TOTAL-VARIATION REGULARIZATION WITH BOUND CONSTRAINTS

Rick Chartrand, Brendt Wohlberg

Los Alamos National Laboratory
{rickc,brendt}@lanl.gov

ABSTRACT

We present a new algorithm for bound-constrained total-
variation (TV) regularization that in comparison with its
predecessors is simple, fast, and flexible. We use a splitting
approach to decouple TV minimization from enforcing the
constraints. Consequently, existing TV solvers can be em-
ployed with minimal alteration. This also makes the approach
straightforward to generalize to any situation where TV can
be applied. We consider deblurring of images with Gaus-
sian or salt-and-pepper noise, as well as Abel inversion of
radiographs with Poisson noise.

Index Terms— Total variation, bound constraints, non-
negativity constraint, image deblurring, Abel inversion.

1. INTRODUCTION

Total-variation (TV) regularization [1] has been invaluable for
image restoration and reconstruction, but the nonsmoothness
of TV makes its implementation challenging. Numerous al-
gorithms have been developed: primal-dual methods [2], iter-
ative reweighting [3, 4], dual methods [5, 6], graph cuts [7],
operator splitting [8], linear programming [9], second-order
cone programming [10], and more.

TV was originally formulated [1] as a constrained opti-
mization problem:

min/ |Vu|, subject to /(u—f)2 <o’ (1)
v Ja Q

Here, f is a grayscale image defined on Q@ C R2?, and o2
is the variance of Gaussian noise presumed to be present in
f. However, it is generally regarded to be computationally
simpler to solve an unconstrained formulation:

min/ \Vu|+%/(u—f)2. 2)
v Jo Q

For any value of o, there is a corresponding value of A mak-
ing (2) equivalent to (1), though it is not typically possible to
determine the appropriate A\ a priori.

Further extensions of TV are obtained by considering a
(typically linear) transformation A:

min/ |vu|+3/(Au—f)2. 3)
voJa 2 Jo
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The most common instance is when A is a blurring operator,
in which case solving (3) is TV-regularized deblurring of f.
However, numerous other inverse processes have been simi-
larly regularized, such as MRI [11] and CT [12] tomography,
Abel inversion [13], and differentiation [14].

We can often include information about the values of the
solution. The most common such constraint is that to be phys-
ically meaningful, the solution should be nonnegative. One
approach is to simply impose this after solving (3), by clip-
ping the solution. However, better results can be obtained by
enforcing the constraint during the solution process itself:

min/ |Vu| + %/(Au— f)?, subjecttou € [a,b], (4)
v Jo Q

where u € [a,b] is meant pointwise (and similarly hence-
forth), and the interval may be unbounded. With @ = 0 and
b = oo, we have a nonnegativity constraint. Algorithms for
solving (4) have been considered before, but in this work we
present a new approach that is conceptually simpler and com-
putationally faster.

2. SPLITTING ALGORITHM FOR
BOUND-CONSTRAINED TV

Our algorithm uses a splitting approach, which decouples the
tasks of minimizing TV from that of enforcing the constraint.

We enforce the constraint on a new variable, w, which we link
to w initially by means of a trivial equality constraint:

min/ \Vu|+i/(Au—f)2,
ww Jq 2 Ja

subjectto u = w and w € [a,b]. (5)

However, we now relax the constraint u = w, instead penal-
izing the discrepancy between v and w:

rﬁ%l/ﬂ\VM+%/Q(Au—f)2+§/9(u_w)27

subject to w € [a,b], (6)

where (3 is a new parameter. We proceed by alternate mini-
mization, fixing one variable and solving for the other.



We first fix the iterate w, and solve for u, leaving the un-
constrained problem

min/ \Vu\—&—i/(Au—f)z‘Fé (u—w)? (D
w Ja 2 Ja 2 Ja

The corresponding Euler-Lagrange equation is

-V |§“| +AAT (Au — ) + B(u — w). )
This differs from the Euler-Lagrange equation for (3) only
in the presence of the final term, which does not appreciably
alter the difficulty of its solution. We solve (8) by using the
linearization obtained by substituting the previous iterate (™)
for u in the denominator of the first term. This is equivalent to
using u = u™) to generate a quadratic approximation to (7);
see [4] for details of our iteratively-reweighted norm (IRN)
approach. Convergence for the cases we consider in this paper
has been established [15, 16]. Most TV-regularization solvers
can easily be modified to solve this subproblem.

