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Abstract. Superconvergence of the velocity is established for mimetic finite difference approx-
imations of second-order elliptic problems over h2-uniform quadrilateral meshes. The superconver-
gence result holds for a full tensor coefficient. The analysis exploits the relation between mimetic
finite differences and mixed finite element methods via a special quadrature rule for computing the
scalar product in the velocity space. The theoretical results are confirmed by numerical experiments.
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1. Introduction. We consider the numerical approximation of a linear second-
order elliptic problem. In porous medium applications, this equation models single
phase Darcy flow and is usually written as a first-order system for the fluid pressure
p and velocity u:

u = −K∇p, in Ω,
div u = f, in Ω,
u · n = g, on ∂Ω,

(1.1)

where Ω ⊂ <2, n is the outward unit normal to ∂Ω, and K ∈ <2×2 is a symmetric
uniformly positive definite full tensor representing the rock permeability divided by the
fluid viscosity. We assume that the system (1.1) satisfies the compatibility condition∫

Ω

f dx +
∫

∂Ω

g ds = 0.

In this paper, we analyze the convergence of a mimetic finite difference (MFD)
method on quadrilateral meshes. The method uses discrete operators that preserve
certain critical properties of the original continuum differential operators. Conserva-
tion laws, solution symmetries, and the fundamental identities and theorems of vector
and tensor calculus are examples of such properties. This “mimetic” technique has
been applied successfully to several applications including diffusion [23, 15, 18], mag-
netic diffusion and electromagnetics [14], continuum mechanics [17], and gas dynamics
[8]. For problem (1.1), the mimetic technique uses discrete flux G and divergence DIV
operators for the continuum operators −Kgrad and div , respectively, which are ad-
joint to each other, i.e. G = DIV ∗. It is straightforward to extend the MFD method
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to locally refined meshes with hanging nodes [16], unstructured three-dimensional
meshes composed of hexahedra, tetrahedra, and any cell type having three faces in-
tersecting at each vertex.

A connection between the MFD method and the mixed finite element (MFE)
method with Raviart-Thomas finite elements has been established in [4]. In particular,
it was shown that the scalar product in the velocity space proposed in [15] for MFD
methods can be viewed as a quadrature rule in the context of MFE methods. Another
closely related method is the control-volume mixed finite element method [7, 9].

MFE discretizations on quadrilateral grids have been studied in [26, 27, 2, 13].
These methods are based on the Piola transformation [26, 6], which preserves continu-
ity of the normal component of the velocity u across mesh edges. Unfortunately, this
results in the necessity to integrate rational functions over quadrilaterals. The task be-
comes even more complicated, when the diffusion tensor is full and non-constant. The
results in [4] provide an efficient numerical quadrature rule with a minimal number
of points. Moreover, the connection between the two methods allows for extensions
of MFE methods to general polygons and polyhedra.

The aforementioned connection provides a suitable functional frame for rigorous
analysis of convergence of mimetic discretizations. In [4], first order convergence
for the fluid pressure and velocity was shown. In this paper, we establish velocity
superconvergence for MFD discretizations of (1.1) on h2-uniform quadrilateral meshes
(as defined in (2.2)–(2.3)). Precise calculation of the fluid velocity is important for
porous media and other applications. The points or lines where the numerical solution
is super-close to the exact solution may be used to improve the accuracy of the overall
simulation. Various superconvergence results for mixed finite element methods have
been established for rectangular meshes [22, 19, 28, 10, 11, 12, 3, 1] and general
quadrilateral meshes [2, 13].

In [13], velocity superconvergence is established for MFE discretization of (1.1)
on h2-uniform quadrilateral grids. In this paper, we exploit the relation between MFD
methods and MFE methods with quadrature rule (3.10) to establish superconvergence
for velocities in MFD discretizations. In particular, we show that the computed
normal velocities are super-close to the true normal velocities at the midpoints of the
edges. In [18], an alternative quadrature is introduced, which preserves symmetry
of the exact solution on polar grids. This symmetry preservation is important for
problems of radiation transport in the asymptotic diffusion limit. The analysis of
superconvergence for symmetry-preserving quadratures is left to future investigation.

The paper outline is as follows. In Section 2, we describe the MFE method for
(1.1). In Section 3, the MFD method is presented and related to the MFE method
with quadrature rule. The main superconvergence results are presented in Section 4.
Superconvergence of the normal velocities at the midpoints of the edges is established
in Section 5. In Section 6, numerical experiments are given that confirm the theoretical
results.

2. The mixed finite element method. To simplify the exposition, we assume
without loss of generality that g = 0, i.e. homogeneous Neumann boundary conditions
are imposed on ∂Ω.

Throughout this paper, we shall use notations ‖ · ‖k,D, ‖ · ‖div ,D and ‖ · ‖D for
the norms on the Hilbert spaces Hk(D), H(div ;D) and L2(D), respectively, where
D ⊂ Ω. In addition, |·|k,D will denote the seminorm on Hk(D). To simplify notations,
we shall omit the subscript D when D = Ω. Finally, we denote by (·, ·) the L2-inner
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product on Ω of either scalar or vector functions. Let

V = {v ∈ H(div ; Ω): v · n = 0 on ∂Ω} and W = {w ∈ L2(Ω):
∫

Ω

w dx = 0}.

The variational formulation of (1.1) is as follows: find a pair (u, p) ∈ V ×W such
that

(K−1u, v)− (p, div v) = 0,
(div u, w) = (f, w), ∀ (v, w) ∈ V ×W.

