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Abstract— Image reconstruction for fan-beam
computed tomography (CT) from projection
data containing a small number of views is in-
vestigated. An iterative algorithm is developed
that seeks to minimize the total p-variation of
the reconstructed image subject to the con-
straint that the estimated projection data agree
with the available data to within a specified data
tolerance ¢. A preliminary investigation on the
dependence of image quality as a function of p
and ¢ is performed.

I. INTRODUCTION

ECENTLY , we have developed an iterative
image reconstruction algorithm that can be
effective in situations when projection data are col-
lected at a small number of views [1], [2]. The
algorithm seeks the image with the minimum to-
tal variation (TV) that agrees with the projection
data to within a specified data tolerance, an ap-
proach first considered in Refs. [3], [4]. The image
total variation is the ¢; norm of the image gradient
magnitude. This optimization problem tends to
identify images with sparse gradients, and if such
an assumption applies, the resulting reconstruc-
tion can be very accurate. In medical imaging the
underlying object function can have an approxi-
mately sparse image gradient, because images are
often slowly varying within particular organs, and
rapid variations in the images are mainly confined
to the boundaries between different tissues. In this
work, we investigate a different optimization prob-
lem that may increase the effectiveness of recon-
struction from sparse data.
Mathematically, image reconstruction from few
views can be thought of as an underdetermined lin-
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ear system. Under conditions of ideal data, there
will not be a unique solution to this linear sys-
tem. The solution space can, however, be nar-
rowed down by making certain assumptions about
the image. For example, requiring that the im-
age pixels contain non-negative values can sub-
stantially reduce the set of possible images that
are consistent with the data. Another powerful
assumption is that the desired image is sparse in
some representation, e.g., pixels. A sparse solu-
tion can be obtained by minimizing the ¢y norm
of the image, while constraining the image to be
consistent with the available projection data. Min-
imization of the ¢y norm, however, is a combi-
natorial optimization problem and not practical.
It turns out that for linear constraints satisfying
modest conditions, ¢y minimization is equivalent
to ¢1 minimization, which leads to a convex opti-
mization problem for which there exist practical
algorithms. Another interesting possibility is to
minimize the £, norm where 0 < p < 1, which, un-
der ideal conditions and linear constraints, should
yield the sparsest solution with fewer measure-
ments than with p = 1. Such an optimization
problem is non-convex and likely has many local
solutions, but there may be an advantage in the
case of data inconsistencies caused by noise.

In this work, we investigate image reconstruc-
tion by minimizing the ¢, norm of the image gra-
dient magnitude, or total p-variation (TpV), con-
straining the image so that its projections are
within a set tolerance of the available projection
data. The results show that the TpV algorithm
can yield reconstructed images substantially more
accurate than our previous TV algorithm.

In Sec. II we state the optimization problem
that we use for the non-convex reconstruction al-
gorithm. In Sec. III, we heuristically argue why
the non-convex TpV-norm may have some advan-
tage over the convex TV-norm. Finally, in Sec. IV



we show an example of image reconstruction by
TpV-norm minimization in the context of few-view
fan-beam CT scanning.

II. METHOD

For the TpV algorithm the optimization prob-
lem we seek to solve is:

f* = argmin |V fllTpy subject to IMf — 7| <e.

) (1)
The vector f denotes the pixel/voxel representa-
tion of the image; ¢ is the discrete set of projection
data; and M is the system matrix, which for the
examples shown below is the ray-driven projection
of the image matrix. The quantity ||V f||, is the
p-norm of the image gradient magnitude, and for
2D images we define it by

Vs ="

1,J

(\/(fm’ — fi13)* + (fij — fi,j—l)2>p~ (2)

The optimization problem specified by Egs. (1)
and (2) depends on two parameters € and p. When
p =1, TpV optimization reduces to TV optimiza-
tion. The data constraint in Eq. (1) allows for
the fact that the data ¢ may be inconsistent, i.e.
there may be no image f that satisfies M f = g.
Such inconsistency can occur when the projector
model does not coincide with the actual projec-
tion or when the data contain noise. In general
the minimum data tolerance €, the minimum €
such that there exists an fsatisfying ||Mf—§|| <,
is larger than zero. As e increases, images with
smaller TpV are obtained. In general, the stan-
dard TV norm will not identify the image with
the sparsest image gradient, here, because the im-
age constraint is ellipsoidal, not linear. Reducing
p, however, brings Eq. (1) closer to the ideal p =0
case that does yield the sparse image gradient solu-
tion. When the underlying image function satisfies
the assumption of image gradient sparseness, the
reduction of p to values below p = 1 can improve
the accuracy of the image reconstruction.

III. MOTIVATION FOR TpV-NORM
MINIMIZATION

To motivate the use of the TpV-norm, we briefly
describe the theory of sparse linear system inver-
sion. If it is known that the underlying solution to
a linear system is sparse in some representation,
it may only be necessary to obtain a small set of
measurements to find the solution. To find the
sparsest solution that satisfies the available data,
one needs to solve:

f* = argmin ||Z||o subject to AZ =b, (3)

where A is a rectangular M x N matrix with M <
N; Z (length N) is the solution we seek, and b
(length M) is the available data. The norm || - |o

is defined:
1o = lim 3 JaP,
p—0
(3

where p approaches zero from the positive real
numbers. This norm essentially counts the number
of non-zero elements in &, so minimizing it gives
the sparsest solution satisfying the available data.
There is no known algorithm that solve Eq. (3) in
a way that scales well with problem size. Instead,
one can solve the following optimization problem

f* = argmin ||Z]|, subject to AZ = b, (4)
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When p < 1 this optimization problem can in
many cases identify a solution to Ax = b this is ei-
ther the sparsest or “close” to the sparsest possible
solution. Most research efforts on solving Eq. (4)
have focussed on p = 1, because the optimization
problem is convex in this case. But one of us [5]
has considered the case when p < 1. A mathemat-
ical analysis of this problem is beyond the scope of
this article, but we give an example with a small
linear system that illustrates the possible advan-
tage of considering the non-convex p < 1 problem.

