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Abstract

We consider mimetic finite difference approximations to second order elliptic problems
on non-matching multiblock grids. Mortar finite elements are employed on the non-matching
interfaces to impose weak flux continuity. Optimal convergence and, in certain cases, super-
convergence is established for both the scalar variable and its flux. The theory is confirmed
by computational results.

1 Introduction

Mortar methods for finite element discretizations have been popular since they provide a nat-
ural framework for domain decomposition. It is often desirable to divide the computational
domain into non-overlapping blocks, where grids are defined independently on each of these
blocks. The geometry of the problem, discontinuities in the material properties, or features
in the solution may provide a natural decomposition of the problem domain into multiple
such blocks. In this paper we develop a mortar method in the framework of mimetic finite
difference (MFD) methods. This method has the advantages of a standard MFD method.
It employs discrete operators that preserve locally certain critical properties of the original
continuum differential operators, such as conservation laws, solution symmetries, and funda-
mental identities of vector calculus. In addition to that, it also inherits the benefits that stem
from the mortar framework.
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We develop the method for second order linear elliptic equations. Introducing a flux vari-
able, we solve for a scalar functigrand a vector functiom satisfying

u=-KVp in Q, (1.1)
V-u=5» in Q, (1.2)
p=yg on o, (1.3)

whereQ ¢ R%™ dim = 2 or 3, is a multiblock domain with a Lipschitz continuous bound-
ary, andK is a symmetric, uniformly positive definite tensor witi°(2) components. The
Dirichlet boundary conditions are considered merely for simplicity. In porous media applica-
tions the system (1.1)—(1.3) models single phase Darcy flow, whisrthe pressuray is the
velocity, andK represents the rock permeability divided by the fluid viscosity.

The mimetictechnique has been successfully employed in a humber of science and en-
gineering applications, including diffusion [26, 16, 21], continuum mechanics [20], and gas
dynamics [9]. MFD methods work well for problems with rough coefficients and general
grids, including unstructured three-dimensional meshes comprised of hexahedra, tetrahedra,
and any cell type that has three faces intersecting at each vertex [15]. The methods has also
been extended to locally refined meshes with hanging nodes [19],

A connection between the MFD method and the MFE method with Raviart-Thomas finite
elements was established in [5]. This was achieved by showing that the scalar product in the
velocity space proposed in [16] for MFD methods can be viewed as a quadrature rule in the
context of MFE methods. In [6], superconvergence for the normal velocities in MFD methods
on h2-uniform quadrilateral meshes was established.

Mixed finite element (MFE) discretizations on quadrilateral meshes [27, 28, 2, 12] are
based on the Piola transformation [27, 7], which preserves continuity of the normal component
of the velocity across mesh edges, but results in the necessity to integrate rational functions
over quadrilaterals. This is further complicated in the case of a full or non-constant diffusion
tensor. The results in [5] provide an efficient numerical quadrature with a minimal number of
points, also allowing for the extension of MFE methods to general polygons and polyhedrons.

The mortar MFE method has been studied, for example, in [31, 1] (see also [4, 3, 30]
for seminal work on mortar couplings for Galerkin finite element discretizations). In these
methods, the domain is divided into nonoverlapping subdomain blocks, and each of these
subdomain blocks is discretized on a locally constructed mesh. As a result, the subdomain
grids do not match at inter block boundaries. To solve this problem, Lagrange multiplier
pressures are introduced at the inter block boundaries. This Lagrange multiplier space is
called the mortar finite element space. It was shown in [1] that the mortar MFE method
is optimally convergent, if the boundary space has one order higher approximability than the
normal trace of the velocity space. The multiblock structure of the mortar MFE systems allows
for scalable parallel domain decomposition solvers and preconditioners, which maximize data
and computation locality, to be developed and applied [1, 29]. Mortar techniques are also very
suitable for multiphysics applications [23].

In this paper, we employ mortar technigues to extend the MFD method to the case of non-
matching multiblock grids. Discrete interface continuity conditions are derived in the MFD
framework, based on a piecewise linear mortar finite element space. We exploit the relation
between MFD and MFE methods to give a variational formulation of the mortar MFD method
and study its convergence properties. We establish optimal convergence for both the pressure
and the velocity on quadrilateral, triangular, and tetrahedral grids. We also prove supercon-
vergence for the pressure at the cell centers and, in the cageusiiform quadrilateral grids,
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superconvergence for the normal velocities at the midpoints of the edges. The results here can
be viewed as extensions of the MFD convergence results of [5] and velocity superconvergence
results of [6] to the case of non-matching multiblock grids. We also note that, to the best of
our knowledge, no previous pressure superconvergence results for the MFD methods have
been reported.

The outline of the paper is as follows. In Section 2, we describe the mortar MFD method.
In particular, we extend the MFD method to the case of non-overlapping subdomain blocks
with non-matching grids by defining appropriate discrete interface conditions. In Section 3,
the mortar MFE method is described, and in Section 4 it is related to the mortar MFD method.
In Sections 5 and 6, we give error estimates for the velocity and the pressure, respectively.
In Section 7, we confirm the theory with numerical experiments, and in Section 8, we make
concluding remarks.

2 The mortar mimetic finite difference method

The fundamental idea in a mortar method is to decompose the computational domain into
non-overlapping subdomains. To that end, we assume}itan be decomposed into non-
overlapping polygonal subdomain blocRs,

Q= U Q.
1=1
Denote byl'; ; = 0€2; N 02, the interior block interfaces. Let

n
I'= U Fi,ja and I'y=00,NT= 8(21\69
i,j=1

Let 75, ; be a conformingshape-regularquasi-uniform partition of2;, 1 < ¢ < n [10],
allowing for 7 ; and7j, ; to be non-matching of; ;. We will consider simplicial elements
in two and three dimensions as well as convex quadrilateral elements in two dimensions. Let
En,i,; be the trace of mesf, ; on the interfacd’; ; and let&, ; be the trace off;, ; on 05);.
In our derivation, we use a quasi-uniform partitionlgf; that is not necessarily the trace of
T5,; on the interfacd’; ;. We denote this partition b, ; ;, and postulate tha, ; j = & ;.-
This partition will be used to impose interface matching conditions via mortar finite elements.
Finally, we denote by

T, = T
=1
the partition of the multiblock domaifi.

2.1 Mimetic finite difference subdomain discretization

In this section, we derive two mutually adjoint discrete operators with respect to certain scalar
products in discrete velocity and pressure spaces. These discrete operators form the basis for
the mimetic finite difference (MFD) method. To begin, we now consider only one subdomain

Q; and the spaceX; = L?((;) of velocities andQ; = H'(€);) of pressures. These spaces

are equipped with the scalar products

(u, v)x, = K 'u -vdx and P, ), = /pqu+ }Igpqu.
Q Q a0,



On these two spaces, we introduce flux opergor Q); — X; and extended divergence
operatorD : X; — Q; by

V-u on £,

gp = —KVZ% Du = { —u - n; on aQ“

wheren,; is the outer unit normal t6¢);.
The Gauss-Green formula can now be stated using this notation as

(ll, gp)XZ = (pa ,Du)Qz vp c Qia u < XZ

This implies that the flux and extended divergence are adjoint operators, in other words
G = D*. For the sake of simplicity, we omit subscript Whenever this does not result in
ambiguity. Unless we specifically state it, the following applies to both 2D and 3D, and we
will use the term face in both cases, such that we refer to an edge in 2D as a face.