(2.1)

For the discretization of (2.1), denote by Th a shape-regular partition (see [5, p.
113, Remark 2.2]) of Ω̄ into convex quadrilateral elements of diameter not greater
than h. For two examples of shape regular grids, see Fig. 6.1. We assume that the
grid is h2-uniform. Following [13], the quadrilateral partition Th is called h2-uniform,
if each element is an h2-parallelogram, i.e.,

‖(r2 − r1)− (r3 − r4)‖ ≤ Ch2 (2.2)

and any two adjacent quadrilaterals form an h2-parallelogram, i.e.,

‖(r2 − r1)− (r′2 − r′1)‖ ≤ Ch2, (2.3)

where r′1, r′2, r′3, and r′4 are the vertices of the adjacent element such that r′1 = r2

and r′4 = r3 (see Fig. 2.1).
For any convex quadrilateral e, there exists a bijection mapping Fe : ê→ e, where

ê is the reference unit square with vertices r̂0 = (0, 0)T , r̂1 = (1, 0)T , r̂2 = (1, 1)T

and r̂4 = (0, 1)T . Denote by ri = (xi, yi)T , i = 1, 2, 3, 4, the four corresponding
vertices of element e as shown in Fig. 2.1. Then, Fe is the bilinear mapping given by

Fe(r̂) = r1 (1− x̂)(1− ŷ) + r2 x̂(1− ŷ) + r3 x̂ŷ + r4 (1− x̂)ŷ. (2.4)

Note that the Jacobi matrix DFe and its Jacobian Je are linear functions of x̂ and ŷ.
Indeed, straightforward computations yield

DFe = [(1− ŷ) r21 + ŷ r34, (1− x̂) r41 + x̂ r32] (2.5)

and

Je = 2|T124|+ 2(|T123| − |T124|)x̂+ 2(|T134| − |T124|)ŷ (2.6)

where rij = ri − rj and |Tijk| is the area of the triangle with vertices ri, rj and rk.
Since e is convex, the Jacobian Je is always positive, i.e. Je > 0.

The reader is referred to [6] for suitable choices for the pair of finite element spaces
Vh ⊂ V and Wh ⊂ W . In this paper, we consider the lowest order Raviart-Thomas
finite element spaces RT0 [26, 20] defined on the reference element ê as

V̂(ê) = P1,0(ê)× P0,1(ê), Ŵ (ê) = P0(ê),

where P1,0 (or P0,1) denotes the space of polynomials linear in the x̂ (or ŷ) variable
and constant in the other variable, and P0 denotes the space of constant functions.
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Fig. 2.1. Bilinear mapping and orientation of normal vectors.

The velocity space on any convex quadrilateral e is defined through the Piola trans-
formation

1
Je

DFe : L2(ê)× L2(ê) → L2(e)× L2(e), ∀e ∈ Th.

The RT0 spaces on Th are given by

Vh = {v ∈ V : v|e = J−1
e DFev̂ ◦ F−1

e , v̂ ∈ V̂(ê) ∀e ∈ Th},

Wh = {w ∈W : w|e = ŵ ◦ F−1
e , ŵ ∈ Ŵ (ê) ∀e ∈ Th}.

(2.7)

Two properties of Piola’s transformation will be important in our analysis. For any
v̂ ∈ V̂(ê) and the related v = J−1

e DFev̂ ◦ F−1
e ,

Jediv v = d̂iv v̂ and |`i|v · ni = v̂ · n̂i, (2.8)

where ni and n̂i, i = 1, 2, 3, 4, are unit vectors orthogonal to the edges of e and ê,
respectively, and `i, i = 1, 2, 3, 4, are the edges of e (see Fig. 2.1). Let ˆ̀

i, i = 1, 2, 3, 4,
be the corresponding edges of ê.

Note that, since Vh ⊂ H(div ; Ω), any vector in Vh has continuous normal com-
ponents on the edges. A function in Wh is uniquely determined by its values at the
cell-centers and a vector in Vh is uniquely determined by its normal components on
the edges. Therefore dimWh = Np and dimVh = Ne, where Np is the number of
elements and Ne is the number of interior edges. Let {ψh

i }, i = 1, Np, be a basis for
Wh such that

ψh
i (cj) = δij ≡

{
1, i = j
0, i 6= j

,

where cj is the center of element ej , j = 1, Np. Similarly, let φh
i , i = 1, Ne be a basis

for Vh such that φh
i · nj = δij , where nj is a fixed unit normal vector on edge `j ,

j = 1, Ne. In order to simplify notations, we use the same way for global and local
indexing of mesh edges and corresponding normal vectors.

Given the finite element spaces Vh and Wh, we define the discrete problem: find
(uh, ph) ∈ Vh ×Wh such that

(K−1uh, vh)h − (ph, div vh) = 0,
(div uh, wh) = (f, wh), ∀ (vh, wh) ∈ Vh ×Wh,

(2.9)

where (·, ·)h is a continuous bilinear form corresponding to the application of a nu-
merical quadrature rule for computing (·, ·). A detailed discussion of this quadrature
rule is given in Section 3.
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3. Mimetic finite difference discretizations. In this section, we derive a
mimetic finite difference discretization of equation (1.1) and show its connection with
the MFE method (2.9).

The first step in the mimetic technique is to specify discrete degrees of freedom
for pressure and velocity. The discrete pressure unknowns are defined at the centers
of the quadrilaterals, one unknown per mesh cell. The discrete velocities are defined
at the midpoints of mesh edges as normal components. In other words, an edge-based
unknown is a scalar and represents the orthogonal projection of a velocity vector onto
the unit vector normal ni to the mesh edge `i.

The second step in the mimetic technique is to equip the spaces of discrete pres-
sures and velocities with scalar products. We denote the vector space of cell-centered
pressures by Qd. The dimension of Qd equals the number of mesh cells Np. The
scalar product on the vector space Qd is given by

[pd, qd]Qd =
Np∑
i=1

|ei| pd
i q

d
i , ∀pd, qd ∈ Qd, (3.1)

where |ei| denotes the area of cell ei and pd
i , q

d
i are cell-centered pressure components.

It is easy to see that the vector space Qd is isometric to the MFE space Wh in
(2.7). Indeed, for any ph ∈ Wh, there exists a unique pd = (pd

1, p
d
2, · · · , pd

Np
)T ∈ Qd,

such that ph =
∑Np

i=1 p
d
iψ

h
i and

(ph, qh) = [pd, qd]Qd .

