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The cubic-quintic nonlinear Schrödinger equa-
tion (CQNLSE)

iψz
� ψtt

� 2 �ψ � 2ψ � εq �ψ � 4ψ � 0 (1)

(with z � 0 � t ���	� εq 
 0) is one of the simplest
non-integrable extensions to the cubic nonlinear
Schrödinger equation (CNLSE) for which soli-
tary wave solutions are readily obtained. The
CQNLSE is of great interest since it appears in
a wide variety of physical systems, such as, op-
tical fibers with nonlinear saturation, fiber lasers
[1], Langmuir plasmas [2], and in many pattern
forming systems. Therefore, it is an ideal test
bed for studying effects of perturbations, interac-
tions, and collisions on solitary waves. Because
of the non-integrability of the CQNLSE, the dy-
namics can be far richer than the dynamics of soli-
tons of the CNLSE. For example, small perturba-
tions can make the solitary waves unstable, lead
to front formation or to pulse splitting. Effects of
deterministic perturbations on the solitary wave
dynamics have been studied in detail [3], [4], but
effects of stochastic perturbations due to disorder
in the system, and effects of interactions and col-
lisions between the pulses are not yet understood.

The family of solitary wave solutions ψ �
ηeiχg0 � x � with

χ � α0
� β � t � y0 � � � η2 � β2 � z � x � η � t � y0 � 2βz �
�

g0 � x ����� 2 � � 1 � � 4 � 3 � εqη2 � 1 � 2 cosh � 2x � � 1 ��� 1 � 2
is parametrized by η � β � α0 � y0, determining the
amplitude/width, frequency/velocity, phase shift
and time shift correspondingly.

We study the effects of perturbations by adding

a small perturbation (ε ��� 1) to (1)

iψz
� ψtt

� 2 �ψ � 2ψ � εq �ψ � 4ψ � εP � ψ � z � t �
� (2)

The effects of P are in general of two major
types. The first is distortions in the parameters
of the solitary waves and the second is emmis-
sion of radiation. The former can be expressed
by making the parameters of the solitary wave� z � t ��� dependent functions. The general pertur-
bation method for studying these effects is based
on direct scattering and requires completely ana-
lyzing the spectrum of a certain linearized oper-
ator, see [4]. One of our subprojects has been to
numerically find the eigenfunctions of the contin-
uous spectrum. This has not been finished.

During this summer we focused on the spe-
cial case of a linear gain perturbation, i.e.
P � ψ � z � t ��� iψ in the deterministic case and
P � ψ � z � t ��� iξ � z � ψ, where ξ � z � satisfies � ξ � z ��� �
0, � ξ � z � ξ � z !"�#��� a2δ � z � z !$��� 3, and δ is the Dirac
delta function. For this special kind of P the gen-
eral method is not needed when studying first or-
der effects (in dz) because the effects of radiation
are of second order and one can use a simple con-
servation law to study the z � evolution of the pa-
rameters of the solitary wave. In order to verify
our predictions we have also developed a 6th or-
der (in dz) numerical solver using the split-step
method for z � stepping and Fourier transform for
differentiation in t. Using the code we have been
able to verify all the formulas given in this report.

1) In the deterministic case the perturbation
P � iψ has a first order effect of an increase in
amplitude and/or width of the solitary wave. This
is modeled by making η z � dependent: η � η � z � .
Using the conservation law for the L2 norm of ψ
for (1) one obtains an ODE for % ψ % 2 in (2), and
using this, an explicit formula (c � const.)

η � z �&� � 3 � � 4εq �#� 1 � 2 tanh ' c � η0 � e2εz ( �
Therefore, the amplitude converges to a constant
value and because the % ψ % 2 has to keep increas-
ing exponentially, forward and backward prop-
agating fronts develop. An example of the evo-
lution of �ψ � is in the first figure, where on the
left, for comparison, we show the same plots for
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CNLSE. The position of the front (at half maxi-
mum of �ψ � ) in (2) can now also be easily found:

tfr � 1
2η

arccosh ) 4 � 3 ' 1 � � 4 � 3 � εqη2 ( � 1 � 2 * �
2) In the stochastic case, P � iξ � z � ψ, we are in-

terested in knowing the probability of η � z � (and
tfr) falling within a given interval. For this end we
find (using the central limit theorem) the proba-
bility distribution functions (pdf). For η we get

F � η ���,+ εq

2πa2ε2z - 1 � 2 .
exp + � 3

8a2ε2z ln2 / 1
c 0 η0 1 arctanh + ) 4εq

3
* 1 � 2

η -324-) 1 � 4εq

3 η2 * arctanh + ) 4εq

3
* 1 � 2

η - �
This distribution function is defined for 0 5 η �� 3 � � 4εq �#� 1 � 2. The shape of F is determined
mainly by a2ε2z. The two basic shapes are shown
in the second figure . A numerical verification us-
ing 10000 direct Monte Carlo simulations is also
shown. The upper plot is for a2ε2z below a cer-
tain threshhold - the pdf is concave down (simi-
larly to F � η � for CNLSE). In the lower plot a2ε2z
is above the threshhold and clearly events corre-
sponding to values of η close to the supremum
η � � 3 � � 4εq �#� 1 � 2 become more frequent. These
events are front formations.

For a range of values of η close to the supre-
mum, i.e. for front solutions, we can also study
the pdf of the front position G � tfr � . We have
shown that this pdf is truly log-normal with a tail
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extending to tfr � ∞. We have been able to numer-
ically verify the shape of G � tfr � too.

To conclude, we have analyzed the effect of a
linear gain perturbation with and without disor-
der on the propagation of solitary waves in the
CQNLSE. In the disordered case we have found
the pdf’s of both the amplitude parameter and the
front position and shown that for either large dis-
tance z and/or strong disorder a large number of
solitary waves evolve into fronts.

Acknowledgements
Los Alamos Report LA-UR-04-xxxx.

References
[1] J.M. Soto-Crespo, N.N. Akhmediev, V.V. Afanasjev, and

S. Wabnitz, Phys. Rev. E 55, 4783 (1997).

[2] C. Zhou, X.T. He, and S. Chen, Phys. Rev. A 46, 2277
(1992).

[3] W. van Saarloos and P.C. Hohenberg, Phys. D 56, 303
(1992).

[4] J. Yang and D.J. Kaup, SIAM J. Appl. Math. 60, 967
(2000).

T-7, MS B284, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 http://math.lanl.gov/


