we
adopt the Bregman iteration approach of Goldstein and Osher
[13]. Bregman iterations were first used in image restoration
[16]; the basic approach is that one can enforce a data con-
straint more and more tightly by adding the residual back to
the data at each iteration. In image denoising, this amounts to
adding what is ostensibly the “noise” back to the noisy image,
a counterintuitive approach that is nonetheless effective and
theoretically justified. This approach was applied by Gold-
stein and Osher to the above in the case of p = 1, and we
find for p < 1 that it gives better performance than continua-
tion. The resulting algorithm is as follows. Let F denote the
2-D discrete Fourier transform, and K a projection operator
onto the k-space locations being sampled, so that Φ = KF .



Provided we use periodic boundary conditions, we can regard
discrete derivatives as circular convolution with two-element
kernels, so that there is d such that Du = F−1dFu. We also
need Bregman iterates, vector-valued (at each pixel) bD and
scalar-valued bW .

Input: k-space data b, k-space locations projection K,
parameters µ, λ, βD, βW

Precompute: Fourier-domain denominator
G = µK + βD|d|2 + βW
Initialize: u0 = F−1b, v0 = b0D = 0, w0 = b0W = 0,
b0 = b
for number of Bregman iterations do

for number of inner iterations do
un+1 = F−1

([
µbm + F

(
βDD

T (vn − bnD) +
βWW

T (wn − bnW )
)]
/G
)

vn+1 = Sp1/βD
(Dun+1 + bnD)

wn+1 = Sp1/βW
(Ψun+1 + bnW )

bn+1
D = bnD +Dun+1 − vn+1

bn+1
W = bnW + Ψun+1 − wn+1

end
bm+1 = bm + b−KFun+1

end
Output: Reconstructed image u

Algorithm 1: Fast nonconvex MRI reconstruction
Note that the variables are not reinitialized at the close of each
inner loop, so that n would not be reset. We use manually de-
termined numbers of iterations, deferring more sophisticated
stopping criteria to later work.

We obtain a second algorithm by replacing the p-shrink
operator with a weighted 1-shrink operator Sci

α (t) = max{|t|−
αci, 0}t/|t|. The approach is to compute the weights as ci =
|(Du)i| or |(Wu)i|, but only updated once each inner loop
has completed. This decreases the iteration time slightly, while
slightly increasing the number of iterations needed; which al-
gorithm performs better depends on the particular test.

3. EXPERIMENTS

All experiments were done in MATLAB on a 1.2 GHz laptop
with 3 GB of memory. We begin with the 256 × 256 Shepp-
Logan phantom. Because the phantom has a very sparse gra-
dient, we do not use the wavelet regularization, and let λ =
βW = 0. We set µ = 105 and βD = 1. An early coding mis-
take led to the accidental use of p = −1/2, which allowed the
phantom to be recovered exactly from 9 radial lines of sam-
ples, or 3.5% of k-space. This is fewer than the previous best
of 10 radial lines, first done in [5]. Reconstruction was unsuc-
cessful with nonnegative p. While using p < 1 makes sense
from the perspective of trying to approximate the `0 norm, we
do not understand why p < 0 should improve performance,
but after this discovery we consistently found this in all of our
tests. (Rao and Kreutz-Delgado [9] considered p < 0, with
no benefit.) Using 40 inner iterations, after 32 outer (Breg-

p = 1 p = 1/2 p = 0 p = −1/2
phantom 6.8 dB 50.5 dB 50.3 dB 50.0 dB
uterus 13.0 dB 13.6 dB 13.8 dB 13.9 dB
phantom 11.5 s 17.5 s 13.0 s 13.0 s
uterus 346 s 465 s 438 s 469 s

Table 1. Reconstruction SNR and CPU time for the 256×256
Shepp-Logan phantom (10 radial lines, 3.8% sampling) and
th 1024× 1024 uterus image (random phase, 15% sampling).
The uterus SNRs are misleadingly low due to the noise in the
original image and the denoising effect of the regularization.

(a) Shepp-Logan (b) 9 radial lines (c) 10 radial lines

Fig. 1. Shepp-Logan phantom and radial sampling. Recon-
structions are visually identical to the original, so not shown.

man) iterations, the reconstruction quality was 51.0 dB, tak-
ing 66.5 s. The reconstruction reaches 200 dB after 217 outer
iterations and 647 s, at which point the worst pixel error was
6.58× 10−10.

Next we consider 10 radial lines (3.8% sampling), the pre-
vious benchmark. In this case we get better performance from
the reweighted version of the algorithm. For p < 1, recon-
structions to 50 dB take as little as 13.0 s; more details com-
paring different values of p are in Table 1. This is about 10
times faster than reported in [11], with better scaling to larger
images expected. Reconstruction fails utterly with p = 1.

We conclude with simulated k-space samples of the noisy
1024× 1024 image in Figure 2, from [17]. We use Gaussian-
density random phase encoding (cf. [4]) with standard devi-
ation 100 columns, and 15% sampling. We use Algorithm 1
with 40 inner iterations and 5 outer iterations. We set µ =
10, λ = 1, βD = 1, and βW = 10. Results with p ∈
{1, 1/2, 0,−1/2} are in Table 1. In Figure 2 we display the
poorest and best results, namely p = 1 and p = −1/2. In the
p = 1 image we see more pronounced aliasing effects. Run-
ning times of 6–8 minutes roughly fit the N logN scaling to
be expected, though direct comparison with the Shepp-Logan
phantom and radial sampling is inappropriate.

4. CONCLUSIONS

We presented an algorithm that can reconstruct MR images
from few k-space samples in much less time than previously
possible. This makes use of previous operator splitting meth-
ods and the Bregman iteration method, as well as a novel p-



(a) noisy image (b) k-space samples

(c) p = 1 (d) p = −1/2

Fig. 2. Synthetic k-space samples are generated for a noisy
image, using Gaussian random phase encoding. Reconstruc-
tion with p = 1 shows greater aliasing than with p = −1/2.

shrinkage operator. Further investigation is needed into the
effect of sampling patterns and sparsifying transforms. The
development of sparser representations, perhaps customized
to each class of medical images, will lead to better reconstruc-
tion fidelity from very few k-space measurements. It will also
widen the gap between convex and nonconvex compressive
sensing, as the very sparse phantom examples suggest.
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