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Abstract

We consider mimetic finite difference approximations to second order elliptic problems
on non-matching multiblock grids. Mortar finite elements are employed on the non-matching
interfaces to impose weak flux continuity. Optimal convergence and, in certain cases, super-
convergence is established for both the scalar variable and its flux. The theory is confirmed
by computational results.

1 Introduction

Mortar methods for finite element discretizations have been popular since they provide a nat-
ural framework for domain decomposition. It is often desirable to divide the computational
domain into non-overlapping blocks, where grids are defined independently on each of these
blocks. The geometry of the problem, discontinuities in the material properties, or features
in the solution may provide a natural decomposition of the problem domain into multiple
such blocks. In this paper we develop a mortar method in the framework of mimetic finite
difference (MFD) methods. This method has the advantages of a standard MFD method.
It employs discrete operators that preserve locally certain critical properties of the original
continuum differential operators, such as conservation laws, solution symmetries, and funda-
mental identities of vector calculus. In addition to that, it also inherits the benefits that stem
from the mortar framework.
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We develop the method for second order linear elliptic equations. Introducing a flux vari-
able, we solve for a scalar functionp and a vector functionu satisfying

u = −K∇p in Ω, (1.1)

∇ · u = b in Ω, (1.2)

p = g on∂Ω, (1.3)

whereΩ ⊂ Rdim , dim = 2 or 3, is a multiblock domain with a Lipschitz continuous bound-
ary, andK is a symmetric, uniformly positive definite tensor withL∞(Ω) components. The
Dirichlet boundary conditions are considered merely for simplicity. In porous media applica-
tions the system (1.1)–(1.3) models single phase Darcy flow, wherep is the pressure,u is the
velocity, andK represents the rock permeability divided by the fluid viscosity.

The mimetictechnique has been successfully employed in a number of science and en-
gineering applications, including diffusion [26, 16, 21], continuum mechanics [20], and gas
dynamics [9]. MFD methods work well for problems with rough coefficients and general
grids, including unstructured three-dimensional meshes comprised of hexahedra, tetrahedra,
and any cell type that has three faces intersecting at each vertex [15]. The methods has also
been extended to locally refined meshes with hanging nodes [19],

A connection between the MFD method and the MFE method with Raviart-Thomas finite
elements was established in [5]. This was achieved by showing that the scalar product in the
velocity space proposed in [16] for MFD methods can be viewed as a quadrature rule in the
context of MFE methods. In [6], superconvergence for the normal velocities in MFD methods
onh2-uniform quadrilateral meshes was established.

Mixed finite element (MFE) discretizations on quadrilateral meshes [27, 28, 2, 12] are
based on the Piola transformation [27, 7], which preserves continuity of the normal component
of the velocity across mesh edges, but results in the necessity to integrate rational functions
over quadrilaterals. This is further complicated in the case of a full or non-constant diffusion
tensor. The results in [5] provide an efficient numerical quadrature with a minimal number of
points, also allowing for the extension of MFE methods to general polygons and polyhedrons.

The mortar MFE method has been studied, for example, in [31, 1] (see also [4, 3, 30]
for seminal work on mortar couplings for Galerkin finite element discretizations). In these
methods, the domain is divided into nonoverlapping subdomain blocks, and each of these
subdomain blocks is discretized on a locally constructed mesh. As a result, the subdomain
grids do not match at inter block boundaries. To solve this problem, Lagrange multiplier
pressures are introduced at the inter block boundaries. This Lagrange multiplier space is
called the mortar finite element space. It was shown in [1] that the mortar MFE method
is optimally convergent, if the boundary space has one order higher approximability than the
normal trace of the velocity space. The multiblock structure of the mortar MFE systems allows
for scalable parallel domain decomposition solvers and preconditioners, which maximize data
and computation locality, to be developed and applied [1, 29]. Mortar techniques are also very
suitable for multiphysics applications [23].

In this paper, we employ mortar techniques to extend the MFD method to the case of non-
matching multiblock grids. Discrete interface continuity conditions are derived in the MFD
framework, based on a piecewise linear mortar finite element space. We exploit the relation
between MFD and MFE methods to give a variational formulation of the mortar MFD method
and study its convergence properties. We establish optimal convergence for both the pressure
and the velocity on quadrilateral, triangular, and tetrahedral grids. We also prove supercon-
vergence for the pressure at the cell centers and, in the case ofh2-uniform quadrilateral grids,
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superconvergence for the normal velocities at the midpoints of the edges. The results here can
be viewed as extensions of the MFD convergence results of [5] and velocity superconvergence
results of [6] to the case of non-matching multiblock grids. We also note that, to the best of
our knowledge, no previous pressure superconvergence results for the MFD methods have
been reported.

The outline of the paper is as follows. In Section 2, we describe the mortar MFD method.
In particular, we extend the MFD method to the case of non-overlapping subdomain blocks
with non-matching grids by defining appropriate discrete interface conditions. In Section 3,
the mortar MFE method is described, and in Section 4 it is related to the mortar MFD method.
In Sections 5 and 6, we give error estimates for the velocity and the pressure, respectively.
In Section 7, we confirm the theory with numerical experiments, and in Section 8, we make
concluding remarks.

2 The mortar mimetic finite difference method

The fundamental idea in a mortar method is to decompose the computational domain into
non-overlapping subdomains. To that end, we assume thatΩ can be decomposed into non-
overlapping polygonal subdomain blocksΩi,

Ω =
n⋃

i=1

Ωi.

Denote byΓi,j = ∂Ωi ∩ ∂Ωj the interior block interfaces. Let

Γ =
n⋃

i,j=1

Γi,j , and Γi = ∂Ωi ∩ Γ = ∂Ωi\∂Ω.

Let Th,i be a conforming,shape-regular, quasi-uniform partition ofΩi, 1 ≤ i ≤ n [10],
allowing for Th,i andTh,j to be non-matching onΓi,j . We will consider simplicial elements
in two and three dimensions as well as convex quadrilateral elements in two dimensions. Let
Eh,i,j be the trace of meshTh,i on the interfaceΓi,j and letEh,i be the trace ofTh,i on ∂Ωi.
In our derivation, we use a quasi-uniform partition ofΓi,j that is not necessarily the trace of
Th,i on the interfaceΓi,j . We denote this partition bỹEh,i,j , and postulate that̃Eh,i,j ≡ Ẽh,j,i.
This partition will be used to impose interface matching conditions via mortar finite elements.
Finally, we denote by

Th =
n⋃

i=1

Th,i.

the partition of the multiblock domainΩ.

2.1 Mimetic finite difference subdomain discretization

In this section, we derive two mutually adjoint discrete operators with respect to certain scalar
products in discrete velocity and pressure spaces. These discrete operators form the basis for
the mimetic finite difference (MFD) method. To begin, we now consider only one subdomain
Ωi and the spacesXi = L2(Ωi) of velocities andQi = H1(Ωi) of pressures. These spaces
are equipped with the scalar products

(u, v)Xi =
∫
Ωi

K−1u · v dx and (p, q)Qi =
∫
Ωi

pq dx +
∮

∂Ωi

pq ds.
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On these two spaces, we introduce flux operatorG : Qi → Xi and extended divergence
operatorD : Xi → Qi by

Gp = −K∇p, Du =
{

∇ · u on Ωi,
−u · ni on ∂Ωi,

whereni is the outer unit normal to∂Ωi.
The Gauss-Green formula can now be stated using this notation as

(u, Gp)Xi = (p, D u)Qi ∀p ∈ Qi, u ∈ Xi.

