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We consider the problem of differentiating a function specified by noisy data. Regularizing the
differentiation process avoids the noise amplification of finite-difference methods. We use total-
variation regularization, which allows for discontinuous solutions. The resulting simple algorithm
accurately differentiates noisy functions, including those which have a discontinuous derivative.

1. Introduction

In many scientific applications, it is necessary to compute the derivative of functions specified
by data. Conventional finite-difference approximations will greatly amplify any noise present
in the data. Denoising the data before or after differentiating does not generally give
satisfactory results (see an example in Section 4).

A method which does give good results is to regularize the differentiation process
itself. This guarantees that the computed derivative will have some degree of regularity, to
an extent that is often under control by adjusting parameters. A common framework for this
is Tikhonov regularization [1] of the corresponding inverse problem. That is, the derivative
of a function f , say on [0, L], is the minimizer of the functional

F(u) = αR(u) +DF
(
Au − f

)
, (1.1)

where R(u) is a regularization or penalty term that penalizes irregularity in u, Au(x) =
∫x
0 u

is the operator of antidifferentiation, DF(Au − f) is a data fidelity term that penalizes
discrepancy between Au and f , and α is a regularization parameter that controls the balance
between the two terms.
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The data fidelity term DF is most commonly the square of the L2 norm, DF =
∫L
0 | · |2,

as is appropriate if f has additive, white Gaussian noise [2]. Other data fidelity terms can be
used if the noise has a different, known distribution; see [3] for an alternative in the case of
Poisson noise, and [4] for a more general approach.

In [1], the regularization term is the squared L2 norm; this controls the size of
u, without forcing minimizers to be regular. Tikhonov regularization was first applied to
numerical differentiation by Cullum [5], where the regularization is the squared H1 norm,
R(u) =

∫L
0 |u′|2. This forces minimizers to be continuous, as is required for the H1 norm to be

finite. This prevents the accurate differentiation of functions with singular points.
Other variational methods have the same drawback of forcing smoothness. An

approach that penalizes the L2 norm of u′′ forces the minimizer to be a cubic spline (see
[6–8]). The variational approach of Knowles and Wallace [9] does not fall into the category
of Tikhonov regularization, but explicitly assumes that u is smooth.

2. Total-Variation Regularization

We propose to use total-variation regularization in (1.1). We will thus compute the derivative
of f on [0, L] as the minimizer of the functional

F(u) = α

∫L

0

∣∣u′∣∣ +
1
2

∫L

0

∣∣Au − f
∣∣2. (2.1)

We assume f ∈ L2 (an empty assumption in the discrete case), and for convenience that
f(0) = 0 (in practice we simply subtract f(0) from f). The functional F is defined on
BV [0, L], the space of functions of bounded variation. It is in fact continuous on BV , as BV
is continuously embedded in L2, and A is continuous on L2 (being an integral operator with
bounded kernel). Existence of a minimizer for F follows from the compactness of BV in L2

[10, page 152] and the lower semicontinuity of the BV seminorm [10, page 120]. This and the
strict convexity of F are sufficient to guarantee that F has a unique minimizer u∗.

Use of total variation accomplishes two things. It suppresses noise, as a noisy function
will have a large total variation. It also does not suppress jump discontinuities, unlike
typical regularizations. This allows for the computation of discontinuous derivatives, and
the detection of corners and edges in noisy data.

Total-variation regularization is due to Rudin et al. in [11]. It has since found many
applications in image processing. Replacing A in the two-dimensional analog of (2.1) with
the identity operator gives a method for denoising an image f ; see [12, 13] for an example
where A is the Abel transform, giving a method for regularizing Abel inversion.

3. Numerical Implementation

A simple approach to minimizing (2.1) is gradient descent. This amounts to evolving to
stationarity the PDE obtained from the Euler-Lagrange equation:

ut = α
d

dx

u′

|u′| −AT(Au − f
)
, (3.1)
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where ATv(x) =
∫L
x v is the L2-adjoint of A. Replacing the |u′| in the denominator with√

(u′)2 + ε for some small ε > 0 avoids division by zero. Typically, (3.1) is implemented with
explicit time marching, with ut discretized as (un+1 − un)/Δt for some fixed Δt.

