ASYNCHRONOUS FAST ADAPTIVE COMPOSITE-GRID METHODS: NUMERICAL RESULTS*

BARRY LEE†, STEPHEN F. MCCORMICK†, BOBBY PHILIP†, AND DANIEL J. QUINLAN†

Abstract. This paper presents numerical results for the asynchronous version of the fast adaptive composite-grid algorithm (AFACx). These results confirm the level-independent convergence bounds established theoretically in a companion paper. These numerical results include the case of AFACx applied to first-order system least-squares finite element discretizations of the stationary Stokes equations on curvilinear adaptive mesh refinement grids.

Key words. adaptive mesh refinement, asynchronous, fast adaptive composite-grid, FOSLS, system PDE, elliptic solvers

AMS subject classifications. 65F10, 65N22, 65N50, 65N55

DOI. 10.1137/S1064827502407536

1. Introduction. Adaptive mesh refinement (AMR) is a numerical process for dynamically introducing local fine resolution on computational grids, in response to unresolved error in a computation. AMR techniques were first introduced by Brandt [4] for general problems in the early 1970s and by Berger [2] more specifically for hyperbolic problems in the 1980s. They are extremely attractive because typically one to two, and even possibly higher, orders of computational and memory efficiency improvements are achieved.

The fast adaptive composite-grid (FAC) method was developed in the 1980s [15, 16, 17, 18] to provide more robust discretization and solution methods for elliptic problems on AMR grids. The strength of FAC lies in its ability to use existing single grid solvers on uniform meshes to solve different refinement levels. This has the combined effect of solving nonuniform composite-grid problems with uniform grid solvers. However, although FAC permits asynchronous processing of grids at a given refinement level, and its convergence rate is bounded independently of the number of refinement levels, the multiplicative way FAC treats the various refinement levels implies sequential processing, a serious bottleneck for large-scale parallel AMR applications. This difficulty led to the development of an asynchronous version of FAC called AFAC [13, 16, 19]. Further research into improving the computational efficiency of AFAC led to the development of the asynchronous fast adaptive composite-grid algorithm, AFACx [22, 20, 21], which achieves improvements in computational and communication efficiency by applying only simple relaxation sweeps on all but the
AFACX: NUMERICAL RESULTS

coarsest refinement level. Numerical results [22] show that these improvements come with no significant degradation of the convergence rates of AFACx compared to those of AFAC based on multigrid solvers.

In this paper, we present numerical results for the AFACx algorithm on Cartesian and curvilinear AMR grids. Since the success of adaptive solution methods depends critically on an accurate, computable, local error indicator, we present model applications involving first-order system least-squares (FOSLS) formulations of scalar elliptic partial differential equations (PDEs) and the stationary Stokes equations. This is important to AMR methodology because FOSLS formulations are endowed with sharp computable local error estimators based on the local evaluation of the FOSLS functional [3, 10]. Numerical results verify the level-independent convergence rates theoretically established in our companion paper [21]. To our knowledge, this is the first application of AFACx to system PDEs, so these numerical results are of interest in themselves.

This paper proceeds as follows. In section 2, we describe the algorithmic details of AFACx applied to a model PDE. Section 3 presents FOSLS formulations of a scalar elliptic equation and the stationary Stokes equations. This section begins by establishing notation and functional settings, followed by FOSLS formulations of the model problems, stating known theoretical results for these formulations. Section 4 reports numerical results for AFACx applied to finite element discretizations of these model problems on Cartesian and curvilinear AMR grids.

2. Model problem and algorithm description. To describe AFACx, we first present a model problem, its variational formulation, and its discretization on partially refined meshes. We then apply AFACx to this model problem. Note that the model problem used in this section is purely for illustrative purposes.

2.1. Model problem. Consider a general self-adjoint boundary value problem denoted by

\[Lu = b. \]

Let the variational form of this problem be: find \(u \in V \) such that

\[a(u, v) = f(v) \quad \forall v \in V, \tag{2.1} \]

where \((V, \| \cdot \|_V) \) is a Hilbert space, \(a(\cdot, \cdot) : V \times V \to \mathbb{R} \) is a symmetric, continuous, and coercive bilinear form on \(V \), i.e., there exists a constant, \(\gamma > 0 \), such that

\[a(u, u) \geq \gamma \| u \|_V^2 \quad \forall u \in V; \tag{2.2} \]

and \(f(\cdot) : V \to \mathbb{R} \) is linear and continuous. It is known [11] that, under these conditions, there exists a unique solution, \(u \in V \), for (2.1).

