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Abstract—A nonconvex optimization algorithm is developed,
which exploits gradient magnitude image (GMI) sparsity for re-
duction in the projection view angle sampling rate. The algorithm
shows greater potential for exploiting GMI sparsity than can be
obtained by convex total variation (TV) based optimization. The
nonconvex algorithm is demonstrated in simulation with ideal,
noiseless data for a 2D fan-beam computed tomography (CT)
configuration, and with noisy data for a 3D circular cone-beam
CT configuration.

I. INTRODUCTION

Much recent work in iterative image reconstruction in
computed tomography (CT) has focused on some form of total
variation (TV) minimization, and one of the motivations for
employing TV minimization is exploiting sparsity in the gradi-
ent magnitude image (GMI) to reduce sampling requirements
for the CT system. TV-minimization has been demonstrated,
in simulations and with real scanner data, to be effective
at allowing for projection view sampling reduction. There
is, however, potential to take the sparsity-exploiting principle
further, because TV-minimization is an `1-based convex relax-
ation of an ideal, nonconvex, sparsity-exploiting optimization
based on the `0-norm. To approach more closely the `0-based
minimization, we develop a GMI sparsity-exploiting algorithm
for CT based on an `p-norm where p ∈ (0, 1). Section II
summarizes the theory and algorithm, and Sec. III shows
results based on 2D and 3D CT simulations.

II. CONSTRAINED, NONCONVEX OPTIMIZATION BY
REWEIGHTING

We briefly state the rationale and methods for GMI exploit-
ing CT image reconstruction with nonconvex optimization. We
write the CT data model generically as a linear system

g = X f , (1)

where f is the image vector comprised of voxel coefficients,
X is the system matrix generated by some approximation to
projection of the voxels, and g is the data vector containing
the estimated projection samples. The model can be applied
equally to 2D and 3D geometries, and we note that there
are many specific forms to this linear system depending on
sampling, image expansion elements, and approximation of
continuous fan- or cone-beam projection.
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For the present work, we focus on CT configurations with
sparse angular sampling, where the sampling rate is too low
for Eq. (1) to have a unique solution. In this situation, there
has been much interest in exploiting GMI sparsity of the
object to narrow the solution space of Eq. (1) and potentially
obtain an accurate reconstruction from under-sampled data.
The formulation of this idea results in a nonconvex constrained
optimization:

f◦ = arg min
f

∥∥∥∥√
(∂xf)2 + (∂yf)2 + (∂zf)2

∥∥∥∥
0

such that gdata = X f , (2)

where the argument of the `0-norm is the voxel-wise magni-
tude of the image spatial gradient; the linear operators ∂x, ∂y ,
and ∂z are matrices representing finite differencing in their
respective labeled directions; the numerical gradient of the
image is formed by, ∇f = [∂xf , ∂yf , ∂zf ]T (2D is obtained by
deleting the third component); the `0-norm counts the number
of non-zero components in the argument vector; and gdata is the
available projection data. In words, this optimization seeks the
image f with the lowest GMI sparsity while agreeing exactly
with the data.

The optimization problem in Eq. (2) does not lead directly
to a practical image reconstruction algorithm, because, as of
yet, no large scale solver is available for this problem. Also,
the equality constraint, requiring perfect agreement between
the available and estimated data, makes no allowance for data
inconsistency. In working toward developing a practical image
reconstruction algorithm different relaxations of Eq. (2) have
been considered. One such relaxation is

f◦ = arg min
f

∥∥∥∥√
(∂xf)2 + (∂yf)2 + (∂zf)2

∥∥∥∥p

p

such that ‖gdata −X f‖2 ≤ ε, (3)

where the `0-norm is replaced by the `p-norm,

‖v‖p
p ≡

∑
i

|vi|p,

and the data equality constraint is relaxed to an inequality
constraint with data-error tolerance parameter ε. An important
strategy, which has been studied extensively in Compressive
Sensing [1], is to set p = 1, which corresponds to TV-
minimization. This, on the one hand, maintains some of the
sparsity seeking features of Eq. (2) and, on the other hand,
leads to a convex problem, which has convenient features for
algorithm development. For example, a local minimizer is a
global minimizer in convex optimization.