Thefirststep in the derivation of the MFD method is to specify discrete degrees of freedom
for the primary variables, pressure and velocity. We choose the discrete pressure unknowns
to be located at the geometric centers of mesh elemerifg ofAdditional discrete pressure
unknowns are located at centers of boundary face$, pf(see Fig. 1). We choose discrete
unknowns that represent the normal component of the velocity to be located at midpoints
of mesh faces off;, ;. In other words, this face-based unknown is a scalar and represents
the orthogonal projection of a velocity vector onto the unit vector normal to the mesh face.
The direction of the normal vector & priori fixed. We also assume that normal vectors to
boundary edges are outward vectors (see Fig. 1).

Figure 1: Location of pressure unknowns (marked by bullets) and velocity un-
knowns (marked by arrows).

In the secondstep of the MFD method, we equip the spaces of discrete pressures and
normal velocities with scalar products. Here, we denote the vector space of discrete pressures
by Q¢. Denote byE and f an element and a face in the partiti@p;, respectively, and byg
andp, the pressure components associated kitand f, respectively. Then we define the
scalar product on the vector spa@g as

B, dge= Y |Elppas+ Y |flprap,  95d€ QY (2.1)
EETh,i fegh,z’
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where,| E| denotes the volume (or, in 2D, the area) of elenmémind| f| denotes the area (or,
in 2D, length) of facef. Let Qf’o be the vector space of only cell-based unknowns. The scalar
product oer’O is defined as only the first sumin (2.1).

We denote the vector space of face-centered normal velociti&§'and define the scalar
product onX¢ as

["Iv ﬂXf = Z [67 17]Xf,Ev (2.2)

Ee,z—i,h

whereli, ] ya 5 is @ scalar product over an elemdfitinvolving only normal velocity com-
ponents on element faces. To complete the second step, we now define this element scalar
product.

We note that a velocity vector iR%™ can be recovered frontim orthogonal projections
on anydim linearly independent vectors. For example, for a convex non-degenerate cell in
IR3, any triplet of normal vectors to faces with a common point satisfy the above requirement.
These orthogonal projections are chosen as degrees of freedom. The recovered velocities
are used to define scalar product (2.2). To illustrate this recovery process, we consider two
examples. Let be a convex polygon witlk edges § = 3 for a triangle ands = 4 for a

Vi

Figure 2: Recovered vectovs, v, and triangled, 75.

guadrilateral). As illustrated in Fig. 2, four recovered velocity vectors can be associated with
the four vertices of a quadrilateral. For example, veloeityis recovered from its projections
onto the normal vectora; andny. In the general case, we denote bfr;) the velocity
recovered at thé-th vertexr, of £,k =1,...,s.
In this paper, we consider two cell-based scalar products in 2D. The first one is given by
1 S

L - 1 <
[, U] xa 5 = op S I K- rp)urg) - vi(rg),  agp= B > ITi, (2.3)
k=1 k=1

where|T}| is the area of the triangle formed by the two edges sharing-thevertex. See, for
example, the shaded triangl€sandT, in Fig. 2. Note thatvy = 3 for triangles andvg = 2

for quadrilaterals. The second cell-based scalar product requires only one evaluation of the
tensorK and is given by

L 1 < _
[, ) xap=— > _|Tel Kg'u(ry) - v(ry) (2.4)
A 10
whereK is the value of tensoK at the center of gravity of.
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Note that both (2.2), (2.3) and (2.2), (2.4) are indeed scalar producf§forsince K
is a uniformly bounded, symmetric and positive definite tensor, and there are two positive
constantg; andc, independent of. such that

alBl Y vf <[, e p < e2lE] Y of (2.5)
fCOE fCOE

wherev denotes the velocity component associated with face

In the 3D case, we only allow to be a tetrahedron. Since each vertexuas shared by
exactly three faces, we can uniquely recover velocity vectors at the vertidésdie scalar
product overF is given either by (2.3) or by (2.4) with= 4. Since in the case of tetrahedron
T, = F, we haven; = 4.

Thethird step of the MFD method is to derive a discrete approximation to the divergence
operatorDIV?, which we shall refer to as thEimeoperator. We use the divergence theorem
on element? to define this discrete divergence operator as

(DIVY Q)

L= TE 2wl 26)

fCOE

Formula (2.6) assumes an external orientation of normal vectors. If the vector normal fo face
points into the element (see, e.g. Fig.d),must be replaced by w ;. The extended discrete
divergence operatoR? : X¢ — Q¢, is given by

(DIVYd)|,  VE € Ty,
Dl = (2.7)
—Uyf Vf S gh,i-

In the fourth stepof the MFD method, a discrete flux operat@f that is adjoint to the
discrete extended divergence operddiwith respect to the scalar products (2.1) and (2.2) is
derived, i.e.

(D%, Plgs = [0, G%lye Vi€ X[, P e Q. (2.8)

We will refer to (2.8) as discrete Green'’s formula. See [5] for the explicit form of the operator
G?. Now, the MFD method for subdomai; may be summarized as follows:

— d =
L= g9 (2.9)
u = b,
whereb is in Q. The entries o are integral averages of right-hand sidie (1.2) over the
elements off}, ;.

The MFD method (2.9) is presented using notation that is well established in the finite
difference and finite volume communities. In Section 4, we rewrite it in a variational form
(4.2) to relate mortar MFD and mortar MFE methods.

2.2 Interface conditions between subdomain blocks

To derive the mortar MFD discretization 6)) we must impose continuity conditions at inter-
facesI’; ; between subdomairi3; and(2; and boundary conditions dn Hereafter, we will
use subscripti' for vectors and operators satisfying equation (2.9) on subdofRain
We recall that the solution of (1.1)-(1.3) satisfies continuity conditions at interfaces
In particular, the pressure and the normal flux are both continuous almost everywhere across
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I'; ;. We will refer to these conditions as interface continuity conditions. In order to impose
these conditions discretely on non-matching grids, we introduce the intermediate vector space
Af i = A;{i that is associated with the interface partitip; ;. We will make precise the
definition ong{j later in Section 4, where it will be related to a mortar space in a mixed finite
element method.

Denote bng{ ; the vector space of pressure unknowns associated with the faces of parti-

tion &, ; ;. We define the scalar product@ﬁj to be
[Pij: Gigloe, = > fPiss i
fCEh,i

wherep; ; ; (resp.,q; ;,r) is the component of vectgi; ; (resp.,q; ;) associated with facg.
Similarly, we define the vector spaéqu of velocity unknowns associated with the faces
of partition&y, ; ;. We chooseX(; to be isometric ta)? ;, i.e.

(i, Viglxa, = ldig, Tiglos -

Finally, letR; ; : A¢; — Q¢ be alinear projection operator that is exact for constant vectors.
We will make precise the definition @®; ; later in Section 4, where it will be related to the
orthogonal projector from the mortar finite element space to the space of piecewise constant
functions.