This implies that the flux and extended divergence are adjoint operators, in other words
G = D∗. For the sake of simplicity, we omit subscript ‘i’ whenever this does not result in
ambiguity. Unless we specifically state it, the following applies to both 2D and 3D, and we
will use the term face in both cases, such that we refer to an edge in 2D as a face.

Thefirst step in the derivation of the MFD method is to specify discrete degrees of freedom
for the primary variables, pressure and velocity. We choose the discrete pressure unknowns
to be located at the geometric centers of mesh elements ofTh,i. Additional discrete pressure
unknowns are located at centers of boundary faces ofEh,i (see Fig. 1). We choose discrete
unknowns that represent the normal component of the velocity to be located at midpoints
of mesh faces ofTh,i. In other words, this face-based unknown is a scalar and represents
the orthogonal projection of a velocity vector onto the unit vector normal to the mesh face.
The direction of the normal vector isa priori fixed. We also assume that normal vectors to
boundary edges are outward vectors (see Fig. 1).

Figure 1: Location of pressure unknowns (marked by bullets) and velocity un-
knowns (marked by arrows).

In the secondstep of the MFD method, we equip the spaces of discrete pressures and
normal velocities with scalar products. Here, we denote the vector space of discrete pressures
byQd

i . Denote byE andf an element and a face in the partitionTh,i, respectively, and bypE

andpf the pressure components associated withE andf , respectively. Then we define the
scalar product on the vector spaceQd

i as

[~p, ~q]Qd
i

=
∑

E∈Th,i

|E| pE qE +
∑

f∈Eh,i

|f | pf qf , ∀~p, ~q ∈ Qd
i , (2.1)
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where,|E| denotes the volume (or, in 2D, the area) of elementE and|f | denotes the area (or,
in 2D, length) of facef . LetQd,0

i be the vector space of only cell-based unknowns. The scalar
product onQd,0

i is defined as only the first sum in (2.1).
We denote the vector space of face-centered normal velocities byXd

i and define the scalar
product onXd

i as

[~u, ~v]Xd
i

=
∑

E∈Ti,h

[~u, ~v]Xd
i ,E , (2.2)

where[~u, ~v]Xd
i ,E is a scalar product over an elementE, involving only normal velocity com-

ponents on element faces. To complete the second step, we now define this element scalar
product.

We note that a velocity vector inRdim can be recovered fromdim orthogonal projections
on anydim linearly independent vectors. For example, for a convex non-degenerate cell in
R3, any triplet of normal vectors to faces with a common point satisfy the above requirement.
These orthogonal projections are chosen as degrees of freedom. The recovered velocities
are used to define scalar product (2.2). To illustrate this recovery process, we consider two
examples. LetE be a convex polygon withs edges (s = 3 for a triangle ands = 4 for a

n4

v4

n1

v1

n1

n2r1

r2

r3

r4

T4

T1

Figure 2: Recovered vectorsv1, v4 and trianglesT1, T4.

quadrilateral). As illustrated in Fig. 2, four recovered velocity vectors can be associated with
the four vertices of a quadrilateral. For example, velocityv1 is recovered from its projections
onto the normal vectorsn1 andn2. In the general case, we denote byv(rk) the velocity
recovered at thek-th vertexrk of E, k = 1, . . . , s.

In this paper, we consider two cell-based scalar products in 2D. The first one is given by

[~u, ~v]Xd
i ,E =

1
αE

s∑
k=1

|Tk|K−1(rk)u(rk) · v(rk), αE =
1
|E|

s∑
k=1

|Tk|, (2.3)

where|Tk| is the area of the triangle formed by the two edges sharing thek-th vertex. See, for
example, the shaded trianglesT1 andT4 in Fig. 2. Note thatαE = 3 for triangles andαE = 2
for quadrilaterals. The second cell-based scalar product requires only one evaluation of the
tensorK and is given by

[~u, ~v]Xd
i ,E =

1
αE

s∑
k=1

|Tk|K−1
E u(rk) · v(rk) (2.4)

whereKE is the value of tensorK at the center of gravity ofE.
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Note that both (2.2), (2.3) and (2.2), (2.4) are indeed scalar products onXd
i , sinceK

is a uniformly bounded, symmetric and positive definite tensor, and there are two positive
constantsc1 andc2 independent ofh such that

c1|E|
∑

f⊂∂E

v2
f ≤ [~v, ~v]Xd

i ,E ≤ c2|E|
∑

f⊂∂E

v2
f (2.5)

wherevf denotes the velocity component associated with facef .
In the 3D case, we only allowE to be a tetrahedron. Since each vertex ofE is shared by

exactly three faces, we can uniquely recover velocity vectors at the vertices ofE. The scalar
product overE is given either by (2.3) or by (2.4) withs = 4. Since in the case of tetrahedron
Tk = E, we haveαE = 4.

The third step of the MFD method is to derive a discrete approximation to the divergence
operator,DIV d, which we shall refer to as theprimeoperator. We use the divergence theorem
on elementE to define this discrete divergence operator as

(DIV d ~u)
∣∣∣
E
≡ 1
|E|

∑
f⊂∂E

uf |f | (2.6)

Formula (2.6) assumes an external orientation of normal vectors. If the vector normal to facef
points into the element (see, e.g. Fig. 1),uf must be replaced by−uf . The extended discrete
divergence operator,Dd : Xd

i → Qd
i , is given by

Dd~u =

 (DIV d~u)
∣∣
E

∀E ∈ Th,i,

−uf ∀f ∈ Eh,i.
(2.7)

In the fourth stepof the MFD method, a discrete flux operatorGd that is adjoint to the
discrete extended divergence operatorDd with respect to the scalar products (2.1) and (2.2) is
derived, i.e.

[Dd~u, ~p]Qd
i
≡ [~u, Gd~p]Xd

i
∀~u ∈ Xd

i , ~p ∈ Qd
i . (2.8)

We will refer to (2.8) as discrete Green’s formula. See [5] for the explicit form of the operator
Gd. Now, the MFD method for subdomainΩi may be summarized as follows:

~u = Gd ~p,

DIV d ~u = ~b,
(2.9)

where~b is inQd
i . The entries of~b are integral averages of right-hand sideb in (1.2) over the

elements ofTh,i.
The MFD method (2.9) is presented using notation that is well established in the finite

difference and finite volume communities. In Section 4, we rewrite it in a variational form
(4.2) to relate mortar MFD and mortar MFE methods.

2.2 Interface conditions between subdomain blocks

To derive the mortar MFD discretization onΩ, we must impose continuity conditions at inter-
facesΓi,j between subdomainsΩi andΩj and boundary conditions onΓ. Hereafter, we will
use subscript ‘i’ for vectors and operators satisfying equation (2.9) on subdomainΩi.

We recall that the solution of (1.1)-(1.3) satisfies continuity conditions at interfacesΓi,j .
In particular, the pressure and the normal flux are both continuous almost everywhere across
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Γi,j . We will refer to these conditions as interface continuity conditions. In order to impose
these conditions discretely on non-matching grids, we introduce the intermediate vector space
Λd

i,j ≡ Λd
j,i that is associated with the interface partitionẼh,i,j . We will make precise the

definition ofΛd
i,j later in Section 4, where it will be related to a mortar space in a mixed finite

element method.
Denote byQd

i,j the vector space of pressure unknowns associated with the faces of parti-
tion Eh,i,j . We define the scalar product inQd

i,j to be

[~pi,j , ~qi,j ]Qd
i,j

=
∑

f⊂Eh,i,j

|f | pi,j,f qi,j,f

wherepi,j,f (resp.,qi,j,f ) is the component of vector~pi,j (resp.,~qi,j) associated with facef .
Similarly, we define the vector spaceXd

i,j of velocity unknowns associated with the faces
of partitionEh,i,j . We chooseXd

i,j to be isometric toQd
i,j , i.e.