Now we fix u and solve for w:

w

min g / (u — w)?, subject to w € [a, b]. )
Q

We have a trivial, separable, quadratic optimization problem,
with a simple solution: at each point x, w(z) is the closest
element of [a, b] to u(x) (hence a, b, or u(z) itself). Note that
it would be equally simple to use a separate interval at each
pixel, but will we not pursue this here.

An additional consideration is that we wish the constraint
w = u to hold at convergence. For this, we use a method of
multipliers approach (cf. the split Bregman approach of [17]).
We incorporate a Lagrange multiplier v:

Inln/|Vu|+ /Au— 2+§/§Z(u—w—y)2

subject to w € [a,b], (10)
which we update each iteration: ("1 = p(") 4 qy(n+1) _
u("*t1)_ Standard method of multipliers theory [18] guaran-
tees that w(™ — u(") — 0 as desired. Note that the inclusion
of v does not increase the difficulty of either of the subprob-
lems, serving only to additively modify w when solving for
u, and vice versa.

Since the only nontrivial computation, that of solving for
u, reduces to a slight modification of a standard TV problem,
one can take advantage of previous instances where (3) has
been generalized. We consider two such cases in this paper, in
addition to TV-regularized deblurring: L!-TV for deblurring
images corrupted by salt-and-pepper noise [19, 20], and Abel
inversion of images corrupted by Poisson noise [13, 16].

3. EXPERIMENTS AND GENERALIZATIONS

We first consider a nonnegatively-constrained TV deblurring
problem. We blur a 128 x 128 satellite image with a 9 x 9

(a) Satellite image (b) Blurry, noisy (SNR 5.8 dB)

(c) NNCGM, SNR 13.2dB, 89 s (d) IRN, SNR 13.2dB, 36 s

Fig. 1. Our reconstruction is similar to that of NNCGM [21],
but in much less time.

Gaussian kernel (o = 20), then add Gaussian noise, giving a
resulting image having an SNR of 5.8 dB. We minimize (10),
using 10 iterations of alternation and Lagrange multiplier up-
date. We compare our result with the primal-dual algorithm
(called NNCGM) of Krishnan, Lin, and Yip [21], using their
code. We obtain similar restorations, but ours runs almost 3
times faster. Our approach also has the flexibility to incorpo-
rate not only more general constraints, but also alternate noise
models, with little alteration.

We now consider another TV deblurring problem, but
with salt-and-pepper noise. We replace the L?-norm data
fidelity term in (3) with an L' norm instead, which is known
to give substantially better results [19, 20]:

i

A
Va5 [ Juf14 5 [ @-w-vp,
Q 2 Q 2 Q

subject to w € [a,b]. (11)

The subproblem of solving for w for fixed w is a trivial
modification of a standard L'-TV regularization. The same
approach of iteratively approximating (11) with a quadratic
problem works well here too, noting that now the data fidelity
term is approximated as well. The equation we solve for
u = u™+1) becomes (see [20] for further details):

Vu AT Au—f
Vv M e =]

We apply this approach to the 256 x 256 cameraman im-
age (Figure 2(a)). We blur with a 7 x 7 Gaussian kernel (¢ =

ﬁ(u—w(") —y(”)). (12)



(a) Cameraman image (b) Blurry, 60% pixels corrupted

(SNR —0.4 dB)

(c) LAD, SNR 11.1 dB, 239 s

(d) IRN, SNR 11.1 dB, 85 s

Fig. 2. Our reconstruction is similar to that of LAD [9], but
in much less time.

