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Abstract. First-order system least squares (FOSLS) is a recently developed methodology for
solving partial differential equations. Among its advantages are that the finite element spaces are not
restricted by the inf-sup condition imposed, for example, on mixed methods and that the least-squares
functional itself serves as an appropriate error measure. This paper studies the FOSLS approach
for scalar second-order elliptic boundary value problems with discontinuous coefficients, irregular
boundaries, and mixed boundary conditions. A least-squares functional is defined and ellipticity
is established in a natural norm of an appropriately scaled least-squares bilinear form. For some
geometries, this ellipticity is independent of the size of the jumps in the coefficients. The occurrence
of singularities at interface corners, cross-points, reentrant corners, and irregular boundary points is
discussed, and a basis of singular functions with local support around singular points is established.
A companion paper shows that the singular basis functions can be added at little extra cost and leads
to optimal performance of standard finite element discretization and multilevel solver techniques, also
independent of the size of coefficient jumps for some geometries.

Key words. least-squares discretization, second-order elliptic problems, finite elements, multi-
level methods

AMS subject classifications. 65N55, 65N30, 65F10

1. Introduction. The purpose of this paper is to apply first-order system least
squares (FOSLS; cf. [11] and [12]) to scalar second-order elliptic boundary value
problems in two dimensions with discontinuous coefficients, irregular boundaries, and
mixed boundary conditions. Such problems arise in various applications, including
flow in heterogeneous porous media [29], neutron transport [1], and biophysics [20].
In many physical applications, one is interested not only in accurate approximation
of the physical quantity that satisfies the scalar equation, but also in certain of its
derivatives. For example, fluid flow in a porous medium can be modeled by the
equation

−∇ · (a∇p) = f (1.1)

for the pressure p, where the scalar function a may have large jump discontinuities
across interfaces. Of particular interest here is accurate approximation of the flux,

u = a∇p. (1.2)

For the purposes of discussion, consider problem (1.1) posed on a domain, Ω,
composed of a union of polygonal subdomains, Ωi, in which the coefficient a is constant
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Fig. 1.1. Polygonal domain Ω with subdomains Ωi, i = 1, 2, 3 and two cross-points.

on each subdomain (see Figure 1.1). In general, the flux, u, will be infinite at certain
points, which we will call singular points (see, for example, Strang and Fix [30, Ch.
8]). Singular points can be of several types:
Cross Points: corner points of the boundary of Ωi that lie in the interior of Ω (2 in
Figure 1.1 ).
Boundary Cross Points: corner points of Ωi on the boundary of Ω that touch
another subdomain, Ωj (■ in Figure 1.1).
Reentrant Corners: reentrant corners of Ω, (© in Figure 1.1).
Irregular Boundary Points: points on the boundary of Ω that separate the Dirich-
let boundary ΓD, from the Neumann boundary, ΓN , for which the interior angle is
greater than π/2 (● in Figure 1.1).

The solution, p, can be expressed as the sum of a finite number of singular func-
tions plus a function that is locally smooth, that is, inH2(Ωi) for each i. Each singular
function is associated with a singular point and, near the singular point, has the form
rαΦ(θ), where (r, θ) are polar coordinates about the singular point and 0 < α < 1.
The character of a singular function depends only on local information near the sin-
gular point and is not difficult to compute (see Section 5 and [3] for details).

There are many finite element methods for approximating the solution of (1.1).
Some yield an approximate solution without specific knowledge of the singular func-
tions, while others use the singular functions either implicitly or explicitly. Below we
describe the major approaches.
Standard Garlerkin Method: The standard Galerkin method (c.f. Strang and Fix
[30])) establishes a weak form and seeks the approximation of p inH1(Ω). Convergence
deteriorates near the singular points. Early work using H1 singular basis functions
can be found in the monograph by Strang and Fix [30, Section 8.2]. There, H1

singular basis functions for p were introduced to eliminate the deteriorating finite
element approximation near singular points. (See also Cox and Fix [16] and Grisvard
[19, Section 8.4.2].) A multilevel approach for simultaneously finding the approximate
solution and determining the coefficients of the singular basis functions is developed
by Brenner [9]. In [10], Cai and Kim describe a method that is equivalent to a
Petrov/Galerkin method in which the singular basis functions are added to the trial
space and the dual singular basis functions are added to the test space.
Mixed Methods: In mixed finite element methods (see, e.g., [8, Chapter 10]), p and
u are usually approximated by different finite element spaces and, roughly speaking, a
Galerkin condition is imposed on the first-order system resulting from (1.1) and (1.2).
Normally, the pressure, p is approximated in L2 and the flux, u, is approximated in
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H(div). Only the integral of the flux is computed along edges of elements, and the
pointwise resolution of singularities in the flux is poor.

The least squares methododology for systems of first order is by now several
decades old and had its first application in continuum mechanics (see, for example,
[21, 31, 22, 26, 15, 23]). Only fairly recently has it produced H1 equivalent forms
to which optimal multigrid solvers have been applied (see, for example, [12]). For a
thorough review of the least-squares methodology see [5] and the references therein.
The following is an overview of specific least-squares methods and their applicability
to the problem at hand.
Least-squares in H(div): A similar approach is based on the first-order system
least-squares approach developed and analyzed, e.g., in [11], [12], [27], and [28]. This
methodology replaces the Galerkin condition by the minimization of a least-squares
functional associated with a first-order system derived from (1.1) and (1.2). Assuming
that f ∈ L2(Ω), the least-squares functional can be defined using the L2(Ω) norm.
Even in the presence of discontinuities, this translates to ellipticity with respect to
the H1-norm for the pressure, p, and the H(div) norm in the flux variable, u. This
approach, like the mixed method approach, computes only the integral flux and again
does not resolve the singularity in the flux variable.
Weighted Least-squares in H(div)∩H(curl): Augmenting the basic system with
the curl-condition, ∇ × (u/a) = 0 (see [12], [27]), leads to ellipticity with respect
to a scaled version of the H(div) ∩ H(curl) norm in the flux variable. Standard
finite-element spaces, for example piecewise polynomials with the appropriate jump
conditions across interfaces, are not dense in the scaled H(div) ∩ H(curl) norm, so
convergence cannot be obtained. However, the use of an appropriate weight function
near each singular point yields ellipticity in a weighted (and scaled) H(div)∩H(curl)
norm. The piecewise polynomial spaces are dense in this new space. The weighting
effectively ignores the singularity while insulating the rest of the region from the
presence of the singularity. For the case of reentrant corners, weighted least-squares
approaches are presented and analyzed in [17, 16]. Specifically, the method presented
in [17] for corner singularities does not rely on the explicit knowledge of the flux
singularity at the corner. Its analytic part is computed implicitly. For a weighted
least-squares approach in a more general setting see [25].
Inverse Norm Functionals: Another potentially more general form of the least-
squares approach is based on theH−1(Ω) norm (see [6], [7], [13] and [4]). Such schemes
based on ‘inverse’ norms can, in principle, be applied when f ∈ H−1(Ω), although the
theory has so far restricted f to L2(Ω). Thus, both the H−1(Ω) and L2(Ω) versions
of FOSLS have been developed under the same general assumptions that are usually
in force for mixed methods. Standard finite element spaces are dense in L2 and, thus,
convergence is obtained, although only in an L2 sense. This approach uses norms
that do not generally take the coefficients of the equation into account and thus have
performance that deteriorates for problems with large jumps in the coefficients.
FOSLL* Functionals: A more recently developed approach, called FOSLL* [14],
can be viewed as a least-squares methods based on an inverse norm that involves
the operator and, thus, has superior properties in the presence of large jumps in the
coefficients. In addition, it handles the more general case, f ∈ H−1(Ω).
Least-squares in H(div) ∩ H(curl): The current paper is concerned with least-
squares functionals using finite element spaces in H(div)∩H(curl). This paper builds
on the theory developed in [2]. Here, and in the companion paper [3], we describe
a least-squares approach that includes a curl-condition, ∇ × (u/a) = 0. While the
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theory developed in [11] and [12] already allows for discontinuous coefficients, special
care must be taken to prove ellipticity, in an appropriate norm, with constants that
grow as slowly as possible with respect to the size of the jumps. For this purpose,
an appropriate scaling of the least-squares functional that depends on the size of a in
different parts of the domain is introduced.