[~ui,j , ~vi,j ]Xd
i,j

= [~ui,j , ~vi,j ]Qd
i,j
.

Finally, letRi,j : Λd
i,j → Qd

i,j be a linear projection operator that is exact for constant vectors.
We will make precise the definition ofRi,j later in Section 4, where it will be related to the
orthogonal projector from the mortar finite element space to the space of piecewise constant
functions.

Discrete interface continuity conditions are derived from two requirements. First, we
requiremass conservationacrossẼh,i,j , i.e.

[~ui,j , Ri,j~µ]Xd
i,j

= −[~uj,i, Rj,i~µ]Xd
j,i

∀~µ ∈ Λd
i,j . (2.10)

LetFi,j be the diagonal matrix with entries that are the areas of faces ofEh,i,j . It is not difficult
to see that mass conservation (2.10) implies the interface condition

RT
i,j Fi,j ~ui,j = −RT

j,i Fj,i ~uj,i. (2.11)

Second, we require thatthe discrete Green’s formula(2.8)holds onΩi ∪ Ωj . It is easy to see
that this holds if the sum of the discrete Green’s formulas forΩi andΩj cancels the boundary
terms associated with the common interface, i.e.

[~pi,j , ~ui,j ]Qd
i,j

= −[~pj,i, ~uj,i]Qd
j,i
.

Hence, a sufficient condition for the validity of the discrete Green’s formula onΩi ∪ Ωj is

∃~λ ∈ Λd
i,j : ~pi,j = Ri,j

~λ and ~pj,i = Rj,i
~λ. (2.12)

In the general case,~λ is considered as an additional unknown.

Remark 2.1 Locally refined meshes can be viewed as non-matching meshes. In this special
case, vector~λ can be eliminated from(2.12). In Section 7, we derive simple formulas for the
discrete interface continuity conditions on such meshes.

The mortar MFD method for (1.1)–(1.3) is defined by combining the system of subdomain
equations (2.9) with the interface continuity conditions (2.11) and (2.12) and the boundary
conditions

pf = gf ∀f ⊂ ∂Ω, (2.13)

wheregf is the integral average ofg over facef .
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3 The mortar mixed finite element method

In this section we briefly recall the mortar mixed finite element method introduced in [31, 1],
which will later be related to the mortar MFD method that was introduced in the previous
section. We follow the standard notations for norms, semi-norms and scalar products. A weak
solution of (1.1)–(1.3) is a pair(u, p) ∈ H(div; Ω)× L2(Ω), such that

(K−1u,v) = (p,∇ · v)− 〈g,v · n〉∂Ω ∀v ∈ H(div; Ω), (3.1)

(∇ · u, w) = (b, w) ∀w ∈ L2(Ω). (3.2)

It is well known (see, e.g., [7, 25]) that (3.1)–(3.2) has an unique solution. The multi-domain
formulation of (3.1)–(3.1) is based on the spaces

Vi = H(div; Ωi), V =
n⊕

i=1

Vi,

Wi = L2(Ωi), W =
n⊕

i=1

Wi = L2(Ω).

If the solution(u, p) of (3.1)–(3.2) belongs toH(div; Ω)×H1(Ω), it is easy to see [7, pp. 91–
92] that it satisfies, for1 ≤ i ≤ n,

(K−1u,v)Ωi = (p,∇ · v)Ωi − 〈p,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ ∀v ∈ Vi, (3.3)

(∇ · u, w)Ωi = (b, w)Ωi ∀w ∈Wi. (3.4)

The mortar mixed finite element method discretizes (3.3)–(3.4), coupled with a mortar-based
discretization of the interface conditions. Next, we present the definition of the mixed finite
element spaces. We describe the two-dimensional elements: quadrilaterals and triangles. The
finite element spaces for a tetrahedral element are constructed similarly to the finite element
spaces for a triangular element.

For any elementE ∈ Th, there exists a bijection mappingFE : Ê → E, whereÊ is the
reference element. For example, in the case of convex quadrilaterals,Ê is the unit square
with verticesr̂1 = (0, 0)T , r̂2 = (1, 0)T , r̂3 = (1, 1)T and r̂4 = (0, 1)T . Denote by
ri = (xi, yi)T , i = 1, 2, 3, 4, the four corresponding vertices of an elementE as shown in
Fig. 3. Then,FE is the bilinear mapping given by

FE(r̂) = r1 (1− x̂)(1− ŷ) + r2 x̂(1− ŷ) + r3 x̂ŷ + r4 (1− x̂)ŷ.

Note that the Jacobi matrixDFE and its JacobianJE are linear functions of̂x andŷ. Indeed,
straightforward computations yield

DFE = [(1− ŷ) r21 + ŷ r34, (1− x̂) r41 + x̂ r32] ,

and
JE = 2|T1|+ 2(|T2| − |T1|)x̂+ 2(|T4| − |T1|)ŷ, (3.5)

whererij = ri − rj and trianglesTk, k = 1, 2, 3, 4, are defined in (2.3). SinceE is convex,
the JacobianJE is uniformly positive, i.e.JE(x̂, ŷ) > 0. We denote the inverse mapping by
F−1

E and its Jacobian byJF−1
E

.
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r̂1

r4

E

r̂4

r1r̂2

r̂3

r3

r2
FE

Ê

n4

n̂2n̂4

n̂1

n̂3 n3

n2

n1

Figure 3: Bilinear mapping and orientation of normal vectors.

In the case of triangles,̂E is the reference right triangle with verticesr̂1 = (0, 0)T ,
r̂2 = (1, 0)T , and r̂3 = (0, 1)T . Let r1, r2, andr3 be the corresponding vertices ofE,
oriented in a counter clockwise direction. The linear mapping for triangles has the form

FE(r̂) = r1(1− x̂− ŷ) + r2x̂+ r3ŷ, (3.6)

with respective Jacobi matrix and Jacobian

DFE = [r21, r31]
T and JE = 2|E|. (3.7)

Note that in this case the mapping is affine and the Jacobi matrix and its Jacobian are constants.
We denote the lowest order Raviart-Thomas-Nedelec (RTN) mixed finite element spaces

[27, 24, 22] by
Vh,i ×Wh,i ⊂ Vi ×Wi

These spaces are initially defined on the reference element. For example, ifÊ is the unit
square, the spaces are

V̂(Ê) = P1,0(Ê)× P0,1(Ê) and Ŵ (Ê) = P0(Ê),

whereP1,0 (or P0,1) denotes the space of polynomials linear in thex̂ (or ŷ) variable and
constant in the other variable, andP0 denotes the space of constant functions. In the case
whenÊ is the unit triangle, the spaces on this reference element are

V̂(Ê) = P0(Ê)× P0(Ê) + P0(Ê)x̂ and Ŵ (Ê) = P0(Ê).

The velocity space on any elementE is defined via the Piola transformation

1
JE

DFE : (L2(Ê))dim → (L2(E))dim ∀E ∈ Th.

The RTN0 spaces onTh,i are given by

Vh,i = {v ∈ Vi : v|E = J−1
E DFEv̂ ◦ F−1

E , v̂ ∈ V̂(Ê) ∀E ∈ Th,i},

Wh,i = {w ∈Wi : w|E = ŵ ◦ F−1
E , ŵ ∈ Ŵ (Ê) ∀E ∈ Th,i}.