Discrete interface continuity conditions are derived from two requirements. First, we
requiremass conservatioacrossty, ; ;, i.e.

(i g, Rijiilxg = —[ji, Rjifilxe, Vi€ AY (2.10)

Let F; ; be the diagonal matrix with entries that are the areas of facgs;gf It is not difficult
to see that mass conservation (2.10) implies the interface condition

R{; Fijiij = —R]; Fj ;. (2.11)

Second, we require thétte discrete Green’s formukg.8) holds onQ; U Q;. It is easy to see
that this holds if the sum of the discrete Green’s formulag¥oand(2; cancels the boundary
terms associated with the common interface, i.e.

[Pijs iglga, = —[Phi Filge, -
Hence, a sufficient condition for the validity of the discrete Green’s formul@,an; is
HX € AZ] : ﬁi,j = Riij and ﬁj,i = R]”Z’X. (212)
In the general casé: is considered as an additional unknown.

Remark 2.1 Locally refined meshes can be viewed as non-matching meshes. In this special
case, vecton can be eliminated frorf2.12) In Section 7, we derive simple formulas for the
discrete interface continuity conditions on such meshes.

The mortar MFD method for (1.1)—(1.3) is defined by combining the system of subdomain
equations (2.9) with the interface continuity conditions (2.11) and (2.12) and the boundary
conditions

Pr=gsr Vf CoQ, (2.13)

whereg; is the integral average gfover facef.
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3 The mortar mixed finite element method

In this section we briefly recall the mortar mixed finite element method introduced in [31, 1],
which will later be related to the mortar MFD method that was introduced in the previous
section. We follow the standard notations for norms, semi-norms and scalar products. A weak
solution of (1.1)—(1.3) is a paiiu, p) € H(div; Q) x L?(Q), such that

(K™lu,v) = (p,V-v) = (g,v-n)sn Vv e H(div;Q), (3.1)
(V-u,w) = (b,w) Vw € L*(9). (3.2)

It is well known (see, e.qg., [7, 25]) that (3.1)—(3.2) has an unique solution. The multi-domain
formulation of (3.1)—(3.1) is based on the spaces

Vi = H(div; (), V:@Vza
=1

Wi = L2(Q), W =W =L*9Q).
=1

If the solution(u, p) of (3.1)—(3.2) belongs téf (div; Q) x H(Q), itis easy to see [7, pp. 91—
92] that it satisfies, fot < i < n,

(K71u7 V)Qi = (p7 V- V)Qi - <p7 v ni>Fi - <97 v ni>89i\I‘ Vv eV, (33)
(V-u,w)o, = (bw)g, YweW;.  (3.4)

The mortar mixed finite element method discretizes (3.3)—(3.4), coupled with a mortar-based
discretization of the interface conditions. Next, we present the definition of the mixed finite
element spaces. We describe the two-dimensional elements: quadrilaterals and triangles. The
finite element spaces for a tetrahedral element are constructed similarly to the finite element
spaces for a triangular element.

For any elemenf € 7,, there exists a bijection mappirg;: £ — E, whereF is the
reference element. For example, in the case of convex quadrilatétagsthe unit square
with verticest; = (0, 0)T, £ = (1, 0)T, #5 = (1, )T andty = (0, 1)T. Denote by
r; = (x5, y;)', i = 1,2,3,4, the four corresponding vertices of an elemé&has shown in
Fig. 3. Then,Fz is the bilinear mapping given by

FE(f‘) =TI (1 —f)(l —Q) +I‘25AU(1 —Q)+r3:i:y+r4 (1 —i)@

Note that the Jacobi matri®Fz and its Jacobiad g are linear functions of andy. Indeed,
straightforward computations yield

DFp =[(1—-g)ro +gra, (1 —2)ry +r3],

and
Je = 2|Th| + 2(|T2| — [T1 ))& + 2(|Tu| — |T1])9, (3.5)

wherer;; = r; — r; and trianglesl},, k = 1,2, 3,4, are defined in (2.3). SincE is convex,
the Jacobia/y is uniformly positive, i.e.Jg(Z,y) > 0. We denote the inverse mapping by
Fg' and its Jacobian by.1.



T
|

Fg

Figure 3: Bilinear mapping and orientation of normal vectors.

In the case of trianglesk is the reference right triangle with verticés = (0, 0)7,
ty = (1,0)7, and#s = (0, 1)T. Letry, ry, andrs be the corresponding vertices 6f,
oriented in a counter clockwise direction. The linear mapping for triangles has the form

Fg(t) =r1(1 — 2 — §) + 122 + r37, (3.6)
with respective Jacobi matrix and Jacobian
DFE = [I‘Ql,l‘gl]T and JE = Q‘E‘ (37)

Note that in this case the mapping is affine and the Jacobi matrix and its Jacobian are constants.
We denote the lowest order Raviart-Thomas-Nedelec (RTN) mixed finite element spaces
[27, 24, 22] by
Vhﬂ' X Whﬁ‘ CV; xW;

These spaces are initially defined on the reference element. For examplés the unit
square, the spaces are

V(E)=Po(E)x Py (F) and W(FE)= Py(F),

where P, o (or Fp 1) denotes the space of polynomials linear in thé¢or y) variable and
constant in the other variable, adiyy denotes the space of constant functions. In the case
whenF is the unit triangle, the spaces on this reference element are

V(E)=Py(E) x Py(E)+ Py(E)x  and  W(E) = Py(E).
The velocity space on any elemeiitis defined via the Piola transformation
LDFE: (La(B))'™ — (Ly(E)E™  VE €T,
The RTN, spaces ofT},; are given by
Vii = {veV,: v|g=Jg'DFgvoF;l, v e V(E) VE €T},

)

. (3.8)
Whi = {weW;: wlp=woF;', weW(E) VEET,,}.

The following two properties of the Piola transformation will be useful in the analysis. For
anyv € V(F) and the relates = J,,' DFpv o F;*, we have

/v-vdx:/@~0d& and /v-nlfds:/jf-ﬁfdé, (3.9)
E E f f
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wheref is any face off’ andn; andﬁf are the unit normal vectors tband f, respectively.

The quasi-uniform partitioidy, ; ; of T; ; introduced above is referred to as the mortar
interface mesh. Denote by;,;; C L*(T'; ;) the mortar space ofj; ;, containing either the
continuous or discontinuous piecewise linear polynomial§;gy. Let

n n
VvV, = @ Vh,h Wy = @ Wh,ia Ap = @ Ah,i,j‘
1=1 i=1

1<i<j<n

Although normal components of vectorsVj, are continuous between elements within each
block$2;, there is no such restriction acrdssThe spacé\, is called the mortar finite element
space orl". In the following we treat any function € A, as extended by zero a#f). An
additional assumption on the spatg, and hencey, ; ;, will be made below in (4.7) and
(5.13). We remark tha&‘jwj need not be conforming if a discontinuous space is used.