The flux components will, in general, not be in H1(Ω), nor will they be in H1(Ωi).
Here, we construct singular basis functions for the flux, u, that are in the scaled
H(div) ∩ H(curl) but not in H1(Ωi) and have support only near singular points.
These are included in our finite element space. As a result, the flux can be computed
very accurately near cross-points. For standard mixed methods, it would be necessary
to make sure that the Ladyzhenskaya-Babuška-Brezzi condition (cf. [8, Section 10.5])
is satisfied for the finite element spaces that include the singular function. This is not
the case for our first-order system least squares approach.

In this paper and the companion paper [3], we show that one can add singular
basis functions at little additional cost. A singular basis function is composed of a
singular function multiplied by a cut-off function that takes the value one in a region
around the singularity (the platform), and drops from one to zero in a narrow region
around the platform (the fringe). The key is that the singular basis functions satisfy
a homogeneous equation of type (1.1) in the platform. Thus, these singular basis
functions are orthogonal to any standard basis function that is either supported com-
pletely inside the platform or supported completely outside the platform and fringe.
Nonzero inner products arise only between singular basis functions and standard ba-
sis functions whose support intersects the fringe. As a result, the cost of adding a
singular basis function is proportional to the number of grid points in the fringe. In
our approach, the fringe has a width of one element, so this additional cost is O(

√
N),

where N is the number of grid points.
In this paper, we introduce the problem in Section 2; then, in Section 3, we

construct a scaled first-order system least-squares functional for p and u, and show
that this functional is continuous and coercive in a scaled H1×H(div)∩H(curl) norm.
The coercivity and continuity constants are shown to depend on the coefficient a in a
complicated way that involves the geometry of the partition of Ω. We then introduce
a flux-only functional for u alone and show that it is continuous and coercive in the
scaled version of H(div) ∩H(curl). In Section 4, we introduce the Div-Curl operator
associated with the flux-only functional and discuss its properties. Then, in Section
5, we show that the solution, u, can be decomposed as

u = u0 +
M∑

m=1

Nm∑
n=1

bm,nsm,n,

where sm,n are a finite number of singular basis functions associated with singular
points xm, m = 1, . . . ,M , and u0 ∈ H1(Ωi) for every i. Thus, u0 can be approximated
by standard finite elements within each domain provided they posses the proper jumps
across domain interfaces.

In the companion paper [3], we show how to compute approximate singular basis
functions, and then construct a finite element basis using them. We develop error
estimates by way of new results for nonconforming spaces in the FOSLS context. We
prove that the accuracy of singular basis functions need only be O(hp), p > 1/2.
Finally, we develop a multilevel algorithm that includes singular basis functions on
all coarser levels, and provide numerical results that illustrate its performance.
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Our restriction to two-dimensional problems is mainly for the purpose of exposi-
tion. However, technical complications arise in higher dimensions. For example, two
different types of singularities, associated with edges and with corners or cross-points,
arise in three dimensions. We do not consider these additional complications in the
present paper.

2. Problem Statement and Preliminaries. Consider the following prototype
problem on a bounded domain Ω ⊂ <2:

−∇ · (a∇p) = f, in Ω,
p = 0, on ΓD,

n · a∇p = 0, on ΓN ,
(2.1)

where n denotes the outward unit vector normal to the boundary, f ∈ L2(Ω), and
a(x1, x2) is a scalar function that is uniformly positive and bounded in Ω a.e., but
may have large jumps across interfaces. Suppose that ΓD has positive measure, so
that the Poincaré-Friedrichs inequality

‖p‖0,Ω ≤ γ‖∇p‖0,Ω (2.2)

holds for all functions satisfying the boundary conditions in (2.1). Then (2.1) has a
unique solution in H1(Ω).

Following [12], we rewrite (2.1) as a first-order system by introducing the flux
variable, u =

√
a∇p:

u−
√
a∇p = 0, in Ω,

−∇ ·
√
au = f, in Ω,
p = 0, on ΓD,

n ·
√
au = 0, on ΓN .

(2.3)

Since u/
√
a = ∇p with p ∈ H1(Ω), then we have (cf. [18, Theorem 2.9])

∇× (u/
√
a) := ∂1(u2/

√
a)− ∂2(u1/

√
a) = 0 , in Ω .

(By the term ∂k, we mean ∂/∂xk, k = 1, 2.) Moreover, the homogeneous Dirichlet
boundary condition on ΓD implies the tangential flux condition

τ · (u/
√
a) := (n1u2 − n2u1)/

√
a = 0 , on ΓD .

(Here, τ is the counterclockwise unit tangent vector.)
Adding these equations to first-order system (2.3) yields the augmented, but

consistent, system

u−
√
a∇p = 0, in Ω,

−∇ ·
√
au = f, in Ω,

∇× (u/
√
a) = 0, in Ω,
p = 0, on ΓD,

n ·
√
au = 0, on ΓN ,

τ · (u/
√
a) = 0, on ΓD.