Note that the discrete MDF pressure variable, pd
i , corresponds to the value of the

MFE pressure function at the cell-center, ph(ci).
We denote the vector space of edge-based velocities by Xd. The dimension of Xd

equals the number of interior mesh edges Ne. The scalar product on Xd is given by

[ud, vd]Xd =
∑
e∈Th

[ud, vd]Xd,e, (3.2)

where [ud, vd]Xd,e is a scalar product over cell e involving only the normal veloc-
ity components on cell edges. Recall that a velocity vector can be recovered from
two orthogonal projections on any two non-collinear vectors. Since the mesh cell is
convex, any pair of normal vectors to edges with a common point satisfy the above
requirement. The orthogonal projections are exactly the freedom associated with cell
edges. As shown in Fig. 3.1, four recovered velocity vectors can be associated with
the four vertices of the quadrilateral. For example, velocity v1 is recovered from its
projections onto the normal vectors n1 and n2. For a general quadrilateral e, we
denote by vd(rj) the velocity recovered at j-th vertex rj , j = 1, 2, 3, 4. Then, the
cell-based scalar product is given by

[ud, vd]Xd,e =
1
2

4∑
j=1

|Tj |K−1(rj)ud(rj) · vd(rj), (3.3)

where |Tj | is the area of the triangle with vertices rj−1, rj and rj+1 (see Fig. 2.1 and
Fig. 3.1). For example, triangles T1 and T4 are the shaded triangles in Fig. 3.1. Note
that (3.3) is indeed an inner product, since K is a symmetric and positive definite
tensor and

[vd,vd]Xd ≥ C|||vd|||2, (3.4)
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where ||| · ||| is the Euclidean vector norm.

n4

v4

n1

v1

n1

n2

T4

T1

Fig. 3.1. Recovered vectors v1, v4 and triangles T1, T4.

The vector space Xd is isomorphic to the MFE space Vh in (2.7), since both
spaces have the same definitions of degrees of freedom. In particular, for any vh ∈ Vh,
there exists a unique vd = (vd

1 , v
d
2 , · · · , vd

Ne)T ∈ Xd such that vh =
∑Ne

i=1 v
d
i φ

h
i . Note

that the discrete MDF velocity variable, vd
i , corresponds to the MFE normal velocity

component, vh · ni, on edge `i.
The third step in the mimetic technique is to derive a discrete approximation

to the divergence operator, DIV : Xd → Qd, which we shall refer to as the prime
operator. For a cell e, the Gauss divergence theorem gives

DIV ud|e =
1
|e|
(
ud

1|`1|+ ud
2|`2|+ ud

3|`3|+ ud
4|`4|

)
(3.5)

where ud
1, . . . , u

d
4 are the normal velocity components on element e and the normal

vectors are oriented as shown in Fig. 2.1.
The fourth step in the mimetic technique is to derive a discrete flux operator

G (for the continuous operator −Kgrad ) adjoint to the discrete divergence operator
DIV with respect to scalar products (3.1) and (3.2), i.e.

[DIV ud, pd]Qd ≡ [ud, Gpd]Xd , ∀ud ∈ Xd, ∀pd ∈ Qd.

To derive the explicit formula for G, we consider an auxiliary scalar product < · , · >
and relate it to scalar products (3.1) and (3.2). Denote by < · , · > the standard
vector dot product. Then

[pd, qd]Qd =< Dpd, qd >, and [ud, vd]Xd =<Mud, vd >,

where D is a diagonal matrix, D = diag{|e1|, . . . , |eNp
|}, and M is a sparse sym-

metric mass matrix with a 5-point stencil. Restricted to a cell, this stencil connects
edge-based unknowns if and only if the corresponding edges have a common point.
Combining the last two formulae, we get

[ud, DIV ∗pd]Xd = < ud, MDIV ∗pd > = [DIV ud, pd]Qd

= < ud, DIV tD pd >, ∀ud ∈ Xd, ∀pd ∈ Qd,

where DIV t is the adjoint of DIV with respect to the auxiliary scalar product. There-
fore,

G = M−1DIV tD. (3.6)
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The mimetic finite difference method approximating first-order system (1.1) may
be summarized as follows

ud = G pd, DIV ud = fd, (3.7)

where fd = (fd
1 , . . . , f

d
Np

)t, and entry fd
i is the integral average of f over cell ei.

The basic tool for the error analysis of the discrete solution (ud, pd) ∈ Xd ×Qd

is based on following transformation. Multiplying the first equation in (3.7) by Mvd

and the second one by Dqd, we get

[ud, vd]Xd − [pd, DIV vd]Qd = 0,

[qd, DIV ud]Qd = [fd, qd]Qd , ∀(vd, qd) ∈ Xd ×Qd.
(3.8)

Using the isomorphism between finite element space Vh×Wh and vector space Xd×
Qd, we define finite element functions ph, qh, fh, uh and vh corresponding to vectors
pd, qd, fd, ud and vd, respectively. Then,

[pd, DIV vd]Qd = (ph, div vh) and [qd, DIV ud]Qd = (qh, div uh).

The definition of fd implies that

[fd, qd]Qd = (fh, qh) = (f, qh).

Finally, by introducing the quadrature rule

(K−1uh, vh)h ≡ [ud, vd]Xd , (3.9)

we reduce problem (3.7) to the finite element problem (2.9).
The scalar product in the space of velocities given by (3.3) is obviously not unique.

In the context of MFE methods, it is a quadrature rule for numerical integration of
(K−1uh, vh):

(K−1uh, vh)h,e =
1
2

4∑
j=1

|Tj |K−1(rj)uh(rj) · vh(rj), (3.10)

where uh(rj) is the recovered velocity at vertex rj . In context of MFE methods,
we shall refer to (3.10) as the MFD quadrature rule. The global scalar product is
obtained by summing over quadrilaterals, i.e.

(K−1uh, vh)h =
∑
e∈Th

(K−1uh, vh)h,e. (3.11)

Note that (3.4) implies that there exists a constant C0 > 0 such that

(K−1vh,vh)h ≥ C0‖vh‖2 ∀ vh ∈ Vh. (3.12)

It was shown in [4] that the element quadrature rule (3.10) is exact for any constant
vector uh, constant tensor K, and vh ∈ Vh.
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4. Superconvergence estimates for the velocity. We begin by recalling the
mixed projection operator Π : H1(Ω)×H1(Ω) → Vh satisfying

(div (Πv − v), w) = 0 ∀w ∈Wh. (4.1)

The operator Π is defined locally on each element e by

Π̂v = Π̂v̂,

where Π̂ : H1(ê) ×H1(ê) → V̂(ê) is the reference element projection operator satis-
fying ∫

ˆ̀
i

(Π̂v̂ − v̂) · n̂i = 0, i = 1, 2, 3, 4. (4.2)

The approximation properties of Π have been established in [26, 27]:

‖Πv‖div ≤ C‖v‖1, (4.3)
‖Πv − v‖ ≤ Ch‖v‖1, (4.4)
‖div (Πv − v)‖ ≤ Ch‖v‖2. (4.5)

The following lemma gives several approximation properties of Π̂ which will be used
in the analysis.