The problem with (3.1) is that convergence is slow. A faster algorithm is the lagged
diffusivity method of Vogel and Oman [14]. The idea is to replace at each iteration of
(3.1) the nonlinear differential operator u �→ (d/dx)(u′/|u′|) with the linear operator u �→
(d/dx)(u′/|u′

n|). The algorithm has been proven to converge to the minimizer of F [15].
We consider two discrete implementations of the lagged diffusivity algorithm. The first

uses explicit matrix constructions, and is faster for smaller problems, but becomes impractical
for data of more than a few thousand points. We assume that u is defined on a uniform grid
{xi}L0 = {0,Δx, 2Δx, . . . , L}. Derivatives of u are computed halfway between grid points as
centered differences,Du(xi+Δx/2) = u(xi+1)−u(xi). This defines our L×(L+1) differentiation
matrixD. This approach avoids the consideration of boundary conditions for differentiation,
and we find it gives better algorithmic results at the boundary. Integrals of u are likewise
computed halfway between grid points, using the trapezoid rule to define an L × (L + 1)

matrix A. Let En be the diagonal matrix whose ith entry is ((un(xi) − un(xi−1))
2 + ε)

−1/2
. Let

Ln = ΔxDTEnD, Hn = KTK + αLn. The matrix Hn is an approximation of the Hessian of F at
un. The update sn = un+1 −un is the solution toHnsn = −gn, where gn = KT (Kun − f) +αLnun,
andwe solve the equation usingMATLAB’s backslash operator. For further algorithm details,
see [16].

For larger problems, we use a modified version that avoids explicit matrices and uses
simpler numerics. The differentiation matrix D is constructed as the square, sparse matrix
for simple forward differences, with periodic boundary conditions. We use a function handle
for A, simply using MATLAB’s cumulative sum operator, as well as for AT . It is important
that the discretization of AT be consistent with the discretization of A, in the sense that if
one were to use the function handles to construct matrices, then they would be transposes of
each other. In other respects, the algorithm is as above, except the definition of En now uses
periodic boundary conditions, and the equation Hnsn = −gn is solved using preconditioned
conjugate gradient. For the preconditioner, we perform incomplete-Cholesky factorization on
the sum of αLn and the diagonal matrix whose entries are the row sums of ATA, these sums
being computable analytically.

Less straightforward is the choice of the regularization parameter α. One approach
is to use the discrepancy principle: the mean-squared difference between Au∗ and f should
equal the variance of the noise in f . This has the effect of choosing the most regular solution
of the ill-posed inverse problem Au = f that is consistent with the data f . In practice, the
noise in f is not generally known, but the noise variance can be estimated by comparing f
with a smoothed version of f . The other approach is simply to use trial and error, adjusting α
to obtain the desired balance between suppression of oscillations and fidelity to the data. In
the next section, we will see an example showing the effect of the value of α.

4. Examples

4.1. A Simple Nonsmooth Example

Let f0(x) = |x − 1/2|, defined at 100 evenly spaced points in [0, 1]. We obtain f by adding
Gaussian noise of standard deviation 0.05. Figure 1 shows the resulting f . First, we show
in Figure 2 the result of computing f ′ by simple centered differencing. The noise has been
greatly amplified, so much that denoising the result is hopeless.
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Figure 1: The function f , obtained from |x − 1/2| by adding Gaussian noise of standard deviation 0.05.
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Figure 2: Computing f ′ with finite differences greatly amplifies noise.

We compare this with the result in Figure 3 of denoising f before computing f ′ by
differencing. The denoising is done byH1 regularization, minimizing

α

∫L

0

∣∣u′∣∣2 +
1
2

∫L

0

∣∣u − f
∣∣2, (4.1)

an appropriate denoising mechanism for continuous functions. We use α = 3.5 × 10−3, using
the discrepancy principle, as this results in the L2 norm of u∗ −f being 0.5, the expected value
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Figure 3: The function f is denoised, then differentiated with finite differences. The result is noisy and
inaccurate.
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Figure 4: Regularizing the differentiation process with total-variation produces a noiseless derivative with
a correctly located, sharp jump. The discrepancy of the values from ±1 are due to contrast loss, an artifact
of total variation methods in the presence of noise.

of the L2 norm of the noise vector f −f0. The residual noise in the denoised f is still amplified
enough by the differentiation process to give an unsatisfactory result.

Now, we implement our total-variation regularized differentiation, (2.1). We use the
matrix-based version described above, using α = 0.2 and ε = 10−6, initializing with the
naive derivative (specifically [0; diff( f ); 0], to obtain a vector of the appropriate size).
Although convergence is nearly complete after 100 iterations, the points closest to the jump
move much more slowly, adopting their final positions after 7000 iterations. This takes just
13.1 s, running on a conventional dual-core desktop. The result is in Figure 4. The overall
shape of f ′

0 is captured almost perfectly. The jump is correctly located. The one inaccuracy is



6 ISRN Applied Mathematics

0

0.1

0.2

0.3

0.4

0.5

K(u∗) + f0(0)
u∗T V

0 0.2 0.4 0.6 0.8 1

x

Figure 5: The function f0 (solid line) and the antidifferentiated numerical derivative (circles). The
numerically computed function is very similar to the exact one.

the size of the jump: there is a loss of contrast, which is typical of total-variation regularization
in the presence of noise. Decreasing the size of the jump reduces the penalty term in (2.1), at
the expense of increasing the data-fidelity term.

We also show the result of applying the antidifferentiation operator to the computed
f ′, and compare with f0 in Figure 5. The corner is sharp and the lines are straight, though a
little too flat.