(3.8)

The following two properties of the Piola transformation will be useful in the analysis. For
anyv̂ ∈ V̂(Ê) and the relatedv = J−1

E DFEv̂ ◦ F−1
E , we have∫

E
∇ · v dx =

∫
Ê
∇̂ · v̂ dx̂ and

∫
f
v · nf ds =

∫
f̂
v̂ · n̂f̂ dŝ, (3.9)
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wheref is any face ofE andnf andn̂f̂ are the unit normal vectors tof andf̂ , respectively.

The quasi-uniform partitioñEh,i,j of Γi,j introduced above is referred to as the mortar
interface mesh. Denote byΛh,i,j ⊂ L2(Γi,j) the mortar space onΓi,j , containing either the
continuous or discontinuous piecewise linear polynomials onẼh,i,j . Let

Vh =
n⊕

i=1

Vh,i, Wh =
n⊕

i=1

Wh,i, Λh =
⊕

1≤i<j≤n

Λh,i,j .

Although normal components of vectors inVh are continuous between elements within each
blockΩi, there is no such restriction acrossΓ. The spaceΛh is called the mortar finite element
space onΓ. In the following we treat any functionµ ∈ Λh as extended by zero on∂Ω. An
additional assumption on the spaceΛh, and hencẽEh,i,j , will be made below in (4.7) and
(5.13). We remark that̃Eh,i,j need not be conforming if a discontinuous space is used.

In the mortar mixed finite element approximation of (3.1)–(3.2), we seekuh ∈ Vh, ph ∈
Wh, λh ∈ Λh such that, for1 ≤ i ≤ n,

(K−1uh,v)Ωi = (ph,∇ · v)Ωi − 〈λh,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ ∀v ∈ Vh,i, (3.10)

(∇ · uh, w)Ωi = (b, w)Ωi ∀w ∈Wh,i, (3.11)
n∑

i=1

〈uh · ni, µ〉Γi = 0 ∀µ ∈ Λh. (3.12)

Remark 3.1 The above method imposes continuity of the pressure by approximating the pres-
sure on the interfaces by a single-valued mortar functionλh, while continuity of the normal
flux is imposed weakly in(3.12)with respect to Lagrange multipliers in the mortar space.

4 Relating mortar MFD and mortar MFE methods

The basic tool for the error analysis of the mortar MFD method is based on establishing
connections with the mortar mixed finite element (MFE) method (3.10)–(3.12). We begin by
establishing an isomorphism between finite difference and finite element spaces.

The degrees of freedom ofVh,i are associated with mesh faces. Therefore, the space
Vh,i is isomorphic to the vector spaceXd

i . Similarly, the degrees of freedom of the finite
element spaceWh,i are associated with cell centers and the space is isometric to the vector
spaceQd,0

i equipped with the norm induced by its scalar product defined in Section 2.1 (see
also [5]). By the same arguments, the vector spaceXd

i,j is isometric to the finite element space
Vh,i · ni|Γi,j

.

Finally, we chooseΛd
i,j to be isomorphic to the finite element spaceΛh,i,j . In particular,

degrees of freedom ofΛd
i,j are the values of the pressure at vertices of partitionẼh,i,j . In

the case of discontinuous mortars, each vertex may be associated with multiple degrees of
freedom. The projectorRi,j is implicitly defined by

[Ri,j~µi,j , ~qi,j ]Qd
i,j

= 〈µh,i,j , qh,i,j〉Γi,j ∀~µi,j ∈ Λd
i,j , ~qi,j ∈ Qd

i,j , (4.1)

whereµh,i,j ∈ Λh,i,j andqh,i,j ∈ Vh,i · ni|Γi,j
are the finite element counterparts of vectors

~µi,j and~qi,j , respectively.
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For each interfaceΓi,j , we define anL2-orthogonal projection operatorRh,i,j : L2(Γi,j) →
Vh,i · ni|Γi,j

such that, for anyφ ∈ L2(Γi,j),

〈φ−Rh,i,jφ, v · ni〉Γi,j = 0 ∀v ∈ Vh,i.

The operatorRh,j,i : L2(Γi,j) → Vh,j ·nj |Γi,j is defined analogously. LetRh,i : L2(∂Ωi) →
Vh,i · ni|∂Ωi

be such that, for anyφ ∈ L2(∂Ωi),

(Rh,iφ) |Γi,j = Rh,i,j

(
φ|Γi,j

)
.

Note that the projection operatorRh,i,j restricted toΛh,i,j acts from the space of piecewise
linear functions oñEh,i,j to the space of piecewise constant functions onEh,i,j . Using (4.1), it
is clear that the projectorRi,j defined on the vector spaceΛd

i,j is the matrix representation of
Rh,i,j : Λh,i,j → Vh,i · ni|Γi,j .

The next step is to reformulate the MFD method in a way that is more suitable for our
analysis. Multiplying the first equation in (2.9) by~vi ∈ Xd

i , the second one by~qi ∈ Qd,0
i , and

using the discrete Green’s formula (2.8), we get

[~ui, ~vi]Xd
i
− [~pi, Dd

i ~vi]Qd
i

= 0 ∀~vi ∈ Xd
i ,

[~qi, DIV d
i ~ui]Qd,0

i
= [~bi, ~qi]Qd,0

i
∀~qi ∈ Qd,0

i .
(4.2)

Recall that the above equations are coupled with the discrete interface continuity conditions
(2.11), (2.12) and the boundary conditions (2.13). Using the isomorphism between the finite
element spaceVh,i×Wh,i and the vector spaceXd

i ×Q
d,0
i , we define finite element functions

qh,i, bh,i anduh,i corresponding to vectors~qi,~bi and~ui, respectively. Then,

[~qi, DIV d
i ~ui]Qd,0

i
= (qh,i, ∇ · uh,i)Ωi .

The definition of~bi implies that

[~bi, ~qi]Qd,0
i

= (bh,i, qh,i)Ωi = (b, qh,i)Ωi .

We decompose vector~pi as~pi = (~p 0
i , ~p

1
i ), where~p 0

i ∈ Qd,0
i , and denote the finite element

counterparts of~p 0
i and~vi ∈ Xd

i by ph,i andvh,i, respectively. Letλh ∈ Λh be the mortar
finite element counterpart of~λ from the discrete pressure interface continuity condition (2.12).
The Dirichlet boundary conditions specify the components of vector~p 1

i on ∂Ω. Using (2.7),
(2.12), (2.13), and the definition of the projectorsRi,j andRh,i,j , we get

[~pi, Dd
i ~vi]Qd

i
= (ph,i, ∇ · vh,i)Ωi − 〈Rh,iλh, vh,i · ni〉Γi − 〈Rh,ig,vh,i · ni〉∂Ωi\Γ

= (ph,i, ∇ · vh,i)Ωi − 〈λh, vh,i · ni〉Γi − 〈g,vh,i · ni〉∂Ωi\Γ.
(4.3)

Next, lettingµh,i,j ∈ Λh,i,j be the finite element counterpart of vector~µi,j , the discrete inter-
face continuity condition (2.10) becomes

〈µh,i,j , uh,i · ni〉Γi,j = −〈µh,i,j , uh,j · nj〉Γj,i .

Finally, by introducing the quadrature rule

(K−1uh,i, vh,i)h,Ωi
≡ [~ui, ~vi]Xd

i
,

11



we can reformulate the mortar MFD problem (2.9), (2.12), (2.11) and (2.13) as the following
problem. We seekuh ∈ Vh, ph ∈Wh, λh ∈ Λh such that, for1 ≤ i ≤ n,

(K−1uh,v)h,Ωi
= (ph,∇ · v)Ωi − 〈λh,v · ni〉Γi − 〈g,v · ni〉∂Ωi\Γ ∀v ∈ Vh,i, (4.4)

(∇ · uh, w)Ωi = (b, w)Ωi ∀w ∈Wh,i, (4.5)
n∑

i=1

〈uh · ni, µ〉Γi = 0, ∀µ ∈ Λh. (4.6)

The next lemma shows that the problem is well posed.