In the mortar mixed finite element approximation of (3.1)—(3.2), we sgek V,, py, €
Wh, A € Ay, such that, fol < i < n,

(Kﬁluh, ) (ph, AV V)Q — <)\h,V nz> <g,v nz>aQ \I Vv € Vh,i’ (310)
(v ' uh7 w)QZ = (b7 w)Ql Vw S Wh,i, (311)

n

Z<uh -1, pr, =0 Ve A, (3.12)
i=1

Remark 3.1 The above method imposes continuity of the pressure by approximating the pres-
sure on the interfaces by a single-valued mortar functignwhile continuity of the normal
flux is imposed weakly if8.12)with respect to Lagrange multipliers in the mortar space.

4 Relating mortar MFD and mortar MFE methods

The basic tool for the error analysis of the mortar MFD method is based on establishing
connections with the mortar mixed finite element (MFE) method (3.10)—(3.12). We begin by
establishing an isomorphism between finite difference and finite element spaces.

The degrees of freedom df,, ; are associated with mesh faces. Therefore, the space
V.. is isomorphic to the vector spacéd. Similarly, the degrees of freedom of the finite
element spacél;, ; are associated with cell centers and the space is isometric to the vector
spaceQ?’Oequipped with the norm induced by its scalar product defined in Section 2.1 (see
also [5]). By the same arguments, the vector spﬁé@eis isometric to the finite element space
Vi -milp,

Flnally, We choose\¢ . ; to be isomorphic to the finite element spatg; ;. In particular,
degrees of freedom o‘id are the values of the pressure at vertices of partlﬂpnj In
the case of dlscontlnuous mortars, each vertex may be associated with multiple degrees of
freedom. The projectaR; ; is implicitly defined by

(R jitij, Cfi,j]Qij = (Whiy» Qhig)Te, Vi € AL, Gy € QY (4.1)

wherepuy, ; ; € Ay andgy;; € Vi - n,\r are the finite element counterparts of vectors
ii; ; andg; ;, respectively.
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For each interfacg; ;, we define ari.2-orthogonal projection operat®;, ; ; : L*(T'; ;) —
Vi - nil.  suchthat, forany € L*(T; ;),
7

<¢ — Rh,i,jfbv V- Ili>ri’j =0 Vv € Vh,i-

The operatoRy, ;; : L*(T'ij) — Vi ;- ny|r, ; is defined analogously. L&, ; : L*(9€;) —
V5. - ni|aq, be such that, for any € L2(99;),

(Rh,i¢) |Fi,]’ = Rh,i,j (QZ)‘FZ'J) ’

Note that the projection operat®;, ; ; restricted toA; ; ; acts from the space of piecewise
linear functions orfh,i,j to the space of piecewise constant functionggp;. Using (4.1), it
is clear that the projectak; ; defined on the vector spam{j is the matrix representation of
Rhij: Anjij — Vg nilr, ;-

The next step is to reformulate the MFD method in a way that is more suitable for our
analysis. Multiplying the first equation in (2.9) by € X¢, the second one hy; € Qf’o, and
using the discrete Green’s formula (2.8), we get

[ﬁi, UZ]X;’Z — [ﬁi, 'D;i 171]Q§z =0 VUZ S de,
4.2)

(@, DIV @) a0 = [bs, @il o v € QY.

Recall that the above equations are coupled with the discrete interface continuity conditions
(2.11), (2.12) and the boundary conditions (2.13). Using the isomorphism between the finite
element spac¥, ; x W}, ; and the vector spaclé;l X Qf’o, we define finite element functions

Qh.,i» bn,; anduy, ; corresponding to vectorg, b; and;, respectively. Then,
@, DIV ﬁi]ngo = (qns, V- i),

The definition ofb; implies that
[b:, @]Qg»o = (bhi» an,i)o;, = (b, qn,i);-

We decompose vectgi; asj; = (5°, 7)), where? € Q%°, and denote the finite element
counterparts oﬁio andv; € Xid by pn; andvy, ;, respectively. Let\, € Aj; be the mortar
finite element counterpart offrom the discrete pressure interface continuity condition (2.12).
The Dirichlet boundary conditions specify the components of vegtasn 6. Using (2.7),
(2.12), (2.13), and the definition of the projectdts; andRR,, ; ;, we get

(i, Df il gs = (Phis V- Vii)or = (Riidns Vi - mi)r, — (Ruig, Vii - i)agar 4.3)

= (Phi» V* Vi), — (s Vai i), — (9, Vai - 0i)ao,\r-

Next, lettinguy s ; € Ap;,; be the finite element counterpart of vectfy;, the discrete inter-
face continuity condition (2.10) becomes

<Mh,i7j7 Up,i - ni>Fi,j = _<,Uh,i,j, up ;5 - nj>Fj,i'

Finally, by introducing the quadrature rule
(K~ g, Vi), = [i, Uil x4,
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we can reformulate the mortar MFD problem (2.9), (2.12), (2.11) and (2.13) as the following
problem. We seeki;, € Vy,, pr, € Wi, A\, € Ay, such that, fod < i <n,

(K" ap, v)no, = 0n, V- V)e, — (A veonidr, — (9, V- Didgoar VW E Vi,  (4.4)
(V-up,w)q, = (byw)q, Vw e Wy, (4.5)

n

> (up -y, pr, =0, Vi€ Ay (4.6)
=1

The next lemma shows that the problem is well posed.

Lemma 4.1 Assume that for ang € Ay,
Rpi¢ =0, 1<i<n, impliesthat ¢ =0. 4.7)
Then there exists a unique solution(4f4)—(4.6)

Proof. The proof closely follows the proof of Lemma 2.1 in [1] with only a slight modi-
fication. Since (4.4)—(4.6) is a square system, it is sufficient to show uniqueneds =L@t
andg = 0. Settingv = uy, w = py, andu = —\p,, adding (4.4)—(4.6), and summing over
1 <i < n, implies that

n

Z(Kﬁluh, uh)h,Qi = 0.
=1

The coercivity result from [5]

n

Z(K_lufwuh)hﬂi 2 CHuhH(%,Q (4.8)
i=1
implies thatu;, = 0. The argument for proving tha$, = A, = 0 is the same as in the proof
of Lemma 2.1 in [1]. d

Remark 4.1 Above, as well as in several other places in this paper, we employ results ob-
tained in [1]. Although [1] only treats affine elements, it is easy to check that the arguments
used to obtain the results referred to here also apply in the case of general quadrilateral
elements.

We end this section by noting that (4.8) implies tlyat),, is a scalar product that gives
rise to a norn| - ||, in V. This norm is equivalent to the?-norm, i.e., there exist positive
constantg; andc, independent of, such that

allvioo < [vln < e2llvioe Vv EVy. (4.9)

The left inequality is given in (4.8). The right inequality follows from a standard mapping
argument, using the equivalence of norms on the reference eldment

12



5 Velocity error estimates for the mortar MFD method

We first recall several projection operators that will be used in the analysis. Ofe#ubre
exists a projectiofl; from (H'(£2;))%™ onto'V}, ; satisfying

(V- (ILq—q),w)n, =0 w € Wh;. (5.1)

LetII : @@, (H(Q;))%™ — V,, be defined by(Ilq)|o, = ;(ql,). The operatoil is
defined locally on each elemehtby

Mq = T1q,
wherell : (H'(E))4™ — V(E) is the reference element projection operator satisfying
/f(f[Q—Q)-ﬁ:O Vf c OE.
Let P}, be theL?(I") projection onta)\,, satisfying for any) € L(T'),
(Y —=Ppo,u)r =0 Vu € Ay,
For anyp € L?(Q), let Q,¢ € W, be its L%(Q) projection satisfying

(o — Qnp,w)g =0  Yw e W,

We state several well-known approximation properties of these projection operators:

v — Pribllor,; < Cllllrr, ;A" 0<r<2, (5.2)
[ = Qnelloa; < Cllellrah”, 0<r<1, (5.3)
la — Lqlloe, < Cllalle;h (5.4)
IV (a—1La)llog, < Clallr+1,0h",  0<r <1, (5.5)

where||- ||, is the H"-norm. Bounds (5.2) and (5.3) are standafédprojection approximation
results [10]; bounds (5.4) and (5.5) can be found in [7, 25] for affine elements and [27, 28] for
guadrilaterals.