Consider the following underdetermined linear

system:
1 1 2 1
1 15 1 2

where



Fig. 1. Plots of the £,-norm from Eq. (7) for the p
values: p = 2.0 (solid curve), p = 1.0 (dashed curve),
and p = 0.4 (solid curve with dots).

As there are two data points and three unknowns,
the solution space is described by a line that can
be parametrized as:

T = (11,2 —x1/2,1 —x1/4)T. (6)
The linear system in Eq. (5) is designed so that the
line corresponding to its solution space intersects
the zq-axis at ©1 = 4. This point is the sparsest
solution of Eq. (5). Now we illustrate how the
non-convex norm minimization allows us to iden-
tify this solution. With the parametrization of Eq.
(6) it is simple to write down the expression for the
norm || - ||, as a function of x;:

2]l = lz1[P 4+ 12 = 21 /2P + L — a1 /4P (7)
And in Fig. 1, we plot the values of the various
norms for different values of p. It is clear from this
plot that minimizing | - ||, for different values of p
lead to different solutions. The minimum energy
solution is obtained with the p = 2 case, yielding
the solution &}, = (0.952,1.524,0.762)T, which is
not sparse since all components are non-zero. The
p =1 case, the lowest value of p maintaining con-
vexity, gives 7, = (0,2, )T, which is sparser than
the minimum energy solution but not the spars-
est possible solution. For p = 0.4 we see that
the sparsest solution is identified by the minimum
{p—0.4-n0OTM.

Returning to the image reconstruction problem
at hand, we seek to minimize the TpV-norm which
is the ¢p-norm of the image gradient magnitude.
We do this because for many underlying image
functions the image gradient magnitude is approx-
imately sparse. We take the same algorithm for
the convex p = 1 case to attempt to solve the non-
convex p < 1 problem in Eq. (1). We demonstrate
the possible advantage of TpV-norm minimization
in the next section.
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Fig. 2. Image error || f- fthH of reconstructed images
as a function € and p.

IV. RESULTS

We apply the TpV algorithm to 2D fan-beam
CT image reconstruction from few view projection
data. The parameters of the simulated scan are:
radius is 40 cm; source to detector distance is 80
cm; the detector has 512 bins covering 41.3 cm.
The projection data contain only 25 views. The
image array is a 20 x 20 cm? square composed of
256 x 256 pixels. In this study we used the Shepp-
Logan phantom, and added Gaussian noise to the
projection data at a level of 0.1% of the actual bin
values. Using the same set of projection data, im-
ages are reconstructed by solving Eq. (1) for var-
ious values of € and p. First, plots of the image
error, || f — firuel), are shown fixing € and varying p
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Fig. 3. Reconstructed images for 25 view noisy pro-
jection data for various values of € and p.

and vice versa. Second, the reconstructed images
are shown for particular values of ¢ and p.

In the top panel of Fig. 2 two curves are shown
that show the dependence of the image error as
a function of € for p = 1.0 (standard TV) and
p = 0.9. In both cases the image error does not
decrease monotonically with €. The reason for this
is that the given projection data is inconsistent due
to noise, and as a result tighter data constraints
can lead to larger image errors. Looser data con-
straints allow for the selection of images with lower
TpV, which can reduce the image error if the un-
derlying image is sparse in its gradient magnitude.
The curve corresponding to p = 0.9 does yield
lower image errors. Thus the non-convex optimiza-

tion problem may have some advantage over stan-
dard TV minimization. Fixing €, we examine the
image error dependence on p in the lower panel of
Fig. 2. These curves clearly show a marked drop
in image error as p is decreased from 1.0. A min-
imum image error of 3.2 is obtained for the case
where p is confined to 1.0, while allowing p to be
less than 1.0 yields an image error as low as 1.39.

In Fig. 3, we show reconstructed images for a
few values of different ¢ and p. In the top row
are shown the phantom and a reconstruction by
projection onto convex sets (POCS) for reference.
The POCS implementation is basic with no regu-
larization. In the second row are shown the “best”
images in terms of lowest image error, when p
is allowed to vary (left) and when p is fixed at
1.0 (right). The difference in the image quality
is quite apparent, and the image from the non-
convex p = 0.7 case has fewer artifacts. In the re-
maining four panels, images are shown for various
combinations of high and low € and p. The images
with p < 1.0 are sparser in the image gradient as
there is a clear quantization in the reconstructed
image gray values.

V. CONCLUSION

We have developed a new iterative algorithm for
solving the non-convex TpV optimization problem
that can reconstruct images with a sparse gradi-
ent magnitude from projection data containing few
views. The non-convex extension of the TV algo-
rithm to values of p less than one appears to lead
to more accurate reconstructed images. We have
shown preliminary optimization of p and e values
in terms of image error, but clearly other image
quality metrics can be used to select optimal val-
ues of € and p.
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