Another interesting option for GMI sparsity-exploiting im-
age reconstruction is to consider Eq. (3) for 0 < p < 1. Such
a choice for p leads to nonconvex optimization, which can
allow for greater sampling reduction than the p = 1 case while
maintaining highly accurate image reconstruction. These gains
intuitively stem from the fact p < 1 is closer to the ideal
sparsity-exploiting case of p = 0; the catch, however, is on
the algorithmic side where one has to deal with potential local
minima, which are not part of the global solution set. Despite
this potential difficulty, practical algorithms based on this
nonconvex principle are available [2,3], and gains in sampling
reduction for various imaging systems have been reported for
both simulated and real data cases. For X-ray tomography,
use of this nonconvex strategy has shown promising results
[4,5], but the algorithms proposed in those works for CT are
only motivated by the optimization problem in Eq. (3) and
are not accurate solvers of this problem. An accurate solver is
important for theoretical studies of CT image reconstruction
with under-sampled data and may also aid in developing
algorithms for limited-data tomographic devices.

For CT, one of the barriers to developing an efficient and
accurate solver for Eq. (3) in the nonconvex p < 1 case, is
that it is already challenging to develop such a solver for the
convex p = 1 case. In order to handle the latter convex, but
non-smooth case, we have been interested in an alternate line
of optimization problems, where the salient image metrics are
written as constraints instead of in an objective function. It
is a strategy similar to the set theoretic approach presented
in Ref. [6]; the algebraic reconstruction technique (ART)
is a specific realization of this strategy; and this type of
approach can be useful for nonconvex constraint sets [7]. For
the alternate, constraint-based optimization problem there are
efficient, large-scale solvers recently available [8,9].

Returning to GMI sparsity-exploiting image reconstruction,
we employ an approach developed in Ref. [9] and alter Eq.
(3) to the following

f◦ = arg min
f

1
2
‖f − fprior‖22 such that ‖gdata −X f‖2 ≤ ε

and
∥∥∥∥√

(∂xf)2 + (∂yf)2 + (∂zf)2
∥∥∥∥p

p

≤ γ, (4)

which seeks the image f closest to a prior image fprior while
respecting constraints on the `p-norm of the GMI and data-
error tolerance. We do not consider, here, the availability of
a prior image and set fprior = 0, keeping this vector only for
generality. Consider, first, the case of p = 1; the constraint
on the GMI becomes a constraint directly on the image TV.
Constrained minimization of image TV is known to encourage
GMI sparsity. We do not directly minimize TV, rather we in-
dependently select parameters γ and ε. For sparsity-exploiting
image reconstruction, both of these parameters are chosen to
have small values: small ε forces tight agreement with the data,
and small γ encourages GMI sparsity. We note that ε = 0
corresponds to a data equality constraint, which may allow
no solutions when inconsistencies are present in the data. For
p = 1, the optimization problem in Eq. (4) is convex and the
algorithm presented in Ref. [9] can be used directly to obtain

the solution.
For this abstract, we are interested in developing an algo-

rithm for 0 < p < 1, where the GMI constraint becomes
nonconvex. The issue then becomes how to solve Eq. (4) for
p < 1, because the algorithm in Ref. [9] applies only to convex
problems. The approach taken involves approximating Eq. (4)
with a convex problem employing a weighted `1-norm:

f◦ = arg min
f

1
2
‖f − fprior‖22 such that ‖gdata −X f‖2 ≤ ε

and
∥∥∥∥w√

(∂xf)2 + (∂yf)2 + (∂zf)2
∥∥∥∥

1

≤ γ, (5)

where the GMI constraint involves only the `1-norm and a
non-negative weight vector w. For a given w this optimization
problem is convex and can be solved efficiently using the
algorithm in Ref. [9]. To attack the nonconvex problem, we
employ a reweighting technique, where there are two loops: an
inner loop where Eq. (5) is solved given parameters γ, ε, and
weight vector w, and an outer loop where the weight vector
is adjusted based on the solution of the inner loop:

w =
(√

η + (∂xf)2 + (∂yf)2 + (∂zf)2
)p−1

.