Lemma 4.1. The operator Π̂ defined in (4.2) satisfies for any v̂ ∈ H1(ê)×H1(ê)
the following: ∫

ê

∂

∂x̂
(Π̂v̂ − v̂)1 dx̂dŷ = 0,

∫
ê

∂

∂ŷ
(Π̂v̂ − v̂)2 dx̂dŷ = 0, (4.6)∥∥∥∥ ∂∂x̂ (Π̂v̂)1

∥∥∥∥
ê

≤ C

∥∥∥∥ ∂∂x̂ û1

∥∥∥∥
ê

,

∥∥∥∥ ∂∂ŷ (Π̂v̂)2

∥∥∥∥
ê

≤ C

∥∥∥∥ ∂∂ŷ v̂2
∥∥∥∥

ê

, (4.7)

‖Π̂v̂‖1,ê ≤ C‖v̂‖1,ê. (4.8)

Proof: The identities in (4.6) follow easily from the definition (4.2). In particular,
writing (4.2) for the two vertical edges gives∫ 1

0

(Π̂v̂ − v̂)1(0, ŷ)dŷ = 0,
∫ 1

0

(Π̂v̂ − v̂)1(1, ŷ)dŷ = 0.

Subtracting the above equations and applying the fundamental theorem of calculus
implies the first identity in (4.6). The proof of the second identity is similar. Note
that (4.6) means that ∂

∂x̂ (Π̂v̂)1 and ∂
∂ŷ (Π̂v̂)2 are the L2-orthogonal projections of

∂
∂x̂ v̂1 and ∂

∂ŷ v̂2, respectively, onto the space of constants, which implies (4.7). Finally,
it is easy to see that (4.2) implies

‖Π̂v̂‖ê ≤ C‖v̂‖1,ê,

which, combined with (4.7), gives (4.8). �

We also make use of the L2-projection operator Ph : W → Wh, such that for
p ∈W ,

(Ph p− p, w) = 0 ∀w ∈Wh. (4.9)
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Denote the quadrature error by

σ(q,v) ≡ (q,v)− (q,v)h. (4.10)

The variational formulation (2.1) and the discrete problem (2.9) give rise to the error
equations

(K−1(Πu− uh),vh)h = (Php− ph,div vh)

+ (K−1(Πu− u),vh)− σ(K−1Πu,vh),

(div (Πu− uh), wh) = 0,

(4.11)

where we used (4.9) and (4.1) in the first and the second equation, respectively. We
note that, using (2.8), the second equation in (4.11) gives

0 = (div (Πu− uh), wh)e = (d̂iv (Π̂û− ûh), ŵh)ê ∀wh ∈Wh.

Since d̂iv V̂h = Ŵh, taking ŵh = d̂iv (Π̂û − ûh) implies that d̂iv (Π̂û − ûh) = 0 and
therefore, by (2.8),

div (Πu− uh) = 0. (4.12)

Taking vh = Πu− uh ∈ Vh and wh = Php− ph in (4.11) gives

(K−1(Πu−uh),Πu−uh)h = (K−1(Πu−u),Πu−uh)−σ(K−1Πu,Πu−uh) (4.13)

The estimate for the first term on the right hand side of (4.13) follows from Theorem
5.1 in [13] and (4.12):

(K−1(Πu− u),Πu− uh)

≤ C h2
(
‖u‖2‖Πu− uh‖+ ‖u‖1‖div (Πu− uh)‖

)
= C h2‖u‖2 ‖Πu− uh‖,

(4.14)

The second term on the right hand side of (4.13) can be bounded by Lemma 4.3
below,

|σ(K−1Πu,Πu− uh)| ≤ C h2‖u‖2‖Πu− uh‖. (4.15)

Combining (4.14), (4.15) and (3.12), we obtain the following superconvergence result.
Theorem 4.2. Let K ∈W 2,∞(Ω). For the velocity uh of the mixed finite element

method (2.1), on h2-uniform quadrilateral grids, there exists a positive constant C
independent of h such that

‖Πu− uh‖ ≤ C h2‖u‖2. (4.16)

We now proceed to prove estimate (4.15).
Lemma 4.3. Let v ∈ Vh and K ∈ W 2,∞(Ω). If div v = 0, then there exists a

positive constant C independent of h such that

|σ(K−1Πu,v)| ≤ C h2‖u‖2 ‖v‖. (4.17)
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Proof: For an element e ∈ T h, we define the error

σe(K−1Πu,v) =
∫

e

K−1Πu · v dx− (K−1Πu,v)h,e. (4.18)

With (3.10), the second term on the right hand side of (4.18) can be written as

(K−1Πu,v)h,e =
1
2

4∑
j=1

|Tj |K−1(rj)Πu(rj) · v(rj)

=
1
2

4∑
j=1

|Tj |K̂−1(r̂j)
(

1
Je

DFeΠ̂û
)

(r̂j) ·
(

1
Je

DFev̂
)

(r̂j)

=
1
2

4∑
j=1

|Tj |
Je(r̂j)

1
Je(r̂j)

DFT
e (r̂j)K̂−1(r̂j)DFe(r̂j) Π̂û(r̂j) · v̂(r̂j)

=
1
4

4∑
j=1

Be(r̂j) Π̂û(r̂j) · v̂(r̂j)

≡ (BeΠ̂û, v̂)T ,

(4.19)

where the subscript T denotes the trapezoidal rule on element ê and we define Be =
1
Je

DFT
e K̂−1DFe. Here we used (2.6) to conclude that |Tj |

Je(r̂j)
= 1/2. Considering the

first term on the right hand side of (4.18), we obtain∫
e

K−1Πu · v dx =
∫

ê

K̂−1 1
Je

DFeΠ̂û · 1
Je

DFev̂Je dx̂

=
∫

ê

1
Je

DFT
e K̂−1DFeΠ̂û · v̂ dx̂

=
∫

ê

BeΠ̂û · v̂ dx̂.

(4.20)

Substituting (4.19) and (4.20) into (4.18), we obtain

σe(K−1Πu,v) =
∫

ê

BeΠ̂û · v̂ dx̂− (BeΠ̂û, v̂)T ≡ σê(BeΠ̂û, v̂). (4.21)

Hereafter we shall omit the subscript e. Then, we can write

BΠ̂û · v̂ = (BΠ̂û)1v̂1 + (BΠ̂û)2v̂2 (4.22)

We now derive a representation for the error in the trapezoidal rule, using the
Peano Kernel Theorem (see [24, p. 142, Theorem 5.2-3]). Define a function

g(x, s) := (x− s)+ ≡
{
x− s, x ≥ s,
0, x < s.