Lemma 4.1 Assume that for anyφ ∈ Λh,

Rh,iφ = 0, 1 ≤ i ≤ n, implies that φ = 0. (4.7)

Then there exists a unique solution of(4.4)–(4.6).

Proof.The proof closely follows the proof of Lemma 2.1 in [1] with only a slight modi-
fication. Since (4.4)–(4.6) is a square system, it is sufficient to show uniqueness. Letb = 0
andg = 0. Settingv = uh, w = ph, andµ = −λh, adding (4.4)–(4.6), and summing over
1 ≤ i ≤ n, implies that

n∑
i=1

(K−1uh,uh)h,Ωi
= 0.

The coercivity result from [5]

n∑
i=1

(K−1uh,uh)h,Ωi
≥ C‖uh‖2

0,Ω (4.8)

implies thatuh = 0. The argument for proving thatph = λh = 0 is the same as in the proof
of Lemma 2.1 in [1]. �

Remark 4.1 Above, as well as in several other places in this paper, we employ results ob-
tained in [1]. Although [1] only treats affine elements, it is easy to check that the arguments
used to obtain the results referred to here also apply in the case of general quadrilateral
elements.

We end this section by noting that (4.8) implies that(·, ·)h is a scalar product that gives
rise to a norm‖ · ‖h in Vh. This norm is equivalent to theL2-norm, i.e., there exist positive
constantsc1 andc2 independent ofh, such that

c1‖v‖0,Ω ≤ ‖v‖h ≤ c2‖v‖0,Ω ∀v ∈ Vh. (4.9)

The left inequality is given in (4.8). The right inequality follows from a standard mapping
argument, using the equivalence of norms on the reference elementÊ.
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5 Velocity error estimates for the mortar MFD method

We first recall several projection operators that will be used in the analysis. On eachΩi there
exists a projectionΠi from (H1(Ωi))dim ontoVh,i satisfying

(∇ · (Πiq− q), w)Ωi = 0 w ∈Wh,i. (5.1)

Let Π :
⊕n

i=1(H
1(Ωi))dim → Vh be defined by(Πq)|Ωi = Πi(q|Ωi). The operatorΠ is

defined locally on each elementE by

Π̂q = Π̂q̂,

whereΠ̂ : (H1(Ê))dim → V̂(Ê) is the reference element projection operator satisfying∫
f̂
(Π̂q̂− q̂) · n̂ = 0 ∀f̂ ⊂ ∂Ê.

LetPh be theL2(Γ) projection ontoΛh satisfying for anyψ ∈ L2(Γ),

〈ψ − Phψ, µ〉Γ = 0 ∀µ ∈ Λh.

For anyϕ ∈ L2(Ω), letQhϕ ∈Wh be itsL2(Ω) projection satisfying

(ϕ−Qhϕ,w)Ω = 0 ∀w ∈Wh.

We state several well-known approximation properties of these projection operators:

‖ψ − Phψ‖0,Γi,j ≤ C‖ψ‖r,Γi,jh
r, 0 ≤ r ≤ 2, (5.2)

‖ϕ−Qhϕ‖0,Ωi ≤ C‖ϕ‖r,Ωih
r, 0 ≤ r ≤ 1, (5.3)

‖q−Πiq‖0,Ωi ≤ C‖q‖1,Ωih, (5.4)

‖∇ · (q−Πiq)‖0,Ωi ≤ C‖q‖r+1,Ωih
r, 0 ≤ r ≤ 1, (5.5)

where‖·‖r is theHr-norm. Bounds (5.2) and (5.3) are standardL2-projection approximation
results [10]; bounds (5.4) and (5.5) can be found in [7, 25] for affine elements and [27, 28] for
quadrilaterals.

We will also make use of the following continuity bound forΠ.

Lemma 5.1 For all elementsE and for allq ∈ (H1(E))dim , there exists a constantC inde-
pendent ofh such that

‖Πq‖1,E ≤ C‖q‖1,E .

Proof.Let us first consider the case of simplicial grids in two and three dimensions. It is
well known [24] that for allE ∈ Th

‖Πq‖H(div;E) ≤ C‖q‖1,E .

The definition ofVh on simplexes gives that on eachE, we have∇ · Πq = 1
dim

∂(Πq)i

∂xi
,

i = 1, . . . , dim, which, combined with the above inequality, implies the assertion of the
lemma.
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In the case of quadrilateral grids, it follows from the definition of the bilinear mapping
that for allx̂ ∈ Ê ands = 0, 1

|DFE(x̂)|s,∞,Ê ≤ Ch, |JE(x̂)|s,∞,Ê ≤ Ch2,

∣∣∣∣ 1
JE

DFE

∣∣∣∣
s,∞,Ê

≤ Ch−1, (5.6)

|F−1
E |1,∞,Ê ≤ Ch−1, ‖JF−1

E
‖∞,Ê ≤ Ch−2. (5.7)

The rest of the proof is based on the inverse inequality which is not a trivial result for a general
quadrilateral. For the sake of completeness, we prove it below. The definition (3.8) implies∫

E

∣∣∣∣ ∂q∂xi

∣∣∣∣2 dx =
∫

Ê

∣∣∣∣ ∂∂xi

(
1
JE

DFEq̂
)∣∣∣∣2 |JE |dx̂.

Thus, using (5.6) and (5.7), we get

|q|1,E ≤ C

(∥∥∥∥ 1
JE

DFE

∥∥∥∥
∞,Ê

|F−1
E |1,∞,Ê‖JE‖1/2

∞,Ê
|q̂|1,Ê

+ ‖JE‖1/2

∞,Ê

∣∣∣∣ 1
JE

DFE

∣∣∣∣
1,∞,Ê

|F−1
E |1,∞,Ê‖q̂‖0,Ê

)
≤ Ch−1‖q̂‖1,Ê .

(5.8)

Similarly, we get the estimates

‖q‖0,E ≤ C‖q̂‖0,Ê and ‖q̂‖0,Ê ≤ C‖q‖0,E . (5.9)

Combining (5.8) and (5.9) and using the standard inverse inequality on the reference element
Ê, we get

|q|1,E ≤ Ch−1‖q̂‖1,Ê ≤ Ch−1‖q̂‖0,Ê ≤ Ch−1‖q‖0,E ,

which establishes the inverse inequality for quadrilaterals. Using this inverse inequality, we
have

|Πq|1,E = |Πq− q0|1,E ≤ Ch−1‖Πq− q0‖0,E

≤ Ch−1(‖Πq− q‖0,E + ‖q− q0‖0,E)

whereq0 is a constant vector. Letq0 be theL2(E) projection ofq onto the space of constant
vectors. Combining the above inequality with the approximation properties (5.3) and (5.4)
results in the estimate

|Πq|1,E ≤ C‖q‖1,E .

The bound‖Πq‖0,E ≤ C‖q‖1,E follows from the approximation property (5.4). This proves
the assertion of the lemma. �

Throughout the paper we will be using the nonstandard trace theorem [14, Theorem
1.5.2.1]

‖q‖r,Γi,j ≤ C‖q‖r+1/2,Ωi
.