(2.4)

Problems (2.1) and (2.4) are equivalent in that their unique solutions are in corre-
spondence (p solves (2.1) if and only if p and u =

√
a∇p solve (2.4)). If ΓN is not

connected, then we add the constraint∫
ΓNi

τ · (u/
√
a) = 0 (2.5)
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for every disjoint piece, ΓNi
, of ΓN . This constraint is necessary to ensure that the

flux-only functional described below (see (3.17)) has a unique solution.
For both scalar and vector quantities, denote the standard Sobolev spaces as

L2(Ω) and Hk(Ω) with respective norms ‖·‖0,Ω and ‖·‖k,Ω. We also define the spaces

H(div a; Ω) := {v ∈ L2(Ω)2 : ∇ ·
√
av ∈ L2(Ω)} ,

H(curl a; Ω) := {v ∈ L2(Ω)2 : ∇× (v/
√
a) ∈ L2(Ω)},

V := {q ∈ H1(Ω) : q = 0 on ΓD} ,
W := {v ∈ H(div a; Ω) ∩H(curl a; Ω) : n ·

√
av = 0 on ΓN ,

τ · (v/
√
a) = 0 on ΓD,

∫
ΓNi

τ · (u/
√
a) = 0}.

Denote the respective semi-norm and norm on W by

|v|2
W

:= ‖ 1√
a
∇ ·

√
av‖20,Ω + ‖

√
a∇× 1√

a
v‖20,Ω, (2.6)

‖v‖2
W

:= |v|2
W

+ ‖v‖20,Ω.

We show in Lemma 3.3 below that this semi-norm is in fact a norm on W by estab-
lishing a Poincaré-Friedrichs-type inequality.

Note that v ∈ W is characterized by the fact that, across any curve in Ω with
normal n and tangent τ , both n ·

√
av and τ · 1√

a
v are continuous (a.e.) (For the first

condition see, for example, [32, chapter 6.2]. The second condition can be derived
analogously). We refer to the continuity of these two terms at lines of discontinuity of
a as interface conditions for u ∈ W. Clearly, for the solution of (2.1), we have p ∈ V
and u ∈ W, so it is appropriate to pose (2.4) on these spaces.

As mentioned above, our main interest is in the solution of (2.1) when a(x1, x2)
has large jumps. For this purpose, we assume that

Ω =
J⋃

i=1

Ωi, (2.7)

where Ωi are mutually disjoint, open, simply connected, polygonal regions. See Figure
1.1. Assume also that the restriction of a(x1, x2) to Ωi is in C1,1(Ωi) and that

c1ωi ≤ a(x1, x2) ≤ c2ωi, for all (x1, x2) ∈ Ωi, (2.8)

with order one constants c1, c2 and arbitrary positive constants ωi. In other words,
a(x1, x2) is assumed to be of approximate size ωi throughout Ωi for each i, but ωi is
allowed to have large variations over i. In the bounds derived below, we separate the
dependence on the variation in {ωi} from the variation within each Ωi, that is, on c1,
c2, and

c3 := max
1≤i≤J

‖∇a‖0,Ωi <∞. (2.9)

Given this decomposition of Ω, define the split semi-norms and norms, respec-
tively, as follows:

|v|2k,S :=
J∑

i=1

|v|2k,Ωi
(2.10)
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and

‖v‖2k,S := ‖v‖20,Ω +
k∑

j=1

|v|2j,S . (2.11)

Let Hk
S(Ω) denote the closure of C∞(Ω) in the split norm and define

W1
S := H1

S(Ω) ∩W. (2.12)

We now show that if a is piecewise constant (c1 = c2 in (2.8)) with respect to the
decomposition, then

‖v‖1,S = ‖v‖
W
, for every v ∈ H1

S(Ω). (2.13)

We first need to establish two lemmas. For the first lemma, consider one polyg-
onal, simply connected subdomain, Ωi, of Ω, with vertices labelled x1,x2, . . . ,xK in
counterclockwise order. Letting xK+1 = x1, denote by Γj the side connecting xj and
xj+1. If Γj makes angle θj with the positive x1-axis, then nj = (sin(θj), − cos(θj))t

and τ j = (cos(θj), sin(θj))t are the outward unit normal and counterclockwise unit
tangent to Γj , respectively.

Lemma 2.1. Assume that Ωi is a polygonal domain, and u = (u1, u2)t ∈
(H2(Ωi))2, then∫ ∫

Ωi
∂1u1∂2u2dz =

∫ ∫
Ωi
∂2u1∂1u2dz −

∫
∂Ωi

(τ · u)d(n · u)

+ 1
2

∑K
j=1

(
(τ j · u)(nj · u)|xj

− (τ j−1 · u)(nj−1 · u)|xj

)
.

(2.14)

Proof. First, assume that Ω is simply connected. For u ∈ H2(Ωi), Green’s identity
yields ∫ ∫

Ωi

∂1u1∂2u2dz =
∫ ∫

Ωi

∂2u1∂1u2dz +
∫

∂Ωi

u1du2.

The definition of ni and τ i and a bit of algebra yield∫
Γj

(τ j · u)d(nj · u) =
1
2

(τ j · u)(nj · u)|xj+1
xj

+
1
2
u1u2|xj+1

xj
−

∫
Γj

u1du2.

Summing over the edges yields the result. The result for a general connected polygonal
domain is established by cutting Ωi into simply connected polygonal subdomains and
adding the result.

Lemma 2.2. For every u ∈ W1
S, we have∫ ∫

Ω

∂1u1∂2u2dz =
∫ ∫

Ω

∂2u1∂1u2dz. (2.15)

Proof. First, let u ∈ H2
S(Ω) ∩W. The space W is characterized by the property

that, for u ∈ W, both
√
an · u and 1√

a
τ · u are continuous (a.e.) across any curve in

Ω. Thus, (n ·u)(τ ·u) is continuous (a.e.). In particular, this holds for the polygonal
7



boundaries between the regions Ωi. Let Γij denote the edge joining Ωi and Ωj .
Summing the boundary integrals in (2.14) over each Ωi, shows that Γij is traversed
once in each direction. Thus, only integrals on the boundary of Ω survive. This yields∫ ∫

Ω

∂1u1∂2u2 =
∫ ∫

Ω

∂2u1∂1u2 (2.16)

+
1
2

K̃∑
j=1

((τ̃ j · u)(ñj · u)− (τ̃ j−1 · u)(ñj−1 · u)) |x̃j , (2.17)

where the x̃j now denote the K̃ vertices x̃j on the boundary of Ω, and the ñj and τ̃ j

are the corresponding standard normal and tangent vectors. The boundary conditions
imposed on W now imply (2.15) for u ∈ H2

S(Ω)∩W. The proof is completed by noting
that Lemma 4.3.1.3 in [19] implies that H2

S(Ω)∩W is dense in W1
S = H1

S(Ω)∩W.
The next result has important implications for the decomposition of W.
Theorem 2.3. Suppose a = ωi (constant) on Ωi. Then

|u|1,S = |u|
W
, for every u ∈ W1

S . (2.18)

Proof. By definition,

|u|2
W

= ‖ 1√
a
∇ ·

√
au‖20,Ω + ‖

√
a∇× 1√

a
u‖20,Ω

=
J∑

i=1

(‖ 1√
a
∇ ·

√
au‖20,Ωi

+ ‖
√
a∇× 1√

a
u‖20,Ωi

)

=
J∑

i=1

(‖∇ · u‖20,Ωi
+ ‖∇ × u‖20,Ωi

).