The Peano Kernel Theorem states that for a function f(x, y) defined on rectan-
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gular domain [a, b]× [c, d], the error of the trapezoidal rule is given by

E(f) ≡
∫ b

a

∫ d

c

f(x, y)dx dy − (f)T

=
∫ b

a

A2,0(s)f (2,0)(s, c) ds

+
∫ d

c

A0,2(t)f (0,2)(a, t) dt

+
∫ b

a

∫ d

c

A1,1(s, t)f (1,1)(s, t) ds dt,

(4.23)

where f (i,j)(x, y) =
∂i+j

∂xi ∂xj
f(x, y) for i, j ≥ 0 and

A2,0(s) = E(g(x, s)), A0,2(t) = E(g(y, t)), A1,1(s, t) = E(1).

The trapezoidal rule is exact for constant functions. Therefore, E(1) = 0 and
A1,1(s, t) = 0. Straightforward calculations give

A2,0(s) =
∫ b

a

∫ d

c

g(s, x)dx dy − (b− a)(d− c)
4

4∑
j=1

g(xj , s)

= (d− c)

(∫ b

s

(x− s)dx− b− a

2
(g(a, s)− g(b, s))

)

= (d− c)
(s− a)(s− b)

2
.

(4.24)

Similarly, we get

A0,2(t) = (b− a)
(t− c)(t− d)

2
. (4.25)

Substituting (4.24) and (4.25) into (4.23), we obtain

E(f) = (d− c)
∫ b

a

(x− a)(x− b)
2

∂2

∂x2
f(x, c) dx

+ (b− a)
∫ d

c

(y − c)(y − d)
2

∂2

∂y2
f(a, y) dy

≡ (I) + (II).

(4.26)

Now, we apply (4.26) for the first term in (4.22) on reference element ê:

E((BΠ̂û)1v̂1) =
∫

ê

(BΠ̂û)1v̂1dx̂ dŷ − ((BΠ̂û)1, v̂1)T . (4.27)

Denote by B11, B12, B21, and B22 the components of tensor B. To simplify notation,
we define φ(t) = t(t− 1)/2. Since v̂1(0, ŷ) is constant in ŷ, the second term in (4.26)
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for this case is

(II) =
∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
(BΠ̂û)1(0, ŷ)v̂1(0, ŷ) dx̂dŷ

=
∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
B11(0, ŷ)(Π̂û)1(0, ŷ)v̂1(0, ŷ) dx̂dŷ

+
∫ 1

0

∫ 1

0

φ(ŷ)
∂2

∂ŷ2
B12(0, ŷ)(Π̂û)2(0, ŷ)v̂1(0, ŷ) dx̂dŷ

+ 2
∫ 1

0

∫ 1

0

φ(ŷ)
∂

∂ŷ
B12(0, ŷ)

∂

∂ŷ
(Π̂û)2(0, ŷ)v̂1(0, ŷ) dx̂dŷ

≡ (II)1 + (II)2 + (II)3

(4.28)

Using (4.8), for the first two terms on the right we have

(II)1 + (II)2 ≤ C|B|2,∞,ê‖û‖1,ê‖v̂1‖ê.

Since ∂
∂ŷ (Π̂û)2 is a constant, we rewrite the last term in (4.28) as

(II)3 = 2
∫ 1

0

∫ 1

0

φ(ŷ)
∂

∂ŷ
B12(0, ŷ)

∂

∂ŷ
(Π̂û)2(x̂, ŷ)v̂1(0, ŷ) dx̂ dŷ

≤ C|B|1,∞,ê

∥∥∥∥ ∂∂ŷ (Π̂û)2

∥∥∥∥
ê

‖v̂1‖ê ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê,

using (4.7). A combination of the last two bounds implies that

(II) ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê. (4.29)

The first term in the error representation (4.26) is

(I) =
∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂2
((BΠ̂û)1v̂1)(x̂, 0)dx̂ dŷ

=
∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂2
(BΠ̂û)1(x̂, 0) v̂1(x̂, 0) dx̂ dŷ

+ 2
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(BΠ̂û)1(x̂, 0)

∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ = (I)1 + (I)2.

(4.30)

The first term on the right can be bounded in a way similar to (II):

(I)1 ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê. (4.31)

We rewrite the second term on the right in (4.30) as

1
2
(I)2 =

∫ 1

0

∫ 1

0

φ(x̂)
(
∂

∂x̂
(BΠ̂û)1(x̂, 0)− ∂

∂x̂
(BΠ̂û)1(x̂, ŷ)

)
∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ

+
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(BΠ̂û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, 0) dx̂ dŷ ≡ (I)2,1 + (I)2,2.

(4.32)

To estimate the first term in (4.32), we write

∂

∂x̂
(BΠ̂û)1(x̂, ŷ)−

∂

∂x̂
(BΠ̂û)1(x̂, 0) =

∫ ŷ

0

∂2

∂x̂∂ŷ
(BΠ̂û)1(x̂, t̂) dt̂.
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This allows us to bound the first term in (4.32) in a way similar to bounds (4.29) and
(4.31):

(I)2,1 ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê)‖v̂1‖ê. (4.33)

The second term on the right in (4.32) can be rewritten as

(I)2,2 =
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(B(Π̂û− û))1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ ≡ (I)2,2,1 + (I)2,2,2,

(4.34)

where we used that ∂
∂x̂ v̂1(x̂, 0) = ∂

∂x̂ v̂1(x̂, ŷ) on e, since v̂1 is constant in ŷ.
To estimate the second term in (4.34), we note that the assumption of the lemma

and one of the properties of the Piola transformation (see (2.8)) imply that d̂iv v̂ = 0,
i.e.

∂

∂x̂
v̂1(x̂, ŷ) = − ∂

∂ŷ
v̂2(x̂, ŷ). (4.35)

Now, denoting the lower and upper edge of the reference square by ˆ̀
1 and ˆ̀

3, respec-
tively, and the left and right edge of the reference square by ˆ̀

4 and ˆ̀
2, respectively,

we rewrite the second term in (4.34) as

(I)2,2,2 =−
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ)

∂

∂ŷ
v̂2(x̂, ŷ) dx̂ dŷ

=
∫

ˆ̀1

−
∫

ˆ̀3

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ) v̂2(x̂, ŷ) dx̂

+
∫ 1

0

∫ 1

0

φ(x̂)
∂2

∂x̂∂ŷ
(Bû)1(x̂, ŷ) v̂2(x̂, ŷ) dx̂ dŷ.