For simplicity in our illustration of the AFACx algorithm, we consider the following model boundary value problem:

\[-\Delta u = f \quad \text{in} \quad \Omega, \tag{2.3} \]
\[u = 0 \quad \text{on} \quad \Gamma, \tag{2.4} \]

where \(f \in L^2(\Omega) \). We choose \(V = H^1_0(\Omega) \),

\[a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, d\Omega \quad \forall u, v \in V, \]
and

\[f(v) = \int_{\Omega} f v d\Omega \quad \forall v \in V. \]

2.2. Partially refined meshes. To discretize (2.1) on partially refined meshes, let \(\Omega_J \subseteq \Omega_{J-1} \subseteq \ldots \subseteq \Omega_1 \equiv \Omega \) be a nested sequence of nonempty, bounded, open, Lipschitz domains. Subdomains \(\Omega_k, \ k = 2, 3, \ldots, J \), can be viewed as regions where the solution can vary on increasingly finer scales and, hence, where local refinement patches are generated during the AMR process. Note that increasing values of index \(k \) correspond to increasing levels of refinement. We construct a series of nested locally quasi-uniform tessellations, \(\mathcal{T}^c_k = \{\tau^c_k\}_{i=1}^{N_k} \), \(k = 1, 2, \ldots, J \), of \(\Omega \), making the assumption that the boundary of \(\Omega_k \) aligns with the edges of elements in \(\mathcal{T}^{c}_{k-1} \) for \(k = 2, 3, \ldots, J \). Let \(\mathcal{T}^c_1 = \{\tau^c_1\}_{i=1}^{N_1} \) be a quasi-uniform tessellation of \(\Omega_1 \), \(N_1 \geq 4 \).

Tessellation \(\mathcal{T}^c_k \) is obtained from \(\mathcal{T}^{c}_{k-1} \) in the following manner. Since \(\Omega_k \subseteq \Omega_{k-1} \) and its boundary aligns with elements of tessellation \(\mathcal{T}^{c}_{k-1} \), then there exists a local “coarse” tessellation, \(\mathcal{T}^{h_k}_{k-1} = \{\tau^{h_{k-1}}_{j}\}_{j=1}^{M_k} \), \(M_k \leq N_{k-1} \), consisting of elements of \(\mathcal{T}^{c}_{k-1} \) that covers \(\Omega_k \), where \(h_{k-1} \) is the length of the longest side of the rectangles in \(\mathcal{T}^{h_{k-1}}_{k-1} \). Now we uniformly refine elements of \(\mathcal{T}^{h_{k-1}}_{k-1} \) by subdividing each element into four elements by connecting the midpoints of the sides. This yields a “fine” local tessellation, \(\mathcal{T}^{h_k}_k \), with \(h_k = h_{k-1}/2 \). Elements of \(\mathcal{T}^{h_k}_k \) that lie in the complement of \(\Omega_k \) and the elements of \(\mathcal{T}^{h_k}_k \) together form the elements of \(\mathcal{T}^c_k = (\mathcal{T}^{c}_{k-1} \setminus \mathcal{T}^{h_k}_{k-1}) \cup \mathcal{T}^{h_k}_k \). This process leads to a set of nested tessellations, \(\{\mathcal{T}^c_k\}_{k=1}^{J} \), of \(\Omega \) that form partially refined locally quasi-uniform meshes.

An example of this procedure is shown in Figure 1, where only one subdomain \(\Omega_2 \subset \Omega_1 = \Omega \) is present. Domain \(\Omega_1 \) is tessellated into rectangular elements to obtain \(\mathcal{T}^c_1 \equiv \mathcal{T}^{h_1}_1 \). This means that \(\Omega_2 \) has a “coarse” tessellation (since \(\Omega_2 \subset \Omega_1 \) and the boundary of \(\Omega_2 \) aligns with the edges of elements in \(\mathcal{T}^c_1 \)) generated by elements of \(\mathcal{T}^c_1 \), which is denoted by \(\mathcal{T}^{h_1}_2 \). The local “fine” tessellation, \(\mathcal{T}^{h_2}_2 \), of \(\Omega_2 \) is obtained by subdividing each element of \(\mathcal{T}^{h_1}_2 \) into four smaller rectangular elements, as shown in Figure 1(b). The composite-grid tessellation, \(\mathcal{T}^c_2 \), is shown in Figure 2(a) formed from the uniform subgrids in Figure 2(b).