The theorem now follows from Lemma 2.2 and the easily verified relation

‖∇ · u‖20,Ωi
+ ‖∇ × u‖20,Ωi

= |u|1,Ωi
+ 2〈∂1u1, ∂2u2〉0,Ωi

− 2〈∂2u1, ∂1u2〉0,Ωi
.

Corollary 2.4. Suppose a(x, y) is now allowed to vary according to (2.8) and
(2.9). Then,

1
δ
‖u‖

W
≤ ‖u‖1,S ≤ δ‖u‖

W
, for u ∈ W1

S ,

where δ =

√
1 + c3

(
c3+
√

c2
3+8

4

)
and c3 is defined in (2.9).

Proof. Observe that

‖ 1√
a
∇ ·

√
au‖0,Ωi

≤ ‖∇ · u‖0,Ωi
+ ‖1

2
(∇a) · u‖0,Ωi

,

‖
√
a∇× 1√

a
u‖0,Ωi ≤ ‖∇× u‖0,Ωi + ‖1

2
(∇⊥a) · u‖0,Ωi .
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(Here, we use the notation ∇⊥a := (−∂2a, ∂1a)t.) Using the ε-inequality twice now
yields

|u|2
W,Ωi

≤
(
‖∇ · u‖0,Ωi +

c3
2
‖u‖0,Ωi

)2

+
(
‖∇ × u‖0,Ωi +

c3
2
‖u‖0,Ωi

)2

≤ (1 + ε)(‖∇ · u‖20,Ωi
+ ‖∇ × u‖20,Ωi

) + (1 +
1
ε
)
c23
2
‖u‖20,Ωi

,

for any ε > 0. Choosing ε = c3

(
c3+
√

c2
3+8

4

)
, summing over i, and appealing to

Theorem 2.3 yield the lower bound. The upper bound is proved in a similar fashion.

Remark 1. Following the development in Section 4.3 in [19], the above re-
sults can be extended to problem (2.1) with boundary conditions that involve both the
conormal and tangential derivatives, as long as the coefficients remain constant on
each edge. We believe that Theorem 2.3 also holds for regions Ω for which ∂Ωi are
piecewise C1,1, but this remains an open question.

3. The Least-Squares Functional. We now turn to the construction of the
least-squares functional. An appropriate scaling of the equations in (2.4) leads to

Gα(u, p; f) := α‖u−
√
a∇p‖20,Ω +‖ 1√

a
∇·
√
au+

1√
a
f‖20,Ω +‖

√
a∇× 1√

a
u‖20,Ω (3.1)

and associated bilinear form

Fα((u, p); (v, q)) = α〈u−
√
a∇p,v −

√
a∇q〉0,Ω

+ 〈 1√
a
∇ ·

√
au,

1√
a
∇ ·

√
av〉0,Ω + 〈

√
a∇× 1√

a
u,
√
a∇× 1√

a
v〉0,Ω, (3.2)

where α ≥ 0 will be determined later. Here, for the sake of notational simplicity, we
agree that 〈·, ·〉0,Ω is meant componentwise for vector functions, e.g., if w = (w1, w2)
and z = (z1, z2), then

〈w, z〉0,Ω = 〈w1, z1〉0,Ω + 〈w2, z2〉0,Ω .

The solution of (2.4) also solves the minimization problem

Gα(u, p; f) = min
(v,q)∈W×V

Gα(v, q; f) (3.3)

and, therefore, the variational problem

Fα((u, p); (v, q)) = −〈 1√
a
f,

1√
a
∇ ·

√
av〉0,Ω, for all (v, q) ∈ W × V . (3.4)

In Theorem 3.2, we will show that (Fα((v, q); (v, q)))1/2 is uniformly equivalent to
the scaled norm defined for (v, q) ∈ W × V by

|||(v, q)|||α :=(
‖ 1√

a
∇ ·

√
av‖20,Ω + ‖

√
a∇× 1√

a
v‖20,Ω + α‖v‖20,Ω + α‖

√
a∇q‖20,Ω

)1/2

. (3.5)

9



Note that, for sufficiently smooth a, we get

|||(v, q)|||α ∼
(
‖∇ · v‖20,Ω + ‖∇ × v‖20,Ω + α‖v‖20,Ω + α‖

√
a∇q‖20,Ω

)1/2
, (3.6)

although our assumptions on a do not admit this equivalence in general.
Before we prove the main result, we must establish a scaled Poincaré-Friedrichs

inequality. By assumption, ΓD in (2.1) is a set of positive measure on ∂Ω. Thus, a
standard proof can be used to establish

‖p‖0,Ω ≤ γ0‖∇p‖0,Ω, (3.7)

for p ∈ V , where γ0 depends only on Ω. In fact, we may choose γ0 so that (3.7)
holds on any subdomain composed of a union of the Ωi whose closure is connected
and intersects ΓD in a set of positive measure. In this sense, γ0 depends also on the
partitioning (2.7).

Instead of (3.7), we seek scaled inequalities of the form

‖
√
ap‖0,Ω ≤ c4γ0‖

√
a∇p‖0,Ω, and ‖ 1√

a
p‖0,Ω ≤ c5γ0‖

1√
a
∇⊥p‖0,Ω,

for p ∈ V . Of course, if each subdomain is such that ΓD ∩ Ωi is of positive measure,
then we may choose, for example, c4 =

√
c2/c1 (see (2.8)). In general, c4 and c5

depend on a(x1, x2) in a more complicated way that we now characterize.
For each Ωi, there is a connected path λi in Ω from ΓD to Ωi that passes through,

say, Ωj1 , Ωj2 , . . . , Ωjk
= Ωi (k ≤ J) in turn, where ΓD ∩ Ωj1 and Ωj`

∩ Ωj`−1 , ` =
2, . . . , k, all have positive measure. We call such a path admissible. Now, let c1, c2,
and ωi be as in (2.8) and define

Ci = min
λi

max
`=1,...,k

ωi

ωj`

, Di = min
λi

max
`=1,...,k

ωj`

ωi
, (3.8)

and

c4 =
√
c2
c1

max
i=1,...,J

√
Ci, c5 =

√
c2
c1

max
i=1,...,J

√
Di. (3.9)

Note that, for certain geometries, c4 or c5 might depend on the maximum global
variation in a(x1, x2). However, for other geometries, c4 or c5 may be small even for
arbitrary large global a-variations. We refer to this property by saying that c4 and c5
are P -uniform, meaning that c4 and c5 depend on a-variations along the best path to
ΓD, but are otherwise independent of the jumps in a.

Lemma 3.1. There exists a P -uniform constant, γ ∈ (0,
√
Jγ0], such that

‖
√
ap‖0,Ω ≤ c4γ‖

√
a∇p‖0,Ω, for all p ∈ V, (3.10)

‖ 1√
a
p‖0,Ω ≤ c5γ‖

1√
a
∇⊥p‖0,Ω, for all p ∈ V, (3.11)

where c4 and c5 are the P -uniform constants defined in (3.9).
Proof. Choose Ωi and any of its admissible paths. By (3.7), we have

k∑
`=1

‖p‖20,Ωj`
≤ γ2

0

k∑
`=1

‖∇p‖20,Ωj`
.