We will also make use of the trace inequality

‖v · ni‖0,∂Ωi
≤ Ch−1/2‖v‖0,Ωi , ∀ v ∈ Vh,i, (5.10)
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which follows from a simple scaling argument.
Let

Vh,0 =

{
v ∈ Vh :

n∑
i=1

〈v|Ωi · ni, µ〉Γi = 0 ∀µ ∈ Λh

}
be the space of weakly continuous velocities, with respect to the mortar space. Then the
mortar MFD method (4.4)–(4.6) can be rewritten in the following way. Finduh ∈ Vh,0 and
ph ∈Wh such that

(K−1uh,v)h =
n∑

i=1

(ph,∇ · v)Ωi − 〈g,v · n〉∂Ω, ∀v ∈ Vh,0, (5.11)

n∑
i=1

(∇ · uh, w)Ωi = (b, w), ∀w ∈Wh. (5.12)

It was shown in [1] that there exists a projection operatorΠ0 onto Vh,0 such that, for any
q ∈ (H1(Ω))dim ,

(∇ · (Π0q− q), w)Ω = 0 w ∈Wh.

Moreover, if there exists a constantC, independent ofh, such that

‖µ‖0,Γi,j ≤ C(‖Rh,iµ‖0,Γi,j + ‖Rh,jµ‖0,Γi,j ) ∀µ ∈ Λh, 1 ≤ i < j ≤ n, (5.13)

thenΠ0 satisfies the approximation properties

‖Π0q−Πq‖0 ≤ C

n∑
i=1

‖q‖r+1/2,Ωi
hr+1/2, 0 ≤ r ≤ 1, (5.14)

and

‖Π0q− q‖0 ≤ C

n∑
i=1

‖q‖1,Ωih. (5.15)

5.1 Optimal convergence estimates for the velocity

We now proceed by proving optimal error estimates for the velocity variable in the mortar
MFD method. The analysis is the same for both scalar products (2.3) and (2.4).

Subtracting (5.11)–(5.12) from (3.3)–(3.4) gives the error equations

(K−1(Πu− uh),v)h =
n∑

i=1

{(p− ph,∇ · v)Ωi − 〈p,v · ni〉Γi}

+ (K−1(Πu− u),v)− σ(K−1Πu,v), (5.16)
n∑

i=1

(∇ · (u− uh), w)Ωi = 0, (5.17)

for anyv ∈ Vh,0 andw ∈Wh, where

σ(q,v) = (q,v)− (q,v)h.

It was shown in [5] that,σ(q,v) = 0 in the scalar product (2.4) for anyv ∈ Vh and any
constant vectorq. A similar result has been shown in [6] for the scalar product (2.3). Thus,
lettingq0 be the mean value ofq onE, we get

|σ(q,v)E | = |σ(q− q0,v)E | ≤ Ch|q|1,E‖v‖0,E , E ∈ Th.
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Therefore,

|σ(K−1Πu,v)| ≤ C
∑

E∈Th

h‖K−1‖1,∞,E‖Πu‖1,E‖v‖0,E

≤ C
n∑

i=1

h‖K−1‖1,∞,Ωi‖u‖1,Ωi‖v‖0,Ωi ,

(5.18)

using Lemma 5.1 for the last inequality. Clearly (5.17) implies that

∇ · (Π0u− uh) = ∇ · (Πu− uh) = 0. (5.19)

Takingv = Π0u− uh in (5.16) we get

(K−1(Π0u− uh),Π0u− uh)h

=
n∑

i=1

〈Php− p, (Π0u− uh) · ni〉Γi + (K−1(Πu− u),Π0u− uh)

+ (K−1(Π0u−Πu),Π0u− uh)h − σ(K−1Πu,Π0u− uh)

≤
n∑

i=1

‖Php− p‖0,Γi‖(Π0u− uh) · ni‖0,Γi

+ (K−1(Πu− u),Π0u− uh) + (K−1(Π0u−Πu),Π0u− uh)h

+ |σ(K−1Πu,Π0u− uh)|

≤ C

(
n∑

i=1

‖p‖2,Ωih
3/2‖Π0u− uh‖0,Ωih

−1/2

+
n∑

i=1

‖K−1‖1,∞,Ωi‖u‖1,Ωih‖Π0u− uh‖0

)
,

(5.20)

where we used (5.2), (5.10), (5.4), (5.14), and (5.18) for the last inequality. With (5.19)–
(5.20), (4.9), (5.5), and (5.15) we have shown the following theorem.

Theorem 5.1 LetK−1 ∈ W 1,∞(Ωi), 1 ≤ i ≤ n, and let(4.7) hold. Then, for the velocity
uh of the mortar mimetic finite difference method(4.4)–(4.6), there exists a positive constant
C independent ofh such that

‖∇ · (u− uh)‖0 ≤ C
n∑

i=1

‖u‖2,Ωih.

Moreover, if (5.13)holds, then

‖u− uh‖0 ≤ C

n∑
i=1

(‖p‖2,Ωi + ‖u‖1,Ωi)h.

5.2 Superconvergence for the velocity

In this section, we show that in the case ofh2-uniform quadrilateral grids the velocity con-
verges with an order one-half higher than theO(h) in a discreteL2-norm. This superconver-
gence result for non-matching grids rests on conforming grids superconvergence results in [6]
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Figure 4:h2-uniform quadrilateral grid.

and [12] for MFD and MFE methods, respectively, and our analysis in Section 5.1. Although
this superconvergence result is weaker than theO(h2) superconvergence result in [6], it is
consistent with the superconvergence result for mortar MFE methods [31, 1]. We also note
that this result is proved only for the scalar product (2.3).

Referring to Fig. 4, a quadrilateral partition is calledh2-uniform if each element is anh2-
parallelogram, i.e.,‖(r2 − r1)− (r3 − r4)‖ ≤ Ch2, and any two adjacent quadrilaterals form
anh2-parallelogram, i.e.,‖(r2 − r1)− (r′2 − r′1)‖ ≤ Ch2.

To establish superconvergence, we modify the last inequality in (5.20). In particular, (5.2)
gives

n∑
i=1

‖Php− p‖0,Γi‖(Π0u− uh) · ni‖0,Γi ≤ C

n∑
i=1

‖p‖5/2,Ωi
h2‖Π0u− uh‖0,Ωih

−1/2,

and (5.14) gives

(K−1(Π0u−Πu),Π0u− uh)h ≤ C

n∑
i=1

‖u‖3/2,Ωi
h3/2‖Π0u− uh‖0.

In addition, [12, Theorem 5.1] implies

(K−1(Πu− u),Π0u− uh) ≤ C

n∑
i=1

‖K−1‖2,∞,Ωi‖u‖2,Ωih
2‖Π0u− uh‖0,

and [6, Lemma 4.3] gives

|σ(K−1Πu,Π0u− uh)| ≤ C
n∑

i=1

‖K−1‖2,∞,Ωi‖u‖2,Ωih
2‖Π0u− uh‖0.

Combining the above four bounds, we arrive at the following superconvergence result.

Theorem 5.2 LetK−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n, and let(5.13)hold. Then, for the velocity
uh of the mortar mimetic finite difference method(4.4)–(4.6)with the scalar product(2.3)on
h2-uniform quadrilateral grids, there exists a positive constantC independent ofh such that

‖Πu− uh‖0 ≤ C
n∑

i=1

(‖p‖5/2,Ωi
+ ‖u‖2,Ωi)h

3/2.
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The above result can be applied to obtain superconvergence for the computed velocity to
the average edge fluxes. Define, for anyv ∈ (H1(Ωi))2, i = 1, . . . , n,

|||v|||2 =
∑

E∈Th

|||v|||2E , |||v|||2E =
4∑

k=1

(∫
ek

v · nk ds

)2

. (5.21)

It is easy to see [6] that||| · ||| is a norm onVh and there exist constantsc1 andc2 independent
of h such that

c1‖v‖0,Ω ≤ |||v||| ≤ c2‖v‖0,Ω ∀v ∈ Vh. (5.22)

Moreover,|||Πv − v||| = 0 for anyv ∈ (H1(Ωi))2, i = 1, . . . , n. We have the following
superconvergence result.