We will also make use of the following continuity bound idr

Lemma 5.1 For all elementst and for allq € (H'(E))%™, there exists a constant inde-
pendent of such that
M,z < Cllall,e-

Proof. Let us first consider the case of simplicial grids in two and three dimensions. It is
well known [24] that for allE € Tj,

IMal 41 dlv.zy < Cllale:

The definition of V;, on simplexes gives that on eadh we haveV - Ilq = a(g;})i’
i = 1,...,dim, which, combined with the above inequality, implies the assertion of the

lemma.
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In the case of quadrilateral grids, it follows from the definition of the bilinear mapping
that for allx € Fands =0, 1

IDFE(R)|, o i < Ch, [JE(R)], o p < Ch?,

s,00,F

S <Chh, (5.6)

s,00,F

1
—_DF
Jg F

1Fg'ly s SCPTY, HJE;HmEzEC%‘? (5.7)

The rest of the proof is based on the inverse inequality which is not a trivial result for a general
guadrilateral. For the sake of completeness, we prove it below. The definition (3.8) implies

2
0 1
- — DFpé
/E x /Eaﬂci (JE Eq)

Thus, using (5.6) and (5.7), we get

Jq
(9:62‘

2
| Jg| dx.

1 _ 1/2 |4
s <C (HJEDFE I e g1l
0,
12 |1 1 X (5.8)
+||J . | —DF’ F : .
el %5 | 7, 0F| VP \I,M,Enqnoﬂ)
< Ch7Y4ll, -
Similarly, we get the estimates
lallo.z < Cllall,z  and  lally 5 < Cllallo,z- (5.9)

Combining (5.8) and (5.9) and using the standard inverse inequality on the reference element
E, we get
ldl,z < Ch7Hdll, 5 < Ch™Hdlly 5 < Ch™Hallo,s,

which establishes the inverse inequality for quadrilaterals. Using this inverse inequality, we
have

g1z = [Iq — qol1.z < Ch™H|TIq — qollo.z
< Ch'(|Ha — qllo.z + la — qollo,z)

whereqq is a constant vector. Lej, be theL?(E) projection ofq onto the space of constant
vectors. Combining the above inequality with the approximation properties (5.3) and (5.4)
results in the estimate

Mal,z < Clla

1,E-

The bound|Ilq||o,r < C||ql1, follows from the approximation property (5.4). This proves
the assertion of the lemma. O

Throughout the paper we will be using the nonstandard trace theorem [14, Theorem
1.5.2.1]

HQHT,Fi,j < CHQHT—H/Q,Qi'
We will also make use of the trace inequality

Iv - nillos, < ChV2(Iv[o0, ¥V E Vi, (5.10)
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which follows from a simple scaling argument.
Let

n
Vh,(): {VGVh Z<V‘QZ 'ni,,u>1“i =0 VMEAh}
i=1
be the space of weakly continuous velocities, with respect to the mortar space. Then the

mortar MFD method (4.4)—(4.6) can be rewritten in the following way. kRipde V;, o and
pn, € Wp, such that

n

(K", v)n =Y (pn, V- V)a, — (9, v - m)aq, Vv € Vi, (5.11)
=1

DV up,w)g, = (bw), Yw e Wy (5.12)
=1
It was shown in [1] that there exists a projection operaigronto V;, , such that, for any
q e (H'(Q)",
(V-(Ilhq—q),w)o=0  we€ W,

Moreover, if there exists a constafit independent ok, such that
ellor,; < CURnkllor,; + IRupllor,;)  VeeEAL 1<i<j<n, (5.13)

thenll, satisfies the approximation properties

n
IMoa —Tallo < €Y llallr1jp0h 2 0<r<1, (5.14)
=1

and

o — allo < C > llalle,h- (5.15)
=1

5.1 Optimal convergence estimates for the velocity

We now proceed by proving optimal error estimates for the velocity variable in the mortar
MFD method. The analysis is the same for both scalar products (2.3) and (2.4).
Subtracting (5.11)—(5.12) from (3.3)—(3.4) gives the error equations

(K (Mu—up),v)n =Y {(p—pn,V-v)a, = (p,v-mi)r,}
1=1

+ (K7 Y(IIu — u),v) — o(K I, v), (5.16)

D (V- (=), w)g, =0, (5.17)

i=1
foranyv € Vo andw € W}, where
U(qa V) = (qa V) - (q7 V)h'

It was shown in [5] thatg(q,v) = 0 in the scalar product (2.4) for any € V}, and any
constant vectog. A similar result has been shown in [6] for the scalar product (2.3). Thus,
letting qp be the mean value @f on F, we get

lo(q,v)e| = |o(a—qo, v)e| < Chld|iel|vlee, E € Th.
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Therefore,

oK, v)[ < ¢ 3 hfK!

1,002 [Tul|1,2[V]lo,z
EeT,
n (5.18)
<CY BIE Moo ullielVioo:
i=1
using Lemma 5.1 for the last inequality. Clearly (5.17) implies that
V- (Ilpu—up) =V - (IIu—uy) =0. (5.19)
Takingv = Ilpu — uy, in (5.16) we get
(K~ (Tou — uy), Tou — up),
= Z<7)hp —p, (Mgu — uy) - ny)r, + (K~ H(u — u), pu — uy,)
=1
+ (K_l(Hou — Hu), IIpu — uh)h — J(K‘ll'[u, IIpu — uh)
< Z |Prp — pllo,r; [ (LTou — ug) - nglfo,r;
=t (5.20)

+ (K~ Y(ITu — u), Tgu — up) + (K1 (Ilpu — ITu), Iou — uy,)y,
+ |o(K ~'u, yu — uy,)|

SC(illp

i=1

2,0, Tou — wy,[|o,0,h

n
+ > IE Y1000 ull.hTou - uhHo> :
=1

where we used (5.2), (5.10), (5.4), (5.14), and (5.18) for the last inequality. With (5.19)—
(5.20), (4.9), (5.5), and (5.15) we have shown the following theorem.