10



In particular,

‖p‖20,Ωi
≤ γ2

0

k∑
`=1

‖∇p‖20,Ωj`
.

¿From (2.8), we have

‖
√
ap‖20,Ωi

≤ c2ωi‖p‖20,Ωi
≤ c2ωiγ

2
0

k∑
`=1

‖∇p‖20,Ωj`

= c2γ
2
0

k∑
`=1

ωi

ωj`

ωj`
‖∇p‖20,Ωj`

≤ c2
c1
γ2
0Ci

k∑
`=1

‖
√
a∇p‖20,Ωj`

.

Summation over i yields (3.10) with γ ≤
√
Jγ0. The proof of (3.11) is analogous.

Theorem 3.2. If we choose α ≤ 1/c24, where c4 is defined in (3.9), then there
exist P -uniform constants γ1 and γ2, such that

Fα((u, p); (u, p)) ≥ γ1|||(u, p)|||2α, for all (u, p) ∈ W × V, (3.12)

and

Fα((u, p); (v, q)) ≤ γ2|||(u, p)|||α |||(v, q)|||α, for all (u, p) , (v, q) ∈ W × V. (3.13)

Proof. The proof is similar to the proof of [11, Theorem 3.1] (see also [27, Theorem
2.1 and 2.2]). We include it here because we must confirm that the constants γ1 and
γ2 are P -uniform. The main part of the proof consists in showing that the functionals

F̂α((u, p); (v, q)) := α〈u−
√
a∇p,v −

√
a∇q〉0,Ω + 〈 1√

a
∇ ·

√
au,

1√
a
∇ ·

√
av〉0,Ω

and

Ŝα(u, p;v, q) := α〈u,v〉0,Ω + α〈
√
a∇p,

√
a∇q〉0,Ω + 〈 1√

a
∇ ·

√
au,

1√
a
∇ ·

√
av〉0,Ω

satisfy

C1Ŝα(u, p;u, p) ≤ F̂α((u, p); (u, p)) (3.14)

and

F̂α((u, p); (v, q)) ≤ C2(Ŝα(u, p;u, p))1/2(Ŝα(v, q;v, q))1/2, (3.15)

with constants C1 and C2 that are P -uniform. Since on ∂Ω we either have p = 0 or
n ·
√
au = 0, then integration by parts confirms that

〈u,
√
a∇p〉0,Ω + 〈∇ ·

√
au, p〉0,Ω = 0 .

11



For any β > 0, which we specify later, we have

F̂α((u, p); (u, p)) = α〈u,u〉0,Ω + α〈
√
a∇p,

√
a∇p〉0,Ω − 2α〈u,

√
a∇p〉0,Ω

+ 〈 1√
a
∇ ·

√
au,

1√
a
∇ ·

√
au〉0,Ω + 2αβ〈∇ ·

√
au, p〉0,Ω

+ 2αβ〈u,
√
a∇p〉0,Ω + α2β2〈

√
ap,

√
ap〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

= α〈u + (β − 1)
√
a∇p,u + (β − 1)

√
a∇p〉0,Ω

+ 〈 1√
a
∇ ·

√
au + αβ

√
ap,

1√
a
∇ ·

√
au + αβ

√
ap〉0,Ω

+ α(2β − β2)〈
√
a∇p,

√
a∇p〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

≥ α(2β − β2)〈
√
a∇p,

√
a∇p〉0,Ω − α2β2〈

√
ap,

√
ap〉0,Ω

≥ α(2β − (1 + γ2)β2)‖
√
a∇p‖20,Ω ,

where we used the assumption that α ≤ 1/c24 and where γ is from Lemma 3.1. Choos-
ing β = 1/(1 + γ2) leads to

F̂α((u, p); (u, p)) ≥ βα‖
√
a∇p‖20,Ω .

We then also have

α‖u‖20,Ω ≤ 2α(‖u−
√
a∇p‖20,Ω + ‖

√
a∇p‖20,Ω) ≤ 2(1 + 1/β)F̂α((u, p); (u, p))

and, clearly,

‖ 1√
a
∇ ·

√
au‖20,Ω ≤ F̂α((u, p); (u, p)) ,

which completes the proof of (3.14).
Upper bound (3.15) follows from

F̂α((u, p); (v, q)) ≤ 2(F̂α((u, p); (u, p)))1/2(F̂α((v, q); (v, q)))1/2

and

F̂α((u, p); (u, p)) = α‖u−
√
a∇p‖20,Ω + ‖ 1√

a
∇ ·

√
au‖20,Ω

≤ 2(α‖u‖20,Ω + α‖
√
a∇p‖20,Ω + ‖ 1√

a
∇ ·

√
au‖20,Ω) (3.16)

= 2Ŝα(u, p;u, p) .

The proof of Theorem 3.2 is completed by adding the term ‖
√
a∇× (u/

√
a)‖20,Ω

to both sides of inequalities (3.14) and (3.16).
Theorem 3.2 establishes coercivity and continuity of the least-squares bilinear

form Fα((·, ·); (·, ·)) in terms of the norm |||(·, ·)|||α. This norm equivalence depends
on the jumps in a along the best path to the Dirichlet boundary, but is otherwise
independent of the jumps in a.

The scaling of the norm |||(·, ·)|||α has the following physical interpretation: Fo-
cusing first on p, imagine that the error q as measured by the term ‖

√
a∇q‖20,Ω is

balanced over the domain, that is,
√
a∇q is roughly constant. Then, in areas where√

a is relatively small, ∇q is correspondingly relatively large, and one has to expect
12



a less accurate approximation (in the L2 sense) there compared to areas where
√
a is

large and ∇q is therefore small. In contrast, approximation of the velocity u =
√
a∇p

(assuming the error v is balanced in the sense of the term |v|21,Ω +α‖v‖20,Ω; see (3.6))
can be expected to have balanced accuracy (in the L2 sense) over Ω. Ellipticity with
constants that are independent of the global jumps in a asserts that the scaling in
Fα((·, ·); (·, ·)) correctly reflects these attributes.