Theorem 5.3 Under the assumptions of Theorem 5.2, there exists a positive constantC inde-
pendent ofh such that

|||u− uh||| ≤ C

n∑
i=1

(‖p‖5/2,Ωi
+ ‖u‖2,Ωi)h

3/2.

Proof.By the triangle inequality and (5.22),

|||u− uh||| ≤ |||Πu− uh||| ≤ c2‖Πu− uh‖0,

and the assertion of the theorem follows from Theorem 5.2. �

6 Pressure error estimates for the mortar MFD method

In this section, we employ a duality argument to obtain superconvergence forQhp − ph and
optimal convergence forp − ph in the mortar MFD method. To the best of our knowledge,
these are the first pressure superconvergence results for the MFD methods.

The estimates are proved for both scalar products (2.3) and (2.4) on triangular, tetrahe-
dral andh2-uniform quadrilateral meshes. In the case of general quadrilateral meshes, the
superconvergence estimate is shown only for the the scalar product (2.4).

We first derive a superconvergence estimate for the quadrature error, which will be used
in the proof of the main result.

Lemma 6.1 Let K−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n. Then, for allv,q ∈ Vh, there exists a
positive constantC independent ofh such that

|σ(K−1v,q)| ≤ C
∑

E∈Th

hr‖v‖1,E‖q‖1,E

where, for the scalar product(2.3), r = 2 on simplicial grids andh2-uniform quadrilateral
grids, andr = 1 on general quadrilateral grids. If the scalar product is given by(2.4), then
r = 2 on simplicial grids and general quadrilateral grids.

Proof.For an elementE ∈ Th, we define the error

σE(K−1v,q) =
∫

E
K−1v · q dx− (K−1v,q)h,E . (6.1)
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First, we consider the scalar product(K−1v, q)h,E given by (2.3). It was shown in [5]
thatσE(v0,q) = 0 for all constant vectors . Using this result and the symmetry of (6.1), we
get

σE(K−1v,q) = σE(K−1v,q− q0) + σE((K−1 −K−1
0 )(v − v0),q0)

+ σE(K−1v0,q0)
(6.2)

wherev0, q0 are constant vectors andK0 is a constant tensor. By a constant vector (tensor)
we mean a vector (tensor) with constant components. Letv0 andq0 be theL2(E) orthogonal
projections ofv andq, respectively, onto the space of constant vectors, letK−1

0 ≡ K−1
E =

K−1(mE), wheremE is the center of gravity ofE, and let(K−1v)0 be theL2(E) projection
of K−1v into the space of constant vectors. Using the Taylor’s theorem, it is easy to verify
that

‖K−1 −K−1
0 ‖∞,E ≤ Ch‖K−1‖1,∞,E

Using (2.5) and (5.3), we get for the first term on the right in (6.2)

|σE(K−1v,q−q0)| = |σE(K−1v− (K−1v)0,q−q0)| ≤ Ch2‖K−1‖1,∞,E‖v‖1,E‖q‖1,E .

The second term in (6.2) is estimated as

|σE((K−1 −K−1
0 )(v − v0),q0)| ≤ C‖K−1 −K−1

0 ‖∞,E‖v − v0‖0,E‖q0‖0,E

≤ Ch2‖K‖1,∞,E‖v‖1,E‖q‖0,E ,
(6.3)

The remaining term in (6.2) can be rewritten as

σE(K−1v0,q0) =
∫

E
K−1v0 · q0 dx− (K−1v0,q0)h,E

= K−1v0 · q0|E| −
1
αE

s∑
j=1

|Tj |K−1(rj)v0 · q0,

whereK−1 is the mean value ofK−1 onE, αE = 2 for quadrilaterals,αE = 3 for triangles,
αE = 4 for tetrahedra, ands is the number of vertices of elementE. For simplicial elements,
|Tj | = |E| and it is easy to check that the quadrature is exact for linear tensors. An application
of the Bramble-Hilbert lemma gives

|σE(K−1v0,q0)| ≤ Ch2|K−1v0|2,E‖q0‖0,E ≤ Ch2|K−1|2,∞,E‖v0‖0,E‖q0‖0,E . (6.4)

For general quadrilaterals, the quadrature is exact for constant tensors and we have

|σE(K−1v0,q0)| = |σE((K−1 −K−1
0 )v0,q0)| ≤ Ch‖K−1‖1,∞,E‖v0‖0,E‖q0‖0,E

We now show that this term isO(h2) in the case ofh2-parallelograms. To do this we map it
to the reference element. It follows from (3.5) thatJE(r̂j) = 2|Tj |. Thus,

(K−1v0,q0)h,E =
1
2

4∑
j=1

|Tj |K−1(rj)v0 · q0 =
1
2

4∑
j=1

|Tj |K̂−1(r̂j)v0 · q0

=
1
4

4∑
j=1

BE(r̂j)v0 · q0 ≡ (BEv0,q0)T ,

(6.5)
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whereBE = JEK̂
−1. Note that the quadrature rule(·, ·)T is the trapezoidal rule on the

reference squarêE.
For the integral term in the quadrature error we write∫

E
K−1v0 · q0 dx =

∫
Ê
K̂−1v0 · q0JE dx̂ =

∫
Ê
BEv0 · q0 dx̂. (6.6)

Using (6.5) and (6.6) we obtain

σE(K−1v0,q0) =
∫

Ê
BEv0 · q0 dx̂− (BEv0,q0)T ≡ σÊ(BEv0,q0). (6.7)

Since the trapezoidal quadrature rule onÊ is exact for linear polynomials, the Bramble-Hilbert
lemma implies that

|σÊ(Bv0,q0)| ≤ C|B|2,∞,Ê‖v0‖0,Ê‖q0‖0,Ê (6.8)

To bound on|B|2,∞,Ê , we note that for anh2-parallelogram

|JE |1,∞,Ê ≤ Ch3, |JE |2,∞,Ê = 0, |FE |s,∞,Ê ≤ Chs, s = 1, 2.

Therefore,

|B|2,∞,Ê ≤ C
(
h3|K̂−1|1,∞,Ê + h2|K̂−1|2,∞,Ê

)
≤ Ch4‖K−1‖2,∞,E ,

using the chain rule for the last inequality. The above bound, combined with (6.7) and (6.8),
implies

|σE(K−1v0,q0)| ≤ Ch4‖K−1‖2,∞,E‖v0‖0,Ê‖q0‖0,Ê

≤ Ch2‖K−1‖2,∞,E‖v‖0,E‖q‖0,E ,

which completes the proof in the case of the scalar product (2.3).
Let the scalar product(K−1v, q)h,E be given by (2.4). The only difference in this case is

the estimate of the third term in (6.2). Note that the scalar product

(K−1v0,q0)h,E =
1
αE

s∑
j=1

|Tj |K−1
E v0 · q0 = |E|K−1

E v0 · q0

is exact for linear tensors for both simplicial and quadrilateral elements. The application of
the Bramble-Hilbert lemma gives estimate (6.4). �

We continue with the duality argument for bounding‖Qhp − ph‖0. We first rewrite the
error equation (5.16) as follows:

(K−1(u− uh),v) =
n∑

i=1

(
(p− ph,∇ · v)Ωi − 〈p,v · ni〉Γi

)
− σ(K−1uh,v) (6.9)