The parameter η is needed to prevent the singularity at voxels
with zero GMI when p < 1. For all simulations in this abstract
η = 10−6. With a reweighting approach, an important question
is how accurately does the intermediate weighted problem
need to be solved in the inner loop so that overall convergence
of the outer loop is attained. It turns out for the present
reweighting scheme it suffices to have only one inner iteration.
Thus, the complete algorithm is derived from the algorithm in
Ref. [9], and the weights are recomputed at every iteration
based on the current image estimate f .

III. RESULTS

To demonstrate the new image reconstruction algorithm, we
perform two sets of experiments. In the first, we employ the
algorithm on ideal, noiseless fan-beam CT data where it is
possible to recover the exact image. With this ideal simulation,
we demonstrate the potential for angular sampling reduction.
In the second simulation, we apply the algorithm to circular,
cone-beam CT projections with noise. The purpose of the latter
simulation is to demonstrate that the algorithm can indeed by
applied to 3D CT, and to illustrate the impact of the nonconvex
algorithm on data inconsistency.

A. Ideal fan-beam CT simulation

For the 2D simulation we employ the breast phantom shown
in Fig. 1. In the figure, the phantom GMI is also shown, which
is seen to have many more zeros than the original phantom.
It is this sparsity in the GMI, which we seek to exploit in
order to reduce angular sampling. The phantom is discretized
on a 128×128 pixel array, which is 20 cm on a side. Only the
pixels within the largest inscribed circle are allowed to vary,
and pixels outside this 20 cm diameter circle are fixed to zero.
The fan-beam CT simulation models an X-ray source 40 cm
from the isocenter, and a 80 cm source-to-detector distance.



Fig. 1. Left: computerized breast phantom shown in a gray scale window
[0.95, 1.25]. Right: gradient magnitude image (GMI), which has greater
sparsity than the original phantom.

p = 0.8 p = 1.0 p = 2.0

Fig. 2. Reconstructed images for nonconvex p = 0.8, left column, compared
with convex p = 1.0, middle column, and p = 2.0, right column. The number
of views covering 360 degrees is 35, 30, and 25 for the top, middle, and bottom
rows, respectively. The gray scale window is [0.95, 1.25].

The detector consists of 256 bins in a linear configuration,
which is long enough to capture the projection of the 20 cm
diameter pixel array. We consider only 360 degree scans, but
allow the number of projections to vary.

To illustrate the potential of nonconvex optimization for
sparsity-exploiting image reconstruction, we compare solu-
tions of Eq. (4) for p = 0.8, p = 1.0, and p = 2.0. The
latter two values lead to a convex problem, which can be
solved with the algorithm in Ref. [9], and the first value leads
to a nonconvex problem solved by the proposed reweighting
algorithm using Eq. (5). For values p = 1.0 and p = 2.0, we
have a direct convergence check, but for the nonconvex case
we cannot claim to have found a global solution to Eq. (4).
Instead, we can verify that Eq. (5) is solved for the weights
w that are settled upon.

In applying the constraint-based optimization problem in
Eq. (4), we need to specify two parameters ε and γ. The
data used in this simulation are ideal, and accordingly we
employ a tight data-error constraint and use a value for ε
corresponding to an root-mean-square-error (RMSE) of 10−5.
For the image TV constraint we set γ to the value of the

Fig. 3. Images reconstructed from noisy projections of the FORBILD head
phantom. The rows show the results for p = 1.0, top, p = 0.8, middle, and
the phantom, bottom in a gray scale window of [1.0425, 1.0625]. The first
column shows the midplane, and the second column shows a transaxial plane
near the top of the bony structure at the ear. The dashed lines in the phantom
midplane slice indicate the locations of the profiles for Figs. 4 and 5.

`p-norm of the actual phantom GMI to the pth power. We
note that in actual application, access to this information
is unavailable and selection of γ would need to be based
on different image quality metrics. Here, however, we are
exploring the theoretical potential of the proposed algorithm.