(4.36)

Clearly, the last term can be bounded by

C|(Bû)1|2,ê‖v̂2‖ê. (4.37)

We postpone the estimate of the edge integrals in (4.36) for later.
To bound the first term on the right in (4.34), we have

(I)2,2,1 =
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
B11(x̂, ŷ)(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+
∫ 1

0

∫ 1

0

φ(x̂)B11(x̂, ŷ)
∂

∂x̂
(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂x̂
B12(x̂, ŷ)(Π̂û− û)2(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

+
∫ 1

0

∫ 1

0

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
(Π̂û− û)2(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

≡ (I)2,2,1,1 + (I)2,2,1,2 + (I)2,2,1,3 + (I)2,2,1,4

(4.38)

Since Π̂û is exact for constants, using the Bramble-Hilbert lemma and the inverse
inequality, we can bound the first and the third terms in (4.38) as

(I)2,2,1,1 + (I)2,2,1,3 ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê. (4.39)
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For the second term in (4.38), a Taylor expansion of B11 about the any fixed point
(x̂0, ŷ0) ∈ ê gives

(I)2,2,1,2 =
∫ 1

0

∫ 1

0

φ(x̂)B11(x̂0, ŷ0)
∂

∂x̂
(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ +R, (4.40)

where

R ≤ C|B|1,∞,ê|û|1,ê‖v̂1‖ê, (4.41)

using (4.7) for the last inequality. To bound the first term on the right in (4.40), we
note that

(φ2)′′(x̂) = 6φ(x̂) +
1
2
, (φ2)′(0) = (φ2)′(1) = 0.

Therefore, using (4.6), we have∫ 1

0

∫ 1

0

φ(x̂)B11(x̂0, ŷ0)
∂

∂x̂
(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

=
∫ 1

0

∫ 1

0

∂2

∂x̂2
(φ2)(x̂)B11(x̂0, ŷ0)

∂

∂x̂
(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

= −
∫ 1

0

∫ 1

0

∂

∂x̂
(φ2)(x̂)B11(x̂0, ŷ0)

∂2

∂x̂2
(Π̂û− û)1(x̂, ŷ)

∂

∂x̂
v̂1(x̂, ŷ) dx̂ dŷ

≤ C|B|∞,ê|û|2,ê‖v̂1‖ê.

(4.42)

A combination of (4.40)–(4.42) gives

(I)2,2,1,2 ≤ C(|B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂1‖ê. (4.43)

To complete the estimate of (I)2,2,1, it remains to bound (I)2,2,1,4. Using (4.35), we
have

(I)2,2,1,4 =
∫ 1

0

∫ 1

0

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
û2(x̂, ŷ)

∂

∂ŷ
v̂2(x̂, ŷ) dx̂ dŷ

=
∫

ˆ̀3

−
∫

ˆ̀1

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
û2(x̂, ŷ)v̂2(x̂, ŷ) dx̂

−
∫ 1

0

∫ 1

0

φ(x̂)
∂

∂ŷ

(
B12(x̂, ŷ)

∂

∂x̂
û2(x̂, ŷ)

)
v̂2(x̂, ŷ) dx̂ dŷ.

(4.44)

The last term above is bounded by

C(|B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂2‖ê. (4.45)

Combining (4.28)–(4.45), we obtain

E((BΠ̂û)1v̂1) = T1 + T2 + T3, (4.46)

where

T1 ≤ C(|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê)‖v̂‖ê,
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T2 =
∫

ˆ̀1

−
∫

ˆ̀3

φ(x̂)
∂

∂x̂
(Bû)1(x̂, ŷ) v̂2(x̂, ŷ) dx̂,

and

T3 =
∫

ˆ̀3

−
∫

ˆ̀1

φ(x̂)B12(x̂, ŷ)
∂

∂x̂
û2(x̂, ŷ)v̂2(x̂, ŷ) dx̂.

We continue with the estimate of T1. First, for a quasi-uniform mesh, we have
‖DF‖∞,ê ≈ C h and ‖J‖∞,ê ≈ C h2 which implies

‖B‖∞,ê ≤ C ‖K̂−1‖∞,ê. (4.47)

Second, for an h2-uniform mesh, we have additional estimates. Let α = (α1, α2),
αi ≥ 0, be a double index, and let |α| = α1 + α2. In the case |α| = 1, the definition
of the bilinear mapping (2.4)–(2.6) and (2.2) imply that

‖∂̂αDF‖∞,ê ≤ C h2 and ‖∂̂α 1
J

DF‖∞,ê ≤ C.

Now, let α = 2. Then, we have the estimates

‖∂̂αDF‖∞,ê = 0 and ‖∂̂α 1
J

DF‖∞,ê ≤ C h.

As a result, we get

‖∂̂αB‖∞,ê ≤ C
(
h‖K̂−1‖∞,ê + ‖∂̂αK̂−1‖∞,ê

)
,

for |α| = 1, and

‖∂̂αB‖∞,ê ≤ C
(
h2 ‖K̂−1‖∞,ê + h ‖∂̂α−1K̂−1‖∞,ê + ‖∂̂αK̂−1‖∞,ê

)
,

for |α| = 2. Since K̂−1 = K−1 ◦ F, using the chain rule and ‖∂̂αF‖∞,ê ≤ C h|α| for
|α| ≤ 2, we obtain

‖∂̂αK̂−1‖∞,ê ≤ C h|α| ‖∂αK−1‖∞,e, |α| ≤ 2,

which implies

‖∂̂αB‖∞,ê ≤ C h|α|
(
‖K−1‖∞,e + ‖∂α−1K−1‖∞,e + ‖∂αK−1‖∞,e

)
.