Letϕ be the solution of

−∇ ·K∇ϕ = −(Qhp− ph) in Ω,
ϕ = 0 on ∂Ω.
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We assume that this problem hasH2-elliptic regularity. This is true, for example if the com-
ponents ofK ∈ C0,1(Ω) andΩ is convex or∂Ω is smooth enough (see [14, 18]). Then, we
have

‖ϕ‖2 ≤ C‖Qhp− ph‖0. (6.10)

Takev = Π0K∇ϕ in (6.9) to get

‖Qhp− ph‖2
0 =

n∑
i=1

(Qhp− ph,∇ ·Π0K∇ϕ)Ωi

=
n∑

i=1

{
(K−1(u− uh),Π0K∇ϕ)Ωi + 〈p− Php,Π0K∇ϕ · ni〉Γi

}
+ σ(K−1uh,Π0K∇ϕ). (6.11)

The first two terms on the right in (6.11) appear also in the proof of Theorem 5.1 in [1], where
it was shown that

n∑
i=1

{
(K−1(u− uh),Π0K∇ϕ)Ωi + 〈p− Php,Π0K∇ϕ · ni〉Γi

}
≤ C

n∑
i=1

h2‖K‖1,∞,Ωi(‖p‖2,Ωi + ‖u‖2,Ωi)‖ϕ‖2,Ωi . (6.12)

Using Lemma 6.1, the last term in (6.11) can be bounded as

|σ(K−1uh,Π0K∇ϕ)|

≤ C
∑

E∈Th

hr‖uh‖1,E‖Π0K∇ϕ‖1,E

≤ C
∑

E∈Th

hr(‖uh −Πu‖1,E + ‖Πu‖1,E)

× (‖Π0K∇ϕ−ΠK∇ϕ‖1,E + ‖ΠK∇ϕ‖1,E)

≤ C
∑

E∈Th

hr(h−1‖uh −Πu‖0,E + ‖u‖1,E)

× (h−1‖Π0K∇ϕ−ΠK∇ϕ‖0,E + ‖K∇ϕ‖1,E)

≤ C
n∑

i=1

hr‖K‖1,∞,Ωi(‖p‖2,Ωi + ‖u‖1,Ωi)‖ϕ‖2,Ωi ,

(6.13)

where we used the inverse inequality and Lemma 5.1 in the third inequality, and Theorem 5.1
and (5.14) in the last inequality. A combination of (6.10)–(6.13) gives the following result.

Theorem 6.1 LetK ∈ W 1,∞(Ωi), K−1 ∈ W 2,∞(Ωi), 1 ≤ i ≤ n, and (5.13)hold. Then,
for the pressureph of the mortar mimetic finite difference method(4.4)–(4.6), there exists a
constantC independent ofh such that

‖Qhp− ph‖0 ≤ C
n∑

i=1

(‖p‖2,Ωi + ‖u‖2,Ωi)h
r,

‖p− ph‖0 ≤ C
n∑

i=1

(‖p‖2,Ωi + ‖u‖2,Ωi)h,

21



where, for scalar product(2.3), r = 2 on simplicial grids andh2-uniform quadrilateral grids,
andr = 1 on general quadrilateral grids. If the scalar product is given by(2.4), thenr = 2
on simplicial grids and general quadrilateral grids.

7 Numerical experiments

In this section, we confirm our theoretical estimates for locally refined meshes, which can be
viewed as a special case of non-matching meshes. An example of a computational mesh is
shown in Fig. 5. This mesh consists of 13 quadrilateral subdomains with different levels of
uniform refinement. We study convergence of the mortar MFD method using the sequence of
meshes that is generated by uniform refinement (and coarsening) of this mesh.

We generated another sequence of meshes from the above sequence by perturbing the
positions of mesh nodes. A mesh node is moved to a random position inside a square centered
around its initial position. The sides of the square are aligned with the coordinate axes and are
equal in length to 40% of the length of the smallest edge adjacent to the node. The positions
of mesh nodes on the domain boundary and on subdomain interfaces are not perturbed. An
example of such a random mesh is shown in Fig. 6.

100 101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

2.0

1.5
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||| u − uh |||
||| u − uh |||∞

Figure 5: Convergence rates on smooth meshes

The discrete interface continuity conditions for the mortar MFD method are drastically
simplified in the case of locally refined meshes. We consider the interfaceΓi,j and denote by
Eh,i,j the finer of its two adjacent partitions. AssumeẼh,i,j = Eh,j,i, and set the mortar space
Λh,i,j to be the space of discontinuous piecewise linear functions. To describe projectorsRi,j

andRj,i, it is sufficient to consider a three-cell interface. Let cellsE1 andE2 from Th,i be
adjacent to a cellE3 from Th,j . Without loss of generality, we assume thatEh,i,j = {f1, f2}
andEh,j,i = {f3}. Then, the dimension of the mortar space is 2,Ri,j is a2 × 2 matrix, and
Rj,i is a1× 2 matrix. It is easy to check that definition (4.1) implies

Ri,i =
1

2|f3|

 |f1| |f2|+ |f3|

|f1|+ |f3| |f2|

 and Rj,i =
1
2
[

1 1
]
.

Eliminating vector~λ from (2.12), we get discrete interface continuity conditions

|f1|pf1 + |f2|pf2 = |f3|pf3 and uf1 = uf2 = −uf3 .
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Figure 6: Convergence rates on random meshes

The velocity condition is similar to the condition proposed and analyzed numerically in [19],
where it was shown that the resulting MFD method is exact for linear solutions. This condition
is also closely related to the “slave” or “worker” nodes local refinement technique in MFE
methods [11, 13].

In this example, we setp(x, y) = x3y2 + x cos(xy) sin(x) to be the exact solution andK
to be the full tensor

K(x, y) =
(

(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
.

The computational domain is located at the positive quadrant (x > 0, y > 0) of the XY-plane
which implies that tensorK is a positive definite matrix.

The right pictures in Fig. 5 and 6 show convergence rates for pressure and velocity. We
demonstrate convergence in discreteL2 and maximum norms. The discreteL2 norm for the
velocity variable is defined in (5.21) and the maximum norm is given by

|||u− uh|||∞ = max
f∈Th

∣∣∣∣ 1
|f |

∫
f
u · nf ds − uh · nf

∣∣∣∣ .
Convergence of the pressure variable is shown in the following discrete norms:

|||p− ph||| =

∑
E∈Th

|p(mE)− ph(mE)|2 |E|

1/2

and
|||p− ph|||∞ = max

E∈Th

|p(mE)− ph(mE)|.

The uniform refinement of a quadrilateral results in ah2-uniform mesh. Therefore, the
mortar MFD method with scalar product (2.3) is used on the sequence of smooth meshes (see
Figure 5). We observe 1.5 convergence rate for the velocity variable which was predicted in
Theorem 5.3.

The mortar MFD method with scalar product (2.4) is used on the sequence of random
meshes (see Figure 6). The method exhibits the asymptotically optimal first order convergence
rate for the velocity. This result is in agreement with the assertion of Theorem 5.1.

The second order convergence rate for the pressure variable in the discreteL2 norm is
observed in both experiments. This confirms the results of Theorem 6.1.
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8 Conclusions

In this paper we develop the mortar MFD method on non-matching multiblock grids. We
establish a relation between the mortar MFD and mortar MFE methods. We use this relation
to prove optimal convergence results for both the pressure and the velocity on quadrilateral,
triangular, and tetrahedral grids. In addition, we establish superconvergence for the pressure
at cell centers and, in the case ofh2-uniform quadrilateral grids, superconvergence for the
normal velocities at the midpoints of edges. Our approach can be generalized to polygonal
non-matching meshes using recent advances in the theory of MFD and MFE methods (see
[17, 8]).
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