Shown in Fig. 2, are image reconstruction results for 25,
30, and 35 simulated projections. The p = 1.0 case has
some potential to reduce angular sampling by exploiting GMI
sparsity. This is evident in the comparison with p = 2.0,
which does not exploit GMI sparsity; the p = 1.0 results show
visually accurate reconstruction for 35-view projection data
while the p = 2.0 results do not show accurate reconstruction
for any of the projection data sets. The nonconvex p = 0.8
results, however, extend the visually accurate reconstruction
range down to 25-view projection data.

B. Circular cone-beam CT simulation with noisy projections
For the 3D circular cone-beam CT simulation, we scale

up the problem approaching the scale of a realistic volume
CT system, and we include noise on the CT projections.
The phantom used for this simulation is the FORBILD head
phantom, which has many low contrast objects, with gray level
variations ranging from 0.25% to 1% of the phantom back-
ground, together with complex high-contrast bony structures.
This phantom is quite challenging, because even minor streaks
from the bony structures can interfere strongly with imaging
the low-contrast objects.



50 100 150 200
voxel number

1.05

1.06

1.07

1.08

p=1.0

p=0.8

Fig. 4. Profile comparison corresponding to the images in Fig. 3 along a
line in the midplane, through the eyes.

The middle section of the head phantom is voxelized in a
256×256×32 volume array, and the projection data simulate
100 projections onto a 512×80 bin flat-panel detector. Noise
on the projections is modeled by employing independent 1D
Gaussian distributions for each line-integration data value. The
mean of each Gaussian distribution is the value of the corre-
sponding line-integration over the phantom, and the standard
deviation is taken to be 1% of this mean. The parameters of
the simulation are such that it only makes sense to compare
algorithms that exploit GMI sparsity, and accordingly we show
results from Eq. (4) for p = 0.8 and p = 1.0. Larger p results
in images that are heavily polluted with streak artifacts. For
the constraint parameters, we employ an ε corresponding to
an RMSE of 0.01, and for γ we use the value derived from
the test phantom.

For the specified parameters, the image reconstruction re-
sults are shown in Fig. 3 together with corresponding slices
in the phantom. The gray scale display window is 1% of
the phantom complete dynamic range; and streak artifacts are
difficult to avoid due to the rapidly oscillating bone structures
near the ear at the bottom of the images. The results for
p = 1.0, in the top row of the figure, show such streaks,
even though this value for p does exploit GMI sparsity. The
middle row shows results for the nonconvex case of p = 0.8,
but the streak artifacts are nearly completely removed.

Inspection of the nonconvex results shows a rather interest-
ing behavior in that the image regularization is highly non-
uniform. The structures with the contrast of the eyes and
greater (≥ 1% of phantom background) appear to have sharp
edges, while the lower contrast structures are visible, yet,
are blurred relative to the same structures in the p = 1.0
images. This visual impression is borne out quantitatively
in vertical profile plots shown through the eyes, in Fig. 4,
and through the ventricle and subdural hematoma, in Fig. 5.
In the former profile, the nonconvex result has as sharp a
transition at the eye border as the convex p = 1.0 result
without the oscillations from the streaks. The latter lower
contrast structures show fewer oscillation for the nonconvex
result, but there is also a clear blurring as the transitions at the
ventricle and hematoma borders are more gradual for p = 0.8
than for p = 1.0. This feature of the proposed nonconvex
optimization can be understood from inspecting Eq. (5) where
we see that the image TV term has a spatially dependent
weighting. During the iteration of the nonconvex algorithm
the weighting w evolves in such a way that less weight, and
hence less smoothing, is applied to voxels with large gradient-
magnitude.
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Fig. 5. Profile comparison corresponding to the images in Fig. 3 along a
line in the midplane, through the ventricle and subdural hematoma.

IV. SUMMARY

We have demonstrated GMI sparsity-exploiting image re-
construction by a nonconvex optimization algorithm. Under
ideal conditions we have shown that the algorithm is capable of
obtaining accurate image recovery with fewer projections than
convex TV-based image reconstruction. The algorithm can also
be applied to 3D cone-beam CT systems, and preliminary
results indicate that the nonconvex algorithm can be effective
in controlling steak artifacts resulting from a combination of
projection view under-sampling and the presence of complex
high-contrast structures.
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