Theorem 5.1 Let K~ € W1>(Q;), 1 < i < n, and let(4.7) hold. Then, for the velocity
uy, of the mortar mimetic finite difference meth@d4)—(4.6) there exists a positive constant
C independent ok such that

V- (u=w)lo <CY ullz0.h
=1
Moreover, if (5.13)holds, then
= wnllo < € (llpll2.g, + lullo,)h-
=1
5.2 Superconvergence for the velocity

In this section, we show that in the caserdfuniform quadrilateral grids the velocity con-
verges with an order one-half higher than thé») in a discretel.2-norm. This superconver-
gence result for non-matching grids rests on conforming grids superconvergence results in [6]
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ro=r]

Figure 4:h2-uniform quadrilateral grid.

and [12] for MFD and MFE methods, respectively, and our analysis in Section 5.1. Although
this superconvergence result is weaker than@ig?) superconvergence result in [6], it is
consistent with the superconvergence result for mortar MFE methods [31, 1]. We also note
that this result is proved only for the scalar product (2.3).

Referring to Fig. 4, a quadrilateral partition is calleduniform if each element is ah’-
parallelogram, i.e||(r2 —r1) — (r3 —ry4)|| < Ch?, and any two adjacent quadrilaterals form
anh?-parallelogram, i.e|(ra — r1) — (rh — r})|| < Ch2.

To establish superconvergence, we modify the last inequality in (5.20). In particular, (5.2)
gives

n n
> 1Pwp = pllor: [ (Mou — wp) - millo.r, < C D [Iplls 2.0, Tou — w0,
=1 =1

and (5.14) gives

n
(K~ (Tou — TTu), ou — up ), < C Y [[u]l3/2,0,5 | Tou — wp|o-
i=1

In addition, [12, Theorem 5.1] implies

(K~ (Tu—u),Mou—u) <C Y _||K!
=1

2,0,1% [ Tlou — [0,

2,00,0; 1]
and [6, Lemma 4.3] gives

n
o (K~ Tlu, Thpu — wy )| < C ) 1K 2,000, [ull2,0,| Tlow — wfo.
=1

Combining the above four bounds, we arrive at the following superconvergence result.

Theorem 5.2 Let K1 € W2>(Q;), 1 < i < n, and let(5.13)hold. Then, for the velocity
uy, of the mortar mimetic finite difference meth@d4)—(4.6)with the scalar produc(2.3) on
h2-uniform quadrilateral grids, there exists a positive consta@rindependent of such that

ITu =yl < C Y (Iplls2.0;, + [ul20)h*?.

i=1
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The above result can be applied to obtain superconvergence for the computed velocity to

the average edge fluxes. Define, for ang (H'(;))%,i=1,...,n,
4 2
vl = vl |||V||2E=Z(/ V-nde) : (5.21)
E€T, k=1 ¢k

Itis easy to see [6] tha}]| - ||| is a norm onV;, and there exist constantsandcs independent
of h such that
allviloe <|[lIVlll < callvion Vv €V, (5.22)

Moreover,|||[IIv — v||| = 0 for anyv € (H'(Q;))?,i = 1,...,n. We have the following
superconvergence result.

Theorem 5.3 Under the assumptions of Theorem 5.2, there exists a positive consiagé-
pendent of such that

n
Ia = wnlll < €D (lIplls20, + lull2,0,)p*>.
i=1

Proof.By the triangle inequality and (5.22),
[[u = ||| < [[[TTu = up[|] < cof[TTu —ay o,

and the assertion of the theorem follows from Theorem 5.2. O

6 Pressure error estimates for the mortar MFD method

In this section, we employ a duality argument to obtain superconvergenéd, for- p;, and
optimal convergence fgy — p;, in the mortar MFD method. To the best of our knowledge,
these are the first pressure superconvergence results for the MFD methods.

The estimates are proved for both scalar products (2.3) and (2.4) on triangular, tetrahe-
dral andh2-uniform quadrilateral meshes. In the case of general quadrilateral meshes, the
superconvergence estimate is shown only for the the scalar product (2.4).

We first derive a superconvergence estimate for the quadrature error, which will be used
in the proof of the main result.

Lemma 6.1 Let K—1 € W2>®(€,), 1 < i < n. Then, for allv,q € Vj, there exists a
positive constant’ independent ok such that

(K 'v,q) <C Y w|lv]
EeT,

Lelalle

where, for the scalar produd®.3), » = 2 on simplicial grids andh2-uniform quadrilateral
grids, andr = 1 on general quadrilateral grids. If the scalar product is given(@y), then
r = 2 on simplicial grids and general quadrilateral grids.

Proof.For an elemenkE ¢ 7, we define the error
UE(K_lvv q) = / K_lv q dx — (K_lvv q)h,E' (61)
E
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First, we consider the scalar prodydt ~'v, q), z given by (2.3). It was shown in [5]
thator(vo, q) = 0 for all constant vectors . Using this result and the symmetry of (6.1), we
get

op(K'v,q) =op(K 'v,a—qo) + op((K~ ' = K;')(v — vo),qo)

) 6.2)
+or(K tvo,qo)

wherevy, qg are constant vectors arid, is a constant tensor. By a constant vector (tensor)
we mean a vector (tensor) with constant componentsvg.andqy be theL?(E) orthogonal
projections ofv andq, respectively, onto the space of constant vectorsKBé{ = Kgl =
K~1(mg), wherem is the center of gravity of/, and let(K —'v), be theL?(E) projection
of K~'v into the space of constant vectors. Using the Taylor’'s theorem, it is easy to verify
that

1K™ = Kq Hloo,p < CRIK ™ 1,00,

Using (2.5) and (5.3), we get for the first term on the right in (6.2)

lop(K™'v,q—qo)| = |og(K~'v— (K" 'v)o,q—qo)| < Ch?*| K~

The second term in (6.2) is estimated as

lop(K™" = Kg))(v = vo),a0)| < CIK™" = Kq ' |loc,gllv = vollo.zlldollo.z 6.3)

The remaining term in (6.2) can be rewritten as

op(K 'vo,qo) = / K 'vo - qo dx — (K 'vo,qo)ne

=K-1vg- qo!E!—fZ\T | K~ (x))vo - qo,
7=1

whereK 1 is the mean value ok —! on E, ap = 2 for quadrilateralsq z = 3 for triangles,

ap = 4 for tetrahedra, and is the number of vertices of elemeht For simplicial elements,

|T;| = |E| and it is easy to check that the quadrature is exact for linear tensors. An application
of the Bramble-Hilbert lemma gives

lop(K™'vo,qo)| < CR*|K ™ vola,pllqollo,s < Ch? K™ (6.4)

For general quadrilaterals, the quadrature is exact for constant tensors and we have

(K~ vo, qo)| = lop((K~" — Kq ')vo,qo)| < Ch| K™

We now show that this term i9(h?) in the case of?-parallelograms. To do this we map it
to the reference element. It follows from (3.5) thiai(r;) = 2|7}|. Thus,

4 4
_ 1 _ 1
(K 1V07Q0)h,E:*Z’T‘|K Hrj)vo - ao = Z\T |K~(85)vo - qo

= (6.5)

4

1

=1 E e(tj) vo-qo = (Bgvo,qo)T,
-1
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where B = JEAIA(*l. Note that the quadrature rule ) is the trapezoidal rule on the
reference squarg.
For the integral term in the quadrature error we write