Recall that K is a uniformly positive definite tensor. Hence,

|B|s,∞,ê ≤ C hs ‖K‖s,∞,e, s = 1, 2. (4.48)

Therefore we have

T1 ≤ C (|B|2,∞,ê‖û‖1,ê + |B|1,∞,ê|û|1,ê + |B|∞,ê|û|2,ê) ‖v̂‖ê

≤ C
(
h2‖K‖2,∞,e ‖u‖1,e + h‖K‖1,∞,e h|u|1,e + ‖K‖∞,e h

2|u|2,e

)
‖v̂‖ê

≤ C h2 ‖K‖2,∞,e‖u‖2,e‖v‖e,

(4.49)

using that |û|j,ê ≤ Chj‖u‖j,e (see [21]).
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It remains to bound the edge integrals T2 and T3 in (4.46). Summing over all
elements, we rewrite T2 as∑

e

T2 =
∑

e

∑
k=1,3

∫
ˆ̀
k

φ(ŝ)
∂

∂ŝ
((Bû) · τ̂ k)v̂ · n̂k dŝ, (4.50)

where the outward unit normal and unit tangential vectors for edge `k are denoted
by nk and τ k, respectively. It is easy to see from (2.4) that for any edge `

τ = |`| 1
J

DFτ̂ ,

which gives

(Bû) · τ̂ =
1
J

DFT K̂−1DFû · J
|`|

DF−1τ =
J

|`|
(K−1u) · τ .

Therefore, using (2.8), the sum in (4.50) becomes∑
e

T2 =
∑

e

∑
k=1,3

∫
`k

φ(s)
∂

∂s
(J(K−1u) · τ k)v · nk ds. (4.51)

We now rewrite each edge integral as∫
`k

φ(s)
∂J

∂s
(K−1u) · τ kv · nk ds+

∫
`k

φ(s) J
∂

∂s
((K−1u) · τ k)v · nk ds.

Since v ∈ Vh, v · n = 0 on exterior edges and is continuous across interior edges.

The assumed regularity for K and u implies that K−1u, and therefore
∂

∂s
(K−1u) are

continuous across interior edges. Note that each interior edge ` appears twice in the
sum in (4.51), which now can be rewritten as a sum of edge integrals∫

`

φ(s)
(
∂Je1

∂s
− ∂Je2

∂s

)
(K−1u) · τ v · n ds (4.52)

and ∫
`

φ(s) (Je1 − Je2)
∂

∂s
((K−1u) · τ )v · n ds, (4.53)

where e1 and e2 are the two elements that share `. Since the mesh is h2-uniform (see
(2.2) and (2.3)), it is easy to see that

|Je1 − Je2 | ≤ Ch3 and
∣∣∣∣∂Je1

∂s
− ∂Je2

∂s

∣∣∣∣ ≤ Ch3,

so the terms in (4.52) and (4.53) are bounded by

Ch3‖u‖1,`‖v · n‖` (4.54)

Using the well known inequalities for u ∈ H2(e) and v ∈ Vh(e),

‖u‖1,` ≤ Ch−1/2‖u‖2,e and ‖v · n‖` ≤ Ch−1/2‖v‖e,
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we conclude that ∑
e

T2 ≤ C
∑

e

h2‖u‖2,e‖v‖e. (4.55)

Finally, term T3 in (4.46) can be rewritten as

T3 =
∫

ˆ̀3

−
∫

ˆ̀1

φ(ŝ)B12(ŝ, ŷ)
∂

∂ŝ
(û · n̂k)v̂ · n̂k dŝ.

A similar term appears in the proof of Theorem 5.1 in [13]. Following the argument
there, it can be shown that∑

e

T3 ≤ C
∑

e

h2‖u‖2,e‖v‖e. (4.56)

A combination of estimates (4.46), (4.49), (4.55), and (4.56) completes the proof for
(BΠ̂û)1v̂1. The proof for (BΠ̂û)2v̂2 is analogous. This completes the proof of the
lemma. �

5. Superconvergence to the average edge fluxes and at the edge mid-
points. We now discuss how the superconvergence result from Section 4 can be ap-
plied to obtain superconvergence for the computed velocity to the average edge fluxes
and at the midpoints of the edges. Define, for any v ∈ (H1(Ω))2,

∀e ∈ Th, |||v|||2e =
4∑

k=1

(∫
`k

v · nk ds

)2

, (5.1)

|||v|||2 =
∑
e∈Th

|||v|||2e. (5.2)

Using the well-known property of the Piola transformation [6],∫
`

v · n ds =
∫

ˆ̀
v̂ · n̂ dŝ, ∀v ∈ (H1(Ω))2, (5.3)

and transforming to the reference element and back, it is easy to see that ||| · ||| is a
norm on Vh and there exist constants c1 and c2 independent of h such that

c1‖v‖ ≤ |||v||| ≤ c2‖v‖ ∀v ∈ Vh.

It is clear from (4.2) and (5.3) that |||Πv− v||| = 0 for any v ∈ (H1(Ω))2. Therefore,

|||u− uh||| ≤ |||Πu− uh||| ≤ c2‖Πu− uh‖ ≤ Ch2 ‖u‖2, (5.4)

using Theorem 4.2. This implies edgewise superconvergence of the computed velocity
uh · n to 1

|`|
∫

`
u · n ds in a discrete L2-sense.

Remark 5.1. The superconvergence result (5.4) implies similar superconvergence
for |||u− uh|||M , with

|||v|||2M =
∑
e∈Th

4∑
k=1

|`k|(v · nk)2(mk),

where mk is the midpoint of `k. Our choice of reporting the results in ||| · ||| is
motivated by the fact that average fluxes are easier to measure than pointwise values,
and therefore are of greater practical interest.
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6. Numerical experiments. In this section, we present the details of the nu-
merical implementation. Instead of solving saddle point problem (2.9), we reduce it
to an equivalent system with a symmetric positive definite matrix using the standard
hybridization technique.

Let Vh
e be the restriction of Vh to quadrilateral e and Λh

` be the space of constant
functions over edge `. Define

Ṽh =
∏
e

Vh
e , and Λh =

∏
`

Λh
` .

Note that the normal component of vh ∈ Vh is continuous across interior mesh edges
and vh · n = 0 on exterior edges. Therefore,

Vh =

{
ṽh ∈ Ṽh :

∑
e

(µh, ṽh · ne)∂e = 0 ∀µh ∈ Λh

}
,

where ne is the outward normal vector for quadrilateral e.
It has been shown by many authors (see, e.g. [6]) that the original formulation

(2.9) is equivalent to the mixed-hybrid formulation: find (ũh, ph, λh) ∈ Ṽh×Wh×Λh

such that

(K−1ũh, ṽh)h,e − (ph, div ṽh)e + (λh, ṽh · ne)∂e = 0, ∀ṽh ∈ Ṽh,

(div ũh, wh)e = (f, wh)e, ∀wh ∈Wh,∑
e

(µh, ũh · ne)∂e = 0, ∀µh ∈ Λh.