Uniform coercivity and continuity of F in the norm |||(·, ·)|||α allows for effective
computation of u and p together by finite element and multigrid techniques. Notice
that the result is valid for all α ∈ [0, 1/c24]. Proof of theorem 3.2 for the case α = 0 is
trivial, with γ1 = γ2 = 1. Moreover, this choice reveals a perhaps simpler alternative:
we can use a two-stage approach (cf. [13]) that first minimizes the flux-only functional,

G0(u; f) = ‖ 1√
a
(∇ ·

√
au + f)‖20,Ω + ‖

√
a∇× (u/

√
a)‖20,Ω, (3.17)

over u ∈ W, then fixes u/
√

a and minimizes the Poisson functional,

GP (p;u/
√

a) = ‖∇p− u/
√

a‖20,Ω,

over p ∈ V . The efficacy of this two-stage approach is confirmed by the uniform
coercivity and continuity of GP (p; 0) in the H1(Ω) semi-norm ‖∇p‖20,Ω, which by
(3.7) is itself a norm on V , and of G1(u; 0) in the W semi-norm as defined in (2.6),
which we now demonstrate is a norm on W by establishing a Poincaré-Friedrichs
inequality.

Lemma 3.3. We have

‖u‖0,Ω ≤ c6γ|u|W , for all u ∈ W, (3.18)

where c6 = max{c4, c5} (see 3.9) and γ is from Lemma 3.1.
Proof. Consider a Helmholtz decomposition on W: for u ∈ W, there exist

p, ψ ∈ H1(Ω) such that

u =
√
a∇p+

1√
a
∇⊥ψ, (3.19)

where p is unique the solution of (2.1) with f = −∇ ·
√
au and ψ is the unique (up to

a constant) solution of

−∇ · ( 1
a∇ψ) = −∇× 1√

a
u, in Ω,

ψ = Ci, on ΓNi
,

n · 1
a∇ψ = 0, on ΓD,

(3.20)

where Ci are arbitrary constants, one of which may be set to zero. Since u ∈ W, it
satisfies the integral constraints ∫

ΓNi

τ · 1√
a
u = 0

for each disjoint piece of ΓN . Thus, we may set the constants Ci = 0 and (3.20) will
have a unique solution.

Note that the decomposition is orthogonal in the L2 sense:

〈
√
a∇p, 1√

a
∇⊥ψ〉0,Ω = 0. (3.21)
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We thus have

‖u‖20,Ω = ‖
√
a∇p‖20,Ω + ‖ 1√

a
∇⊥ψ‖20,Ω. (3.22)

Now,

−∇ · a∇p = −∇ ·
√
au,

so that, using (3.10),

‖
√
a∇p‖20,Ω = 〈−∇ · a∇p, p〉0,Ω

= 〈−∇ ·
√
au, p〉0,Ω

= 〈− 1√
a
∇ ·

√
au,

√
ap〉0,Ω

≤ ‖ 1√
a
∇ ·

√
au‖0,Ω‖

√
ap‖0,Ω

≤ c4γ‖
1√
a
∇ ·

√
au‖0,Ω‖

√
a∇p‖0,Ω,

which yields

‖
√
a∇p‖0,Ω ≤ c4γ‖

1√
a
∇ ·

√
au‖0,Ω. (3.23)

Similarly, using (3.11),

‖ 1√
a
∇⊥ψ‖20,Ω = 〈−∇× 1

a
∇⊥ψ, ψ〉0,Ω

= 〈−∇× 1√
a
u, ψ〉0,Ω

= 〈−
√
a∇× 1√

a
u,

1√
a
ψ〉0,Ω

≤ ‖
√
a∇× 1√

a
u‖0,Ω‖

1√
a
ψ‖0,Ω

≤ c5γ‖
√
a∇× 1√

a
u‖0,Ω‖

1√
a
∇⊥ψ‖0,Ω,

which yields

‖ 1√
a
∇⊥ψ‖0,Ω ≤ c5γ‖

√
a∇× 1√

a
u‖0,Ω. (3.24)

The result now follows from (3.22)-(3.24), where c6 = max{c4, c5}.
For simplicity of discussion, the following sections focus on the two-stage approach

described above.

4. Scaled Div-Curl Operator. We are now in a position to define the scaled
Div-Curl operator and develop some tools that will aid in the proof of the decompo-
sition of W in the next section. Define L : W → (L2(Ω))2 as follows:

L :=

 1√
a
∇ ·

√
a

√
a∇× 1√

a

 , (4.1)
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with domain D(L) = W. It is straightforward to verify that the adjoint of L is given
by

L∗ := −
[√

a∇ 1√
a
,

1√
a
∇⊥

√
a

]
, (4.2)

with domain

D(L∗) :=
{
q : (

1√
a
q1,

√
aq2)t ∈ (H1(Ω))2, q1 = 0 on ΓD, q2 = Ci on ΓNi

}
,

(4.3)
where Ci are arbitrary constants, one of which may be set to zero. We summarize
properties of L and L∗ in the following lemma.

Lemma 4.1. The operator L is continuous and coercive on W, the range R(L)
is closed in (L2(Ω))2, and

R(L)⊥ = N (L∗) =
{(

0
1√
a

)}
.

Proof. The first result follows directly from Lemma 3.3. For the second result,
note that for u ∈ W we have

‖u‖W ≤ (c6γ + 1)|u|W = ‖Lu‖ ≤ ‖u‖W, (4.4)

which implies thatR(L) is closed in (L2(Ω))2. For the last result, note that for u ∈ W
that

〈 1√
a
∇ ·

√
au, 0〉+ 〈

√
a∇× 1√

a
u,

1√
a
〉 =

∫ ∫
Ω

∇× 1√
a
u =

∮
τ · 1√

a
u = 0.

The last equality follows from the boundary conditions imposed on u. Thus,
(0, 1√

a
)t ∈ R(L)⊥ = N (L∗).

To show that this function spans N (L∗), suppose q ∈ D(L∗) satisfies

−L∗q =
√
a∇ 1√

a
q1 +

1√
a
∇⊥

√
aq2 = 0. (4.5)

Let p1 = q1/
√
a, p2 =

√
aq2. From the boundary conditions on q and (4.5), we see

that

n ·
√
a∇p1 = n ·

(√
a∇p1 +

1√
a
∇⊥p2

)
= 0 on ΓN . (4.6)

Since 1√
a
∇⊥p2 ∈ H(div a; Ω), then

√
a∇p1 ∈ H(div a; Ω). Thus, p1 satisfies (2.1) with

homogeneous data, which implies that p1 = 0. This leaves ∇⊥p2 = 0, which implies
p2 = C and finally q2 = C√

a
, for some arbitrary constant C. Since this is the only

solution of (4.5), the result is proved.
Next, we define the restriction of L to W1

S :

L̂ := L|W1
S
. (4.7)

Since L̂ ⊆ L we know that L∗ ⊆ L̂∗; that is,

D(L̂∗) =
{
q ∈ (L2(Ω))2 : L∗q ∈ (L2(Ω))2, q1 = 0 on ΓD, q2 = Ci on ΓNi

}
. (4.8)
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This larger definition of D(L̂∗) will be important in proving the decomposition in the
next section. Finally, we have the result

Lemma 4.2. Subspace W1
S is closed in W and R(L̂) ⊆ R(L) are both closed in

(L2(Ω))2.
Proof. The result is an immediate consequence of Theorem 2.3, Corollary 2.4,

and Lemma 4.1.