/K_lv()-qo dXZ[R_1V0~ qQoJE dﬁ:/BEVO-qO dx. (6.6)
E E E

Using (6.5) and (6.6) we obtain

op(K v, qo) = /

E

Bgvo - qo dx — (Bgvo,do)r = 05 (BEVo, qo). (6.7)

Since the trapezoidal quadrature rulefois exact for linear polynomials, the Bramble-Hilbert
lemma implies that

lo(Bvo,qo)| < C|Bl, o, zlvolly zllaolly & (6.8)
To bound onB|, _ ;, we note that for an?-parallelogram

el oy S OB, JBly ooy =0, |FEl 005 <Ch*, s =1,2.

s,00,F

Therefore,

Bly.. s <C <h3\l§’*1]1700ﬁ + h?\kflym,;) < Oh|| K~}

‘2,007E7

using the chain rule for the last inequality. The above bound, combined with (6.7) and (6.8),
implies

los(K~'vo,q0)| < ChYIK 2,002 vollg sllaolly 5
< CR* | K™ Y200,V

\O,E \QHO,E7

which completes the proof in the case of the scalar product (2.3).
Let the scalar produdtk —'v, q); g be given by (2.4). The only difference in this case is
the estimate of the third term in (6.2). Note that the scalar product

S

_ 1 _ _
(K 1V0’q‘0)h’E:@ZIQ‘KEIVO.qOZ ’E’ KEIVO.qO
j=1

is exact for linear tensors for both simplicial and quadrilateral elements. The application of
the Bramble-Hilbert lemma gives estimate (6.4). O

We continue with the duality argument for boundifn@p — pp||o- We first rewrite the
error equation (5.16) as follows:

(K™ Hu—uy),v) = Z ((p—pn.V-V)a, — 0, v-n)r,) — o(K 'uy,v) (6.9)
i=1

Let ¢ be the solution of

—V - KVo =—(Qnp — pn) in €,
p=20 on 0Of).
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We assume that this problem h&Z-elliptic regularity. This is true, for example if the com-
ponents ofK € C%1(Q) and( is convex ordf is smooth enough (see [14, 18]). Then, we
have

lellz < ClQnp — prllo- (6.10)
Takev =TI KV¢ in (6.9) to get

n

1Qrp — palld = (Qnp — pn, V- i K V)g,
=1

= Z {(K'(u—w,),IIoKV¢)o, + (p — Pap, 0KV - ny)1, }

+ O'(K up, o KV). (6.11)

The first two terms on the right in (6.11) appear also in the proof of Theorem 5.1 in [1], where
it was shown that

Z {(K™ (u—up,), K V), + (p — Prp, oKV - ny)r, }

< CZWHKHl,ooni( 1) (6.12)

=1
Using Lemma 6.1, the last term in (6.11) can be bounded as
o (K™ uy, T K V)|

<C Y gl el K Vel e
EcTy,

<C Y W (Jup —uflyp + || Tull,5)
EcTy,

x (o KVe — KV o|1p + [IIKVY|1 E) (6.13)

<C Y B (T w, — o g + [[ull,k)

EcTy,

x (W oKV —IIKVy|oe + |KVeli,Er)

i

a)llell2.0:

<Cy W
i=1
where we used the inverse inequality and Lemma 5.1 in the third inequality, and Theorem 5.1

and (5.14) in the last inequality. A combination of (6.10)—(6.13) gives the following result.

Theorem 6.1 Let K € WH>°(Q;), K~ € W2>®(€);), 1 < i < n, and(5.13)hold. Then,
for the pressurey;, of the mortar mimetic finite difference meth@H4)—(4.6) there exists a
constantC independent ok such that

n

1942 = prllo < C Y _(IIpllz0; + [ull2.0)h"
1=1
n

lp = pallo < C Y (Ipll20 + ull2,0.)h,

=1
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where, for scalar produdt2.3), » = 2 on simplicial grids and?-uniform quadrilateral grids,
andr = 1 on general quadrilateral grids. If the scalar product is given(@y), thenr = 2
on simplicial grids and general quadrilateral grids.

7 Numerical experiments

In this section, we confirm our theoretical estimates for locally refined meshes, which can be
viewed as a special case of non-matching meshes. An example of a computational mesh is
shown in Fig. 5. This mesh consists of 13 quadrilateral subdomains with different levels of
uniform refinement. We study convergence of the mortar MFD method using the sequence of
meshes that is generated by uniform refinement (and coarsening) of this mesh.

We generated another sequence of meshes from the above sequence by perturbing the
positions of mesh nodes. A mesh node is moved to a random position inside a square centered
around its initial position. The sides of the square are aligned with the coordinate axes and are
equal in length to 40% of the length of the smallest edge adjacent to the node. The positions

of mesh nodes on the domain boundary and on subdomain interfaces are not perturbed. An
example of such a random mesh is shown in Fig. 6.
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Figure 5: Convergence rates on smooth meshes

The discrete interface continuity conditions for the mortar MFD method are drastically
simplified in the case of locally refined meshes. We consider the interfacand denote by
&nij the finer of its two adjacent partitions. Assudig; ; = & ;;, and set the mortar space
Ay, ; to be the space of discontinuous piecewise linear functions. To describe projegtors
and R;;, it is sufficient to consider a three-cell interface. Let célsand E, from 7;, ; be
adjacent to a celEs from 7, ;. Without loss of generality, we assume téay; ; = {f1, f2}
and&y, ;; = {fs}. Then, the dimension of the mortar space ig2; is a2 x 2 matrix, and
R;;is al x 2 matrix. Itis easy to check that definition (4.1) implies

1 | f1] | fol + [ f5]
Ri; = ——
280 1al+ 180 1Al

Eliminating vector\ from (2.12), we get discrete interface continuity conditions

and Rjﬂ' =

[1 1].

N |

|f1|pf1 + |f2|pf2 = |f3|pf3 and Up = Ufy = —Ufs.
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Figure 6: Convergence rates on random meshes

The velocity condition is similar to the condition proposed and analyzed numerically in [19],
where it was shown that the resulting MFD method is exact for linear solutions. This condition
is also closely related to the “slave” or “worker” nodes local refinement technique in MFE
methods [11, 13].

In this example, we seft(z, y) = 23y + x cos(zy) sin(x) to be the exact solution anfd

to be the full tensor (412 447
T Y -1y
K(z,y) = < —zy (z + 1)2) :
The computational domain is located at the positive quadrant (), y > 0) of the XY-plane
which implies that tensoK is a positive definite matrix.
The right pictures in Fig. 5 and 6 show convergence rates for pressure and velocity. We
demonstrate convergence in discréteand maximum norms. The discrefg norm for the
velocity variable is defined in (5.21) and the maximum norm is given by

1/ d
— u-nsfds —up-n
T /

Convergence of the pressure variable is shown in the following discrete norms:

Iha = o = max

1/2

Il =palll = | D Ip(me) - pr(me)|* |E|
EETh

and
P — prlllc = max [p(mg) — pr(me)|.
EeTy,

The uniform refinement of a quadrilateral results ih%auniform mesh. Therefore, the
mortar MFD method with scalar product (2.3) is used on the sequence of smooth meshes (see
Figure 5). We observe 1.5 convergence rate for the velocity variable which was predicted in
Theorem 5.3.