5), and then corrupt 60% of the pixels with salt-and-pepper
noise. We compare with the linear programming, interior-
point method (called LAD) of Fu, Ng, Nikolova, and Barlow
[9], as presented in [22] on a similar but not identical com-
puter. We obtain similar results in less time, especially for
heavily corrupted images, despite the LAD implementation
containing some C code, while ours is entirely Matlab based.
The LAD algorithm is limited to anisotropic TV ([ (|u,| +

|uy|), as opposed to [ | /u2 + u2), as the usual isotropic TV

would require a second-order cone program. Our algorithm is
also easily extended to data fidelity terms not having a linear
programming formulation, such as the Poisson noise case we
consider next.

It should be noted that in [8], Wang et al. consider a more
aggressive splitting, decoupling the nonsmooth minimiza-
tion task from the differentiation and measurement operators.
Their L'-TV algorithm runs much faster than ours in the
previous example (17 s). This is without a nonnegativity con-
straint, but our constraint splitting can be incorporated into
their approach. However, their efficiency relies on the fact
that when A is a blurring operator, A7 A can be diagonalized
by a Fourier transform. In contrast, our approach can easily
be applied to operators without a useful Fourier representa-
tion, such as the Abel transform [13] we now consider.

We examine the task of inverting radiographs of an ax-
isymmetric object. A reasonable approximation is that the
negative-log of the radiograph is the Abel transform of a ra-

dial half-slice of the object (this being sufficient to determine
the whole object, due to the symmetry). We thus may pro-
ceed with (10), with A being the Abel transform, and f the
negative-log radiograph. However, the noise in the radiograph
is Poisson distributed, and in particular is signal dependent.
Using a uniform regularization strength across the image will
result in underregularization where the transmission is high,
and/or overregularization where the transmission is low.

It is well known that a more appropriate data-fidelity
term for Poisson noise is [(Au — flog(Au)). The iterative-
reweighting framework was extended to this case in [16]. The
equation to be solved for u becomes

Vu
le

Au—f

AT
| Aun|

-V

+ Bu—w™ —v").  (13)

The denominator of the second term serves to automatically
rescale the regularization strength, by decreasing the “effec-
tive” A when the current estimate of Aw is large, and decreas-
ing it when Aw is small. This is as desired when f has Poisson
noise, but in this case it is e~ that has Poisson noise, which
inverts the usual relation to signal strength and noise variance.
Hence we replace the denominator of the second term with a
more appropriate scaling:

Vu
|Vu(")|

Au— f

T
+ A ——Au

+ B(u —w™ — ™). (14)

We apply this approach to a simulated radiograph of a Na-
tional Ignition Facility cryogenic target implosion!. The re-
sults are in Figure 3. We see that minimizing with respect
to the nonnegativity constraint allows interior features to be
preserved better than clipping. Using the Poisson noise ap-
proach of (13) results in better recovery of high density values
(where transmission, hence noise, is lower), yet better noise
removal in low density regions (where transmission, hence
noise, is higher). We note further when a priori knowledge
of the maximum density is available, using an upper bound
constraint can further improve results. This is particularly so
in the case of Abel inversion, since values near the axis are
sensitive to the inaccuracies further from the axis. However,
such knowledge was not available in this case.

4. CONCLUSIONS

Our proposed algorithm for bound-constrained TV regular-
ization provides a useful balance between flexibility and com-
putational efficiency; it is simpler to implement and faster
than most competing algorithms [9, 21], and capable of solv-
ing a wider range of problems than one algorithm which could
outperform it computationally [8, with our splitting added].

!Simulation by Charles Cerjan, LLNL.



(a) TV-regularized Abel (b) constrained (c) constrained
inverse, clipped at 0 TV-regularized Abel TV-regularized Abel
inverse inverse, with Poisson
noise model

Fig. 3. Comparison of three TV-regularized Abel inversions.
Using a nonnegativity constraint (b) gives more detail in the
interior. The Poisson noise model (c) results in better noise
removal, without high-density features being diminished.

5. REFERENCES

[1] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total
variation based noise removal algorithms,” Physica D,
vol. 60, pp. 259-268, 1992.

[2] T. F. Chan, G. H. Golub, and P. Mulet, “A nonlin-
ear primal-dual method for total variation-based image
restoration,” SIAM J. Sci. Comput., vol. 20, pp. 1964—
1977, 1999.

