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Geometric phasesare ubiquitous in science
and technology: from the coriolis-induced ro-
tation of Foucault’s pendulum in classical me-
chanics to the precession of polarization of an
optical pulse along a birefringent fiber in mod-
ern telecommunications to quantum mechanics
where the Aharanov-Bohm effect for electrons in-
teracting with a spatially confined magnetic field
introduces interference among the phases of the
wave-function depending on the virtual paths of
the electrons around the region containing the
magnetic field. Mathematically, the geometrical
phase is associated with the integral of a nat-
ural mechanical connection for these problems
(whose components are, for example, the mag-
netic vector potential in the Aharanov-Bohm ef-
fect) around a closed loop in phase space. In
particular, the geometrical phase is nonzero when
this connection has curvature. See Marsden and
Ratiu [1999] for a more detailed exposition.

Recently, classical mechanical systems have
been discovered for which the geometrical phase
is multi-valued on the global phase space (Duis-
termaat [1980]). Mathematically, this means the
fiber bundle associated with the natural mecha-
nial connection for these problems (again, for
example, the magnetic vector potential in the
Aharanov-Bohm effect) is non-trivial. This multi-
valuedness is known asgeometric monodromy,
in analogy with the same term arising in analytic
function theory. In classical mechanics geomet-
ric monodromy prevents a global parametrization
based on action-angle coordinates. In quantum
mechanics geometric monodromy prevents quan-
tization in integer quantum numbers. In retro-
spect, it is shocking that such a fundamental prop-
erty went unrecognized for so long. This hap-
pened in part because the geometric phase itself
went largely unrecognized until the 1970’s.

Many familiar systems exhibit geometrical
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monodromy. One example of such a system is
the spherical pendulum! Recall the setup for the
spherical pendulum: imagine a bob of massm at
the end of an inextensible string of length`. Let
ez = (0,0,1) correspond to the direction of grav-
ity. The Lagrangian is given by

L(x, ẋ) =
1
2

ẋT ẋ−xTez

where time has been rescaled by gravitational
time scale

√
`/g and position by length scalè.

Configuration space isQ= S2⊂R3 and tangent
bundle isTQ = TS2 ⊂ R3×R3. Lagrangian is
invariant under rotations aboutez, i.e.,

L(x, ẋ) = L(Rzx,Rzẋ)

The infinitesimal generator for thisS1 symmetry
onQ is,

ψ(x) =
d
ds

(Rz(s)x)|s=0 = (ez×x)

Noether’s theorem implies∂L/∂ẋTψ(x) is invari-
ant, i.e.,

J(x, ẋ) = (ez×x)T ẋ, Jt = 0

J(x, ẋ) is the momentum map associated with the
above symmetry.

Define the energy momentum map:EM =
(J,H). The global phase space of the spheri-
cal pendulum can be nicely visualized on the en-
ergy momentum diagram as shown in the figure.
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L-R: Reduced phase space for J= 1.5,4.

Changing to spherical coordinates reveals the ge-
ometrical phase in the spherical pendulum:

x(t) = Rz(−θ(t))Ry(−φ(t)+π/2)ex

whereRz and Ry are the usualS1 rotation ma-
trices about they andz axes. From the reduced
phase space portraits, it is clear thatφ(t) is peri-
odic with some periodT. However,x(t) is not
periodic. Rather, after every period ofφ, x(t) ro-
tates about the vertical by an amount given by the
spherical pendulum phase formula:

∆θ = θ(t +T)−θ(t) = 2J
Z x+

x−

dx

(1−x2)
√

P(x)
(1)

whereP(x) = 2(H−x)(1−x2)−J2 andP(x±) =
0.

To see this note that

ex = Ry(φ(t)−π/2)Rz(θ(t))x(t)
= Ry(φ(t)−π/2)Rz(θ(t +T))x(t +T)

Thus,

x(t+T)= Rz(θ(t)−θ(t+T))x(t)= Rz(−∆θ)x(t)

for t ∈ [0,T) and ∆θ is the spherical pendulum
phase (1).

If Γ is the range of the energy-momentum
diagram of physical relevance, then geometri-
cal monodromy in the spherical pendulum man-
ifests itself in the non-triviality of the bundle
EM −1(Γ), i.e., it is not diffeomorphic toT2×S1.

An excellent example of a mechanical system
that may benefit from such an analysis is the
falling cat. A recent paper in Nature muddles ge-
ometric phase and monodromy in the falling cat,
but in doing so, suggests the very interesting pos-
sibility that the falling cat can exhibit geometric
monodromy (I. Stewart [2004]). Geometric phase
represents the phase shift that occurs in dynami-
cal systems on surfaces with nonzero curvature
and is a property of a trajectory in phase space;
whereas geometric monodromy determines how
these trajectories fit together.

Understanding the global dynamical structure
of the falling cat would undoubtedly advance the
theoretical treatment of classical mechanical sys-
tems. Moreover, as a concrete classical mechan-
ics problem, the falling cat could also popular-
ize tools for the global analysis of mechanical
systems within the broader scientific community.
These tools are of particular importance to re-
searchers in structural, biomolecular, and celestial
mechanics where dynamic problems with a sim-
ilar geometric structure, e.g., rigid rotation, ge-
ometric phases, and holonomic constraints natu-
rally arise.
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