(6.1)
System (6.1) can be written in matrix form as M BT CT

B 0 0
C 0 0


 u

p

λ

 =

 0
f

0

 , (6.2)

where

D =
(
M BT

B 0

)
is a block-diagonal matrix (after a permutation of columns and rows) with as many
blocks as mesh elements. Each block is a 5 × 5 matrix. Therefore, vectors u and p
can be explicitly eliminated from (6.2) resulting in a system

S λ = b, (6.3)

where S is a sparse symmetric positive definite matrix. For logically rectangular
meshes, S has at most 7 non-zero elements in each row and column. Its non-zero
entries represent connections between edge-based unknowns belonging to the same
cell.

Problem (6.3) was solved with the preconditioned conjugate gradient (PCG)
method. In the numerical experiments, we used one V-cycle of the algebraic multigrid
method [25] as a preconditioner. The stopping criterion for the PCG method was the
relative decrease in the norm of the residual by a factor of 10−12.
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Fig. 6.1. Examples of meshes used in numerical experiments.

We solved the boundary problem (1.1) with a known analytic solution

p(x, y) = x3 y2 + x cos(xy) sin(x),

and tensor coefficient

K(x, y) =
(

(x+ 1)2 + y2 −xy
−xy (x+ 1)2

)
.

It is pertinent to note here that the superconvergence result established in the previous
section for the homogeneous Neumann boundary condition can be extended to the
case of general Neumann boundary value problem.

Table 6.1
Convergence rates for Example 1: Neumann boundary conditions

1/h |||u− uh|||∞ |||u− uh||| |||p− ph|||∞ |||p− ph|||
8 8.32e-2 5.47e-2 4.75e-3 1.45e-3
16 2.84e-2 1.69e-2 1.57e-3 3.99e-4
32 8.84e-3 4.49e-3 4.40e-4 1.03e-4
64 2.42e-3 1.14e-3 1.16e-4 2.59e-5
128 6.32e-4 2.87e-4 2.96e-5 6.48e-6
256 1.61e-4 7.17e-5 7.49e-6 1.62e-6
Rate 1.93 1.99 1.96 2.00

In Example 1, the computational domain Ω is the unit square. The computational
grid is constructed from a uniform rectangular grid via the mapping

x(ξ, η) = ξ + 0.06 sin(2πη) sin(2πξ), y(ξ, η) = η + 0.06 sin(2πη) sin(2πξ),

where 0 < η, ξ < 1, and subsequent random distortion of mesh node positions (see
Fig. 6.1). The maximum value of the distortion is proportional to the square of the
local mesh size, i.e. the resulting grid satisfies assumption (2.2). We test both Neu-
mann and Dirichlet boundary conditions. The results for the Neumann problem are
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shown in Table 6.1. The convergence rates were computed using the linear regression
for the data in the rows for 1/h = 32, 64, 128, 256. In addition to norm (5.2), we show
the convergence rate in the discrete L∞-norm:

|||u− uh|||∞ = max
`k

∣∣∣∣ 1
|`k|

∫
`k

u · nk ds − uh · nk

∣∣∣∣ ,
where maximum is taken over all mesh edges. The convergence rates for the pressure
variable are shown in the following discrete norms:

|||p− ph|||2 =
∑

ei∈Th

|p(ci)− ph(ci)|2 |ei|

and

|||p− ph|||∞ = max
ei∈Th

|p(ci)− ph(ci)|,

where ci is the geometric center of element ei. The use of the geometric center instead
of the mass center is due to the following property of the MFD method. The method
is exact for linear solutions when the pressure variable, p(ci), is evaluated at the
geometric center ci [15]. The second order convergence rate is observed for both the
pressure and velocity variables in the discrete L2 and L∞ norms.

Table 6.2
Convergence rates for Example 1: Dirichlet boundary conditions

1/h |||u− uh|||∞ |||u− uh||| |||p− ph|||∞ |||p− ph|||
8 1.50e-1 8.58e-2 5.08e-3 2.08e-3
16 7.20e-2 2.59e-2 1.64e-3 5.53e-3
32 4.24e-2 6.97e-3 4.71e-4 1.42e-4
64 2.39e-2 1.81e-3 1.26e-4 3.57e-5
128 1.27e-2 4.65e-4 3.26e-5 8.95e-6
256 6.55e-3 1.19e-4 8.26e-6 2.24e-6
Rate 0.90 1.96 1.95 2.00

In the case of Dirichlet boundary conditions, a loss of one half order in the con-
vergence rate for the velocity in the L2-norm is expected (see, e.g. [12, 3]). The
convergence rates are shown in Table 6.2. Note that the velocity convergence rate in
the L2-norm is larger than the theoretical bound of O(h1.5). However, the convergence
rate in the L∞-norm is only O(h).

In Example 2, the computational domain Ω consists of three quadrilaterals (see
Fig. 6.1). A sequence of grids is obtained by uniform refinement of these quadrilaterals.
The left bottom corner of the domain is located at point (1, 0). The results of our
numerical experiments are shown in Table 6.3. We realize that the grid is only locally
h2 uniform. However, the second order convergence rate is for the L2 norm of the
velocity variable uh is attained.

7. Conclusion. We have proved the superconvergence estimate for the velocity
variable on h2-uniform quadrilateral grids when the exact integration of velocities
is replaced by a novel 4-point quadrature rule. The theoretical results for the full
diffusion tensor have been confirmed with numerical experiments.
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Table 6.3
Convergence rates for Example 2: Neumann boundary conditions

1/h |||u− uh|||∞ |||u− uh||| |||p− ph|||∞ |||p− ph|||
8 1.59e-1 1.08e-1 8.84e-3 5.05e-3
16 5.23e-2 2.79e-2 2.74e-3 1.21e-3
32 1.72e-2 7.07e-3 8.33e-4 2.95e-4
64 5.65e-3 1.78e-3 2.26e-4 7.30e-5
128 1.85e-3 4.45e-4 5.84e-5 1.82e-5
256 6.06e-4 1.11e-4 1.48e-5 4.53e-6
Rate 1.61 2.00 1.94 2.01
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