[3] C.R. Vogel and M. E. Oman, “Iterative methods for to-
tal variation denoising,” SIAM J. Sci. Comput., vol. 17,
no. 1, pp. 227-238, 1996.

[4] P. Rodriguez and B. Wohlberg, “Efficient minimiza-
tion method for a generalized total variation functional,”
IEEE Trans. Image Process., vol. 18, pp. 322-332,
2009.

[5] J. L. Carter, Dual Methods for Total Variation-Based Im-
age Restoration. PhD thesis, University of California,
Los Angeles, 2001.

[6] A. Chambolle, “An algorithm for total variation min-
imization and applications,” J. Math. Imaging Vision,
vol. 20, pp. 89-97, 2004.

[7] J. Darbon and M. Sigelle, “Image restoration with dis-
crete constrained total variation part I: Fast and exact
optimization,” J. Math. Imaging Vision, vol. 26, no. 3,
pp- 261-276, 2006.

[8] Y. Wang, J. Yang, W. Yin, and Y. Zhang, “A new alter-
nating minimization algorithm for total variation image
reconstruction,” SIAM J. Imaging Sci., vol. 1, pp. 248—
272, 2008.

[9] H. Fu, M. K. Ng, M. Nikolova, and J. L. Barlow, “Ef-
ficient minimization methods of mixed 12-11 and 11-11
norms for image restoration,” SIAM J. Sci. Comput.,
vol. 27, pp. 1881-1902, 2006.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

D. Goldfarb and W. Yin, “Second-order cone program-
ming methods for total variation based image restora-
tion,” SIAM J. Sci. Comput., vol. 27, pp. 622-645, 2005.

M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI:
The application of compressed sensing for rapid MR
imaging,” Magn. Reson. Med., vol. 58, pp. 1182-1195,
2007.

E. Y. Sidky, C. M. Kao, and X. C. Pan, “Accurate image
reconstruction from few-views and limited-angle data
in divergent-beam CT,” J. X-ray Sci. Technol., vol. 14,
pp- 119-139, 2006.

T. J. Asaki, R. Chartrand, K. R. Vixie, and B. Wohlberg,
“Abel inversion using total-variation regularization,” In-
verse Problems, vol. 21, pp. 1895-1903, 2005.

R. Chartrand, “Numerical differentiation of noisy, non-
smooth data.” preprint, 2007.

T. F. Chan and P. Mulet, “On the convergence of the
lagged diffusivity fixed point method in total varia-
tion image restoration,” SIAM J. Numer. Anal., vol. 36,
pp- 354-367, 1999.

R. Chartrand and V. Staneva, “Total variation regulari-
sation of images corrupted by non-Gaussian noise using
a quasi-Newton method,” IET Image Process., vol. 2,
pp- 295-303, 2008.

T. Goldstein and S. Osher, “The split Bregman method
for L1 regularized problems,” SIAM J. Imaging Sci.,
vol. 2, pp. 323-343, 2009.

D. P. Bertsekas, Nonlinear Programming. Belmont,
Massachusetts: Athena Scientific, 1999.

M. Nikolova, “Minimizers of cost-functions involving
nonsmooth data-fidelity terms. applications to the pro-
cessing of outliers,” SIAM J. Numer. Anal., vol. 40,
pp- 965-994, 2002.

B. Wohlberg and P. Rodriguez, “An [!-TV algorithm for
deconvolution with salt and pepper noise,” in IEEE In-
ternational Conference on Acoustics, Speech, and Sig-
nal Processing, pp. 1257-1260, 2009.

D. Krishnan, P. Lin, and A. M. Yip, “A primal-dual
active-set method for non-negativity constrained total
variation deblurring problems,” IEEE Trans. Image Pro-
cess., vol. 16, pp. 27662777, 2007.

J. Yang, Y. Zhang, and W. Yin, “An efficient TVLI1 al-
gorithm for deblurring multichannel images corrupted
by impulsive noise,” SIAM J. Sci. Comput., vol. 31,
pp. 2842-2865, 2009.