2.3. Finite element spaces and the discrete variational problem. We assume that conforming bilinear finite elements on quadrilateral meshes are used,
although it is clear that this procedure can easily be extended to the more general case. We thus define $V_k^h \subset H_0^1(\Omega)$, $k = 1, 2, \ldots, J$, to be the space spanned by standard bilinear nodal basis functions with local support about the nodes of tessellation T_k^h. Because of the conformity of the finite elements, note that there are no degrees of freedom associated with fine nodes that lie on the boundary, $\partial \Omega_k$. Continuity implies that the “slave” nodes on the interface are evaluated simply by interpolation from adjacent coarse nodes. Now, the “fine” local finite element space defined in the interior of domain Ω_k is $V_k^h = V_k^c \cap H_0^1(\Omega_k)$. By our use of $H_0^1(\Omega_k)$ here, we mean that functions in V_k^h have support only in the interior of Ω_k. Similarly, we define “coarse” local finite element spaces by $V_k^{h-1} = V_{k-1}^c \cap H_0^1(\Omega_k)$, $V_k^{h-1} \subset V_k^h$, $k = 2, \ldots, J$. Note that the local spaces are nested: $V_1^c \subset V_2^c \subset \cdots \subset V_J^c \subset H_0^1(\Omega)$. However, the coarse local spaces are generally nonnested because they typically correspond to increasingly smaller local subdomains.

Having chosen finite-dimensional composite-grid space $V_J^c \subset H_0^1(\Omega)$, the discrete variational problem is find $u^c \in V_J^c$ such that

$$a(u^c, v) = f(v) \quad \forall v \in V_J^c. \tag{2.5}$$

2.4. AFACx. Let $u^c \in V_J^c$ denote the current approximation to the solution of (2.5). The AFACx algorithm applied to solving (2.5) with ν_1 smoothing steps on the restricted coarse grids at each level and ν_2 smoothing steps on the fine grids at each refinement level is then given by the expression

$$u^c \leftarrow AFACx(u^c, \nu_1, \nu_2)$$

and is defined as follows:

Step 1. For each $k \in \{2, \ldots, J\}$, starting with initial guess $u^k \leftarrow 0$,
perform ν_1 relaxation sweeps on the problem: find $u^k \in V_k^{h_{k-1}}$ such that

$$a(u^c + u^k, w) = f(w) \quad \forall w \in V_k^{h_{k-1}}.$$

On the coarsest level solve: find $u^1 \in V_1^c$ such that

$$a(u^c + u^1, v) = f(v) \quad \forall v \in V_1^c.$$

Step 2. For each $k \in \{2, \ldots, J\}$, starting with initial guess $u^k \leftarrow 0$,
perform ν_2 relaxation sweeps on the problem: find $u^k \in V_k^h$ such that

$$a(u^c + u^k + u^k, v) = f(v) \quad \forall v \in V_k^h.$$
Step 3. Update u^c by

$$u^c \leftarrow u^c + \sum_{k=1}^{J} u^k.$$

By relaxation we mean application of smoothers like Richardson, damped Jacobi, or red-black Gauss–Seidel.

The above pseudolanguage shows that AFACx performs smoothing on all but the coarsest level. Smoothing is performed on each restricted coarse level to obtain the correction u^k for each level k. Smoothing on the fine level with initial guess w^k then yields u^k, which approximates the component of the correction that is representable only on level k.

AFACx is generally more efficient than AFAC because the various uniform grids (the local fine and restricted coarse refinement levels) are processed only by smoothing, instead of the somewhat more expensive multigrid solvers used in AFAC. This reduction in cost comes with no significant degradation in the convergence rates [22].

2.5. Symmetric AFACx. The operator corresponding to the AFACx algorithm described above is not symmetric with respect to the A-inner product. To facilitate condition number estimates, we work instead with a symmetrized form of AFACx developed as follows.