4.2. Respirometry Data

Now, we consider data obtained from a whole-room calorimeter, courtesy of Edward L.
Melanson of the University of Colorado Denver. The metabolic rate of a subject within the
calorimeter can be determined via respirometry, the measurement of oxygen consumption,
and carbon dioxide production within the room. The raw data traces need to undergo
response corrections in order to be useful, which involves differentiation. Quoting [17]:

In essence, the first derivative of the trace is calculated, multiplied by a constant
derived from the volume of the room and the volumetric flow rate, and added
to the original data. Because of the long time constant of the room (5 h), the
multiplicative constant is very large. Consequently, any significant noise in the
derivatized data will overwhelm the original trace.

Thus, we see the need to regularize the differentiation process for this application.
In Figure 6 there is an example of the raw data for the oxygen consumption rate,

which needs to be differentiated for the purposes of response correction. The data consists
of samples taken every second for most of a day, for a total of 82,799 samples. In Figure 7
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Figure 6: The trace of raw oxygen consumption data, consisting of 82,799 samples, one per second.
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Figure 7: Computing the derivative with finite differences gives a useless result.
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Figure 8: The derivative computed with strong TV regularization. Despite the heavy smoothing, the rapid
rise and fall in the derivative is captured well.
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Figure 9: UsingH1 regularization, the jumps in the derivative are smoothed away.
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Figure 10: Integrating the derivatives and comparing with the original function, we find the TV result
follows the curve more closely near the peak. Both curves follow the curve away from the peak, but ignore
small fluctuations, to a degree determined by α.
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Figure 11: The derivative computed with lesser TV regularization, preserving more structure, including a
discontinuity in the derivative.

there is the result of computing the unregularized, finite-difference derivative. If restricted to
the same vertical range as the following plots, the plot would be a solid black rectangle.

The data size is much too large for the explicit-matrix implementation, so we use the
implicit approach. In each case, we use 60 iterations, taking about 5 minutes. We compare the
total-variation regularized derivative with that computed with H1 regularization, for two
different regularization strengths. First, a stronger regularization, with a value of α = 0.1 for
the TV case. The result is in Figure 8. We then adjust the parameter forH1 regularization until
the curve matches the TV result away from the large bump, namely, α = 500; see Figure 9. A
value of ε = 10−8 was used in both cases. The TV regularization is much more tolerant of
rapid rises and falls while the H1 result smooths away this information. We also compare
the results of antidifferentiating the derivative and comparing with the original trace, with
Figure 10 displaying a zoomed-in portion. The H1 curve is unable to conform to the peak,
as the H1 regularization term heavily penalizes what would be the curvature of the curve in
this figure. Away from the peak, the integrated derivatives follow the original trace, but not
too closely, ignoring small-scale fluctuations. This is the effect of the regularization, with the
choice of α serving to determine the scale of fluctuation that is considered insignificant.

The above result would be appropriate if the rapid rise and fall in the derivative
corresponded to the only feature of interest. Now, we examine the result of weaker
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Figure 12: UsingH1 regularization, the discontinuity in the derivative is smoothed away.
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Figure 13: Integrating the derivatives and comparing with the original function, we find that with
the weaker regularization, the integrals follow the curve closely, effectively considering much lesser
fluctuations to be significant.
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Figure 14: A closer look reveals that unlike the TV result, theH1 curve cannot follow the high curvature at
the corner, preventing the computed derivative from dropping discontinuously.

regularization, so as to preserve smaller-scale features. In this instance, we use α = 10−3 for the
TV regularization. As before, we choose α for theH1 regularization so that the result matches
the TV result over most of the time period, in this case α = 1. This time a slightly larger value
of ε = 10−6 was required, in order to offset the poorer conditioning of the linear system solved



10 ISRN Applied Mathematics

in the lagged diffusivity algorithm when α is smaller (in general, there is a tradeoff between
better conditioning with larger values of ε and greater accuracy with smaller values).

Figures 11 and 12 show the results. Both derivatives capture more oscillations,
including more structure in the rapid rise and fall. But the TV result is able to capture a
discontinuity in the derivative that the H1 result smooths away. When we compare the
antiderivatives with the original function (Figure 13), we find that they follow the trace much
more closely, conforming to smaller-scale fluctuations. Zooming in further, we see the greater
curvature penalty on the H1 curve prevents it from following the sharp corner, thus missing
the discontinuous drop in the derivative.

5. Conclusions

We presented a method for regularizing the numerical derivative process, using total-
variation regularization. Unlike previously developed methods, the TV method allows
for discontinuities in the derivatives, as desired when differentiating data corresponding
to nonsmooth functions. We used the lagged diffusivity algorithm, which enjoys proven
convergence properties, with one implementation that works rapidly for small problems,
and a second more suitable for large problems. The TV regularization allows the derivative
to capture more features of the data, while adjusting the regularization parameter controls
the scale of fluctuations in the data that are ignored.
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