The mortar MFD method with scalar product (2.4) is used on the sequence of random
meshes (see Figure 6). The method exhibits the asymptotically optimal first order convergence
rate for the velocity. This result is in agreement with the assertion of Theorem 5.1.

The second order convergence rate for the pressure variable in the disgnatem is
observed in both experiments. This confirms the results of Theorem 6.1.
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8 Conclusions

In this paper we develop the mortar MFD method on non-matching multiblock grids. We
establish a relation between the mortar MFD and mortar MFE methods. We use this relation
to prove optimal convergence results for both the pressure and the velocity on quadrilateral,
triangular, and tetrahedral grids. In addition, we establish superconvergence for the pressure
at cell centers and, in the case /o¥-uniform quadrilateral grids, superconvergence for the
normal velocities at the midpoints of edges. Our approach can be generalized to polygonal
non-matching meshes using recent advances in the theory of MFD and MFE methods (see
[17, 8)).

References

[1] T. Arbogast, L. C. Cowsar, M. F. Wheeler, and I. Yotov. Mixed finite element methods
on nonmatching multiblock gridsSIAM J. Numer. Anal.37(4):1295-1315, 2000.

[2] T. Arbogast, C. N. Dawson, P. T. Keenan, M. F. Wheeler, and I. Yotov. Enhanced
cell-centered finite differences for elliptic equations on general geomstAM J. Sci.
Comp, 19(2):404-425, 1998.

[3] F. Ben Belgacem. The mortar finite element method with Lagrange multiphenser.
Math, 84(2):173-197, 1999.

[4] C. Bernardi, Y. Maday, and A. T. Patera. A new nonconforming approach to domain
decomposition: the mortar element method. In H. Brezis and J. L. Lions, editons,
linear partial differential equations and their applicatiorisongman Scientific & Tech-
nical, UK, 1994.

[5] M. Berndt, K. Lipnikov, J. D. Moulton, and M. Shashkov. Convergence of mimetic
finite difference discretizations of the diffusion equatidgast-West J. Numer. Math.
9:253-284, 2001.

[6] M. Berndt, K. Lipnikov, M. Shashkov, M. F. Wheeler, and I. Yotov. Superconvergence
of the velocity in mimetic finite difference methods on quadrilaterals. SIAM J. Numer.
Anal., to appear.

[7] F. Brezziand M. FortinMixed and hybrid finite element metho&pringer-Verlag, New
York, 1991.

[8] Franco Brezzi, Konstantin Lipnikov, and Mikhail Shashkov. Convergence of mimetic
finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer.
Anal., to appear.

[9] J. Campbell and M. Shashkov. A tensor artificial viscosity using a mimetic finite differ-
ence algorithmJ. Comput. Phys172:739-765, 2001.

[10] P. G. Ciarlet.The finite element method for elliptic problem&rth-Holland, New York,
1978.

[11] R. E. Ewing, R. D. Lazarov, T. F. Russell, and P. S. Vassilevski. Analysis of the mixed
finite element method for rectangular Raviart-Thomas elements with local refinement.
In T. F. Chan, R. Glowinski, J. Periaux, and O. B. Widlund, editdrsird Interna-
tional Symposium on Domain Decomposition Methods for Partial Differential Equa-
tions pages 98-114. SIAM, Philadelphia, 1990.

24



[12] R. E. Ewing, M. Liu, and J. Wang. Superconvergence of mixed finite element approxi-
mations over quadrilateralSIAM J. Numer. Anal36(3):772—787, 1999.

[13] R. E. Ewing and Junping Wang. Analysis of mixed finite element methods on locally
refined grids.Numer. Math.63:183-194, 1992.

[14] P. Grisvard.Elliptic problems in nonsmooth domainBitman, Boston, 1985.

[15] J. Hyman, J. Morel, M. Shashkov, and S. Steinberg. Mimetic finite difference methods
for diffusion equationsComp. Geoscience6(3-4):333-352, 2002.

[16] J. M. Hyman, M. Shashkov, and S. Steinberg. The numerical solution of diffusion prob-
lems in strongly heterogeneous non-isotropic materialSomput. Phys132:130-148,
1997.

[17] Yu. Kuznetsov and S. Repin. Convergence analysis and error estimates for mixed finite
element method on distorted mesh&sNumer. Math.13(1):33-51, 2005.

[18] J. L. Lions and E. Magene®Non-homogeneous boundary value problems and applica-
tions volume 1. Springer-Verlag, 1972.

[19] K. Lipnikov, J. Morel, and M. Shashkov. Mimetic finite difference methods for diffusion
equations on non-orthogonal non-conformal meshe<Comput. Phys.199:589-597,
2004.

[20] L. Margolin, M. Shashkov, and P. Smolarkiewicz. A discrete operator calculus for finite
difference approximations€Comput. Meth. Appl. Mech. Engrd.87:365—-383, 2000.

[21] J. E. Morel, R. M. Roberts, and M. Shashkov. A local support-operators diffusion dis-
retization scheme for quadrilateral- z meshesJ. Comput. Phys144:17-51, 1998.

[22] J. C. Nedelec. Mixed finite elementsR?. Numer. Math, 35:315-341, 1980.

[23] Malgorzata PesZska, Mary F. Wheeler, and Ivan Yotov. Mortar upscaling for multi-
phase flow in porous medi&omput. Geosci6(1):73-100, 2002.

[24] R. A. Raviart and J. M. Thomas. A mixed finite element method for 2nd order elliptic
problems. InMathematical Aspects of the Finite Element Method, Lecture Notes in
Mathematicsvolume 606, pages 292—-315. Springer-Verlag, New York, 1977.

[25] J. E. Roberts and J.-M. Thomas. Mixed and hybrid methods. In P. G. Ciarlet and
J.L. Lions, editorsHandbook of Numerical Analysis, Vol, ppages 523-639. Elsevier
Science Publishers B.V., 1991.

[26] M. Shashkov and S. Steinberg. Solving diffusion equations with rough coefficients in
rough grids.J. Comput. Phys129:383-405, 1996.

[27] J. M. ThomasSur I'analyse nurérique des rathods délements finis hybrides et mixtes
PhD thesis, Univergit Pierre et Marie Curie, Paris, 1977.

[28] J. Wang and T. P. Mathew. Mixed finite element method over quadrilaterals. In . T.
Dimov, B. Sendov, and P. Vassilevski, editoBpnference on Advances in Numerical
Methods and Applicationpages 203-214. World Scientific, River Edge, NJ, 1994.

[29] M. F. Wheeler and I. Yotov. Multigrid on the interface for mortar mixed finite element
methods for elliptic problemsComput. Meth. Appl. Mech. End.84:287-302, 2000.

[30] Barbaral. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange
multiplier. SIAM Journal on Numerical Analysi88(3):989-1012, 2000.

25



[31] I. Yotov. Mixed finite element methods for flow in porous medRhD thesis, Rice
University, Houston, Texas, 1996. TR96-09, Dept. Comp. Appl. Math., Rice University
and TICAM report 96-23, University of Texas at Austin.

26