Let $u^c \in V^c_J$ denote the current approximation to the solution of composite-grid equation (2.5). The symmetric AFACx algorithm is then given by the expression

$$u^c \leftarrow \text{symmAFACx}(u^c)$$

and is defined as follows (with just one relaxation sweep on each level for simplicity):

Step 1. For each $k \in \{2, \ldots, J\}$, starting with the initial guess $w^k_1 \leftarrow 0$, perform one relaxation sweep on the problem: find $u^k_1 \in V^{h_{k-1}}_k$ such that

$$a(u^c + w^k_1, w) = f(w) \quad \forall w \in V^{h_{k-1}}_k.$$

On the coarsest level solve: find $u^1 \in V^c_1$ such that

$$a(u^c + u^1, v) = f(v) \quad \forall v \in V^c_1.$$

Step 2. For each $k \in \{2, \ldots, J\}$, starting with the initial guess $w^k_1 \leftarrow 0$, perform one relaxation sweep on the problem: find $u^k_1 \in V^{h_k}_k$ such that

$$a(u^c + w^k_1 + u^k_1, v) = f(v) \quad \forall v \in V^{h_k}_k.$$

Step 3. For each $k \in \{2, \ldots, J\}$, starting with the initial guess $u^k_2 \leftarrow 0$, perform one relaxation sweep on the problem: find $u^k_2 \in V^{h_k}_k$ such that

$$a(u^c + u^k_2, v) = f(v) \quad \forall v \in V^{h_k}_k.$$

Step 4. For each $k \in \{2, \ldots, J\}$, starting with the initial guess $w^k_2 \leftarrow 0$, perform one relaxation sweep on the problem: find $w^k_2 \in V^{h_{k-1}}_k$ such that

$$a(u^c + u^k_2 + w^k_2, w) = f(w) \quad \forall w \in V^{h_{k-1}}_k.$$
AFACx: NUMERICAL RESULTS

Update u^k_2 by $u^k_2 \leftarrow u^k_2 + w^k_2 - w^k_1$.

Step 5. For each $k \in \{2, \ldots, J\}$, define u^k by

$$u^k \leftarrow \frac{1}{2}(u^k_1 + u^k_2).$$

Step 6. Update u^c by

$$u^c \leftarrow u^c + \sum_{k=1}^{J} u^k.$$

The standard form of AFACx is typically used in practice, but the symmetric form is useful for theoretical analysis. The following theorem was established for symmetric AFACx in [20].

Theorem 2.1. The condition number of the linear error propagation operator for symmetric AFACx is bounded independently of the number of levels, J.

3. First-order system least squares formulations. Having described the AFACx algorithm, we now turn our attention to formulating model problems as FOSLS systems. In this section, we introduce notation, review FOSLS methodology, state some relevant FOSLS theory, and present the FOSLS formulations for a model scalar PDE and the Stokes equations. For a more thorough presentation of FOSLS methodology and additional references, we refer the reader to [6, 7, 8, 9, 10].

3.1. Notation and definitions. Let Ω be a bounded, open, and connected domain in \mathbb{R}^n ($n = 2, 3$) with a $C^{1,1}$ or convex polyhedral boundary, Γ. Let $u = (u_1, u_2, \ldots, u_n)^t$ be an n-vector function defined in Ω. A scalar operator, G, applies to u componentwise:

$$Gu^t = (Gu_1, Gu_2, \ldots, Gu_n)$$

and

$$Gu = \begin{pmatrix} Gu_1 \\ Gu_2 \\ \vdots \\ Gu_n \end{pmatrix}.$$}

Given a collection of column vectors given by $U_i \equiv Gu_i$, $i = 1, 2, \ldots, n$, where u_i is an n-vector function defined in Ω, we denote the matrix composed of these columns by

$$U \equiv (U_1, U_2, \ldots, U_n) = \begin{pmatrix} U_{11} & U_{12} & \cdots & U_{1n} \\ U_{21} & U_{22} & \cdots & U_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ U_{n1} & U_{n2} & \cdots & U_{nn} \end{pmatrix}.$$}

For a square matrix, U, its trace is defined by

$$\text{tr}U = \sum_{i=1}^{n} U_{ii}.$$
Also, an \(n \)-vector operator \(D \) (e.g., \(D = \nabla \times \)), is extended to a matrix, \(\bar{U} \), columnwise:

\[
DU = (DU_1, DU_2, \ldots, DU_n).
\]