5. Solution Decomposition. Here, we introduce a splitting of the flux space
W into a finite-dimensional space spanned by singular functions and locally smooth
functions, that is, functions that are H1

S(Ω). As a result, the flux u can be discretized
as the sum of singular basis functions and standard basis functions that satisfy the
interface conditions. This splitting provides the foundation for the finite element
method that we present in [3]. For a detailed description of the finite element spaces
see also [2].

In this context, a singular function is any function u ∈ W such that u 6∈ W1
S(Ω).

This leads to a decomposition of any u ∈ W as

u = u0 +
M∑

m=1

Nm∑
n=1

bm,nsm,n, (5.1)

where u0 ∈ W1
S , and sm,n, n = 1 . . . Nm, are singular functions associated with

singular points xm, m = 1 . . .M .
This decomposition will be established, following the development in Kellogg [24]

and Grisvard [19], by demonstrating a linearly independent set of functions sm,n ∈
W\W1

S and then using a counting argument to show that they span all of W\W1
S . In

fact, we will demonstrate two sets of functions, one associated with singular solutions
of (2.1) and the other associated with singular solutions of (3.20), and show that they
span the same space. The fact that they span the same space will be essential to the
counting argument.

We first examine singular functions of the original equation (2.1). A singular
function of (2.1) is a function p ∈ H1(Ω) \ H2

S(Ω) for which ∇ · a∇p ∈ L2(Ω). As
described in the introduction, singular points are associated with:
Cross-Points: corner points of the boundary of Ωi that lie in the interior of Ω (2 in
Figure 1.1).
Boundary Cross-Points: corner points of Ωi on the boundary of Ω that touch
another subdomain, Ωj (■ in Figure 1.1).
Reentrant Corners: reentrant corners of Ω (© in Figure 1.1),
Irregular Boundary Points: points on the boundary of Ω that separate the Dirich-
let boundary, ΓD, from the Neumann boundary, ΓN , for which the interior angle is
greater than π/2 (● in Figure 1.1).

We begin with interior singular points. Boundary singular points are handled in a
similar manner. First, we restrict our attention to the ball of radius R, call it Bm(R),
centered at the singular point xm that contains no other singular points and establish
a polar coordinate system (r, θ) centered at xm. For example, consider Figure 5.1.
Denote the angle of the boundaries between segments to the positive x1-axis by θi for
i = 1, . . . ,K. In the following, we use the convention that θ−1 = θK and θK+1 = θ1.

We seek solutions of the homogeneous equation

∇ · a∇p = ∂ra∂rp+
1
r
a∂rp+

1
r2
∂θa∂θp = 0, (5.2)
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ak
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Fig. 5.1. Cross-point (on the left, K = 4), and boundary cross-point (on the right, K = 3).

in Bm(R). Substituting p = rαT (θ) and dividing by rα−2 yields the problem

−(aTθ(θ))θ = (aα2 + rarα)T (θ). (5.3)

Here, we make the additional assumption on a that, within each segment, limr→0 aθ =
0. Since it was assumed above that a ∈ C1,1(Ωi) for each subdomain Ωi, we also know
that limr→0 rar = 0. Thus, we may substitute the value

ãi = lim
r→0

a(r, θ), in Ωi. (5.4)

With this replacement, (5.3) now becomes the the Sturm-Liouville eigenvalue problem

−(ãT ′)′ = ãα2T, on [0, 2π). (5.5)

Solutions of this equation are of the form

Tn(θ) = An,i cos(αn(θ − θi)) +Bn,i sin(αn(θ − θi)), (5.6)

for θ ∈ (θi, θi+1), with corresponding eigenvalue

λn = α2
n. (5.7)

The singular functions we seek are constructed by choosing only those αn ∈ (0, 1)
for, say, n = 1, . . . , Nm. Note that for any solution with α = αn ∈ (0, 1), there is a
solution with α = −αn ∈ (−1, 0). These solutions will be important in the counting
argument.

Now, let δ̃m(r) ∈ H2(0, R) be a smooth cut-off function that is equal to 1 for
r ∈ (0, R/2) and drops to 0 for r ∈ (R/2, R). It is easy to see that

sm,n := δ̃m(r)rαnTn(θ) (5.8)

is in the domain of boundary value problem (2.1). Moreover, for any cut-off function
δm ∈ H1(0, R), we see that

sm,n := δm(r)
√
a∇rαnTn(θ) ∈ W \W1

S . (5.9)
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The exponent α and the coefficients (Ai, Bi) can be determined by enforcing
continuity of both T (θ) and aT ′(θ) across interfaces. (We have dropped the first
subscript for convenience.) This may be expressed as[

1 0
0 −ãi

](
Ai

Bi

)
=

[
cos(α(θ − θi)) sin(α(θ − θi))

ãi−1 sin(α(θ − θi)) −ãi−1 cos(α(θ − θi))

](
Ai−1

Bi−1

)
,

(5.10)
for i = 1, . . . ,K. Divide the second equation by ãi−1, define δi := ãi/ãi−1 and

Di :=
[

1 0
0 −δi

]
, Ci :=

[
cos(α(θ − θi)) sin(α(θ − θi))
sin(α(θ − θi)) − cos(α(θ − θi))

]
, (5.11)

and finally define β
i
:= (Ai, Bi)t. Then, the above constraints may be expressed by

the homogeneous system

Mb =


D1 0 · · · CK

−C1 D2 · · · 0
...

. . .
...

0 · · · −CK−1 DK




β
1
β

2
...
β

K

 =


0
0
...
0

 . (5.12)

A nontrivial solution exists only when the determinant of M is zero. The correspond-
ing null vector yields the coefficients.

We now turn our attention to singular solutions of the boundary value problem
(3.20). In Bm(R) we seek solutions to the homogeneous problem

∇ · 1
a
∇p = 0. (5.13)

Following the same arguments, we are led to the Sturm-Liouville eigenvalue problem

−(
1
ã
T̂ ′)′ =

1
ã
α2T̂ , on [0, 2π). (5.14)

and solutions of the form

T̂n(θ) = Ân,i cos(αn(θ − θi)) + B̂n,i sin(αn(θ − θi)), (5.15)

for θ ∈ (θi, θi+ 1).
Again, we choose only those αn ∈ (0, 1). With δ̃(r) ∈ H2(0, R), solutions of this

Sturm-Liouville problem yield

ŝm,n = δ̃m(r)rαn T̂n(θ) (5.16)

in the domain of boundary value problem (3.20) and, with δm ∈ H1(0, R),

ŝm,n = δm(r)
1√
a
∇⊥rαn T̂n(θ) ∈ W \W1

S . (5.17)

It would appear that there are at least two families of singular function in W\W1
S .