To define boundary operations, let \(\mathbf{n} \) denote the outward unit normal on \(\Gamma \). Then the tangential and normal operators on \(\bar{U} \) are extended columnwise:

\[
\mathbf{n} \times \bar{U} = (\mathbf{n} \times U_1, \mathbf{n} \times U_2, \ldots, \mathbf{n} \times U_n)
\]

and

\[
\mathbf{n} \cdot \bar{U} = (\mathbf{n} \cdot U_1, \mathbf{n} \cdot U_2, \ldots, \mathbf{n} \cdot U_n).
\]

Because FOSLS formulations are essentially well-posed minimization principles defined over appropriate Sobolev spaces, we need to introduce some functional spaces. First, inner products and norms on matrix and vector functions are defined componentwise:

\[
\| \bar{U} \|_2^2 = \sum_{i=1}^{n} \| U_i \|_2^2 = \sum_{i,j=1}^{n} \| U_{ij} \|_2^2.
\]

For \(m \geq 0 \), we need the standard \(m \)th-order Sobolev spaces, \(H^m(\Omega)^n \), with their standard norms denoted by \(\| \cdot \|_{m,\Omega} \). For \(m = 0 \), we have \(L^2(\Omega)^n \) with its inner product \((\cdot,\cdot)_{0,\Omega}\). Our FOSLS formulations require the spaces

\[
H(\text{div}; \Omega) = \{ v \in L^2(\Omega)^n : \nabla \cdot v \in L^2(\Omega) \},
\]

\[
H(\text{curl}; \Omega) = \{ v \in L^2(\Omega)^n : \nabla \times v \in L^2(\Omega)^{2n-3} \},
\]

which are Hilbert spaces under the respective norms

\[
\| v \|_{H(\text{div}; \Omega)} = (\| v \|_{0,\Omega}^2 + \| \nabla \cdot v \|_{0,\Omega}^2)^{\frac{1}{2}},
\]

\[
\| v \|_{H(\text{curl}; \Omega)} = (\| v \|_{0,\Omega}^2 + \| \nabla \times v \|_{0,\Omega}^2)^{\frac{1}{2}}.
\]

Finally, we need the subspaces

\[
H_0(\text{curl}; \Omega) = \{ v \in H(\text{curl}; \Omega) : \mathbf{n} \times v = 0 \text{ on } \Gamma \},
\]

\[
L^2_0(\Omega) = \left\{ v \in L^2(\Omega) : \int_{\Omega} v \, d\Omega = 0 \right\}.
\]

3.2. Model problem I.

The first model problem we consider is

\[
\begin{align*}
-\Delta p + \delta p &= f \text{ in } \Omega, \\
p &= 0 \text{ on } \Gamma,
\end{align*}
\]

where \(p \) is the unknown, \(f \) is the source term, and \(\delta \geq 0 \) is constant. It is known that under our assumptions on \(\Gamma \), the associated weak form of (3.1)–(3.2) is uniquely solvable in \(H^2(\Omega) \) for any \(f \in L^2(\Omega) \) (cf. [12]).

FOSLS methodology essentially reformulates (3.1)–(3.2) into an augmented first-order system boundary value problem which is then recast into a well-posed minimization problem. To this end, let \(\bar{U} = \nabla p \). Then (3.1)–(3.2) can be rewritten as

\[
\begin{align*}
\bar{U} - \nabla p &= 0 \text{ in } \Omega, \\
-\nabla \cdot \bar{U} + \delta p &= f \text{ in } \Omega, \\
p &= 0 \text{ on } \Gamma.
\end{align*}
\]
Also, noting that $\nabla \times \nabla = 0$ in Ω and $n \times \nabla p = 0$ on Γ, we have

\begin{align}
\nabla \times U &= 0 \text{ in } \Omega, \\
n \times U &= 0 \text{ on } \Gamma.
\end{align}

The augmented first-order system is (3.3)–(3.7).

3.2.1. FOSLS minimization problem for model problem I. We recast (3.3)–(3.7) into a least-squares minimization problem over a suitable linear space. Let $V_1 = (H(\text{div}; \Omega) \cap H_0(\text{curl}; \Omega)) \times H_0^1(\Omega)$, and define the FOSLS functional $G_1(\cdot, \cdot; \cdot) : V_1 \to \mathbb{R}$ by

\begin{equation}
G_1(V, q; f) = \|V - \nabla q\|_{0, \Omega}^2 + \|\nabla \cdot V + \delta q - f\|_{0, \Omega}^2 + \|\nabla \times V\|_{0, \Omega}^2 \quad \forall (V, q) \in V_1.
\end{equation}