We now show that they are in fact the same family. To see this, first notice that
the only change to the continuity constraints (5.10) is that ãi, ãi−1 are replaced by
1/ãi and 1/ãi−1 respectively, which results in replacing Di by D−1

i . Thus, with the
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definition β̂
i
:= (Âi, B̂i) and similar notation for the other variables, the homogeneous

system (5.12) becomes

M̂ b̂ :=


D−1

1 0 · · · CK

−C1 D−1
2 · · · 0

...
. . .

...
0 · · · −CK−1 D−1

K




β̂
1

β̂
2
...
β̂

K

 =


0
0
...
0

 . (5.18)

We now show that detM = det(M̂). Define the 2× 2 rotation

Q2 =
[

0 1
−1 0

]
(5.19)

and notice that Qt
2Q2 = I2, Q2CiQ2 = Ci, and

Q2DiQ2 =
[
δi 0
0 −1

]
= δiD

−1
i . (5.20)

Note that det(Q2) = −1 and define the 2K × 2K block diagonal matrix Q =
diag(Q2, Q2, . . . , Q2). This yields

QMQ =


δ1D

−1
1 0 · · · CK

−C1 δ2D
−1
2 · · · 0

...
. . .

...
0 · · · −CK−1 δKD

−1
K

 . (5.21)

Next, define the 2K × 2K block matrices

∆1 := diag(ã1I2, ã2I2, . . . , ãKI2),
∆2 := diag(ãKI2, ã1I2, . . . , ãK−1I2).

We can now establish

∆2QMQ∆−1
1 = M̂, (5.22)

which yields

det(M̂) = det(∆1) det(∆−1
2 ) det(Q)2 det(M) = det(M). (5.23)

Let αn ∈ (0, 1) be a root of det(M) = 0 and consider the associated null vector
Mbn = 0. Using the above relationships, we have

0 = (∆2QM)bn = (∆2QMQ∆−1
1 )(∆1Q

tbn) = M̂(∆1Q
tbn). (5.24)

Thus, b̂n = (∆1Q
tbn) is the corresponding null vector of M̂ , which yields(

Ân,i

B̂n,i

)
= ãi

(
−Bn,i

An,i

)
. (5.25)

For convenience, define

φn(r, θ) = rαn (An,i cos(αn(θ − θi)) +Bn,i sin(αn(θ − θi))) , (5.26)

ψn(r, θ) = rαn

(
Ân,i cos(αn(θ − θi)) + B̂n,i sin(αn(θ − θi))

)
, (5.27)
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for θ ∈ (θi, θi+1). Recall that

∇ =
(
∂1

∂2

)
=

[
cos(θ) − 1

r sin(θ)
sin(θ) 1

r cos(θ)

](
∂r

∂θ

)
(5.28)

and that ∇⊥ = Qt
2∇. Using (5.25), (5.26), and (5.28), it is a simple matter to confirm

that

√
a∇φn =

1√
a
∇⊥ψn. (5.29)

Boundary singular points are handled in a similar fashion. Now, instead of peri-
odic boundary conditions, the Sturm-Liouville problem (5.5) would require T (θ) = 0
for θ corresponding to a boundary segment in ΓD and T ′(θ) = 0 for θ corresponding
to ΓN , while problem (5.14) would reverse the roles. It is straightforward to verify
that the relationship (5.29) holds for these singular functions as well.

We summarize the above discussion and complete the proof of the decomposition
(5.1) in the following theorem.

Theorem 5.1. Every u ∈ W has a unique decomposition

u = u0 +
M∑

m=1

Nm∑
n=1

bm,nsm,n,

where u0 ∈ W1
S, and sm,n, n = 1 . . . Nm are singular functions associated with singu-

lar points xm, m = 1 . . .M .
Proof. ¿From Lemma 4.1, we know that W1

S is closed in W, that R(L̂) ⊆
R(L) are both closed in (L2(Ω))2, and that both L and L̂ are injective. Thus, the
codimension of W1

S in W is the same as the codimension ofR(L̂) inR(L). By Lemma
4.1, we know that the dimension of R(L)⊥ is one. We now seek R(L̂)⊥ = N (L̂∗). At
each singular point xm, let δ̂ ∈ H2(0, R) be a smooth cut-off function and, for each
αm,n ∈ (0, 1), construct functions similar to (5.8) and (5.16) as follows:

s−m,n := δm(r)r−αm,nTm,n(θ),

ŝ−m,n := δm(r)r−αm,n T̂m,n(θ),

and define

s−m,n := (s−m,n, −ŝ−m,n)t. (5.30)

¿From (5.29) we see that s−m,n ∈ D(L̂∗) \ D(L∗) and L̂s−m,n ∈ (L2(Ω))2. Since L∗ is
surjective, we can find qm,n ∈ D(L∗) such that

L∗qm,n = −L̂∗s−m,n (5.31)

and set

fm,n = qm,n + s−m,n (5.32)

Clearly, fm,n ∈ N (L̂∗).
It is straightforward to show that every element of N (L̂∗) must be of this form,

that is, must involve singular functions of both (2.1) and (3.20). Thus, the dimension
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of N (L̂∗) is exactly equal to the number of such functions plus the one function in
N (L∗). We complete the proof by noting that the codimension of N (L∗) in N (L̂∗)
is equal to the codimension of R(L̂) in R(L).

This decomposition is the basis for the finite element discretization that is devel-
oped in the companion paper [3]. We only summarize the basic ideas here. Exponents
and coefficients of singular basis functions sm,n can be computed from the geometry
of interfaces adjoining a singular point and the jumps in the coefficient a across these
interfaces. Although our theoretical development employed cut-off functions indepen-
dent of θ, any H1 cut-off function may be used. We choose cut-off functions that
equal one in a fixed region around the singular point and fall off to zero linearly in a
small fringe region of width one grid cell.

The singular basis functions are included in the finite element space, together
with standard elements, such as linear elements on triangles, that satisfy the interface
conditions. Using functional G0 to solve for the flux, inner products of standard
elements with singular basis functions need only be calculated in the fringe region,
thus, saving a significant amount of work.

6. Conclusions. In this paper we have developed a first-order system least
squares L2 formulation for diffusion equations with discontinuous coefficients, irreg-
ular boundaries and mixed boundary conditions. In Theorem 3.2, we showed that
the functional Gα in (3.1) to be coercive and continuous in W × V with constants
that are P -uniform. We then explored the flux-only functional, G0 in (3.17), and
in Lemma 3.3 and Lemma 4.1 showed that it is coercive and continuous in W with
constants that are also P -uniform. Properties of the scaled Div-Curl operator (4.1)
helped us to prove in Theorem 5.1 that W can be split into functions that are H1 in
each subdomain plus a finite number of singular basis functions with support in the
neighborhood of the singular points.

These results form the theoretical basis for the finite element discretization of
W, a rigorous discretization error analysis, and a multilevel method, all of which
are presented in the companion paper [3]. Our approach is different from others
(see, for example, [9]) in that a rigorous discretization error analysis in the presence
of approximate singular basis functions is possible, and a multilevel method can be
devised that incorporates singular basis functions on all levels.
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