Then the FOSLS minimization problem is find $(U, p) \in V_1$ such that

\begin{equation}
G_1(U, p; f) = \inf_{(V, q) \in V_1} G_1(V, q; f).
\end{equation}

The equivalent variational problem for (3.9) is find $(U, p) \in V_1$ such that

\begin{equation}
F_1(U, p; V, q) = f_1(V, q) \quad \forall (V, q) \in V_1,
\end{equation}

where bilinear form $F_1(\cdot; \cdot) : V_1 \times V_1 \to \mathbb{R}$ is defined by

\begin{align*}
F_1(U, p; V, q) &= (U - \nabla p, V - \nabla q)_{0, \Omega} + (-\nabla \cdot U + \delta p, -\nabla \cdot V + \delta q)_{0, \Omega} \\
&\quad + (\nabla \times U, \nabla \times V)_{0, \Omega},
\end{align*}

and linear functional $f_1(\cdot) : V_1 \to \mathbb{R}$ is given by

\begin{equation}
f_1(V, q) = (f, -\nabla \cdot V + \delta q)_{0, \Omega}.
\end{equation}

We note the following theorem [7].

Theorem 3.1. Assume that Ω is a bounded open domain in \mathbb{R}^n, $n = 2, 3$, with a $C^{1,1}$ or convex polygonal boundary. Then there exist positive constants α_1 and α_2 such that

\begin{equation}
\alpha_1(\|U\|_{1, \Omega}^2 + \|p\|_{1, \Omega}^2) \leq F_1(U, p; U, p) \quad \forall (U, p) \in V_1
\end{equation}

and

\begin{equation}
F_1(U, p; V, q) \leq \alpha_2(\|U\|_{1, \Omega}^2 + \|p\|_{1, \Omega}^2)^{\frac{1}{2}}(\|V\|_{1, \Omega}^2 + \|q\|_{1, \Omega}^2)^{\frac{1}{2}} \quad \forall (U, p), (V, q) \in V_1.
\end{equation}

Noting that $F_1(U, p; U, p) = G_1(U, p; 0)$, Theorem 3.1 immediately implies that

\begin{equation}
\alpha_1(\|U\|_{1, \Omega}^2 + \|p\|_{1, \Omega}^2) \leq G_1(U, p; 0) \leq \alpha_2(\|U\|_{1, \Omega}^2 + \|p\|_{1, \Omega}^2) \quad \forall (U, p) \in V_1,
\end{equation}

establishing $(H^1)^{n+1}$ norm equivalence of functional $G_1^2(\cdot; 0)$.

3.3. Model problem II. The second model problem we consider is the stationary Stokes problem:

\[-\Delta u + \nabla p = f \quad \text{in } \Omega, \]
\[\nabla \cdot u = 0 \quad \text{in } \Omega, \]
\[u = 0 \quad \text{on } \Gamma, \]
\[\int_{\Omega} p \, dx = 0, \]

where \((u, p)\) is the \((n + 1)\)-vector of unknowns and \(f\) is the source. It is known that the weak form of boundary value problem (3.14)–(3.17) has a unique solution, \((u, p) \in H^1_0(\Omega)^n \times L^2_0(\Omega)\), for any \(f \in H^{-1}(\Omega)^n\) (cf. [12]).

3.3.1. First-order system for model problem II. Introducing velocity gradients \(U = \nabla u^t = (\nabla u_1, \nabla u_2, \ldots, \nabla u_n)\), (3.14)–(3.17) can be rewritten as

\[U - \nabla u^t = 0 \quad \text{in } \Omega, \]
\[-(\nabla \cdot U) + \nabla p = f \quad \text{in } \Omega, \]
\[\nabla \cdot u = 0 \quad \text{in } \Omega, \]
\[u = 0 \quad \text{on } \Gamma. \]

Moreover, we have the equations

\[\nabla \times U = 0 \quad \text{in } \Omega, \]
\[\nabla \text{tr} U = 0 \quad \text{in } \Omega, \]
\[n \times U = 0 \quad \text{on } \Gamma. \]

The augmented first-order boundary value problem is (3.18)–(3.24).

3.3.2. FOSLS minimization problem for model problem II. Define spaces

\[V_0 = \{ V \in H^1(\Omega)^{n^2} : n \times V = 0 \text{ on } \Gamma \} \]

and

\[V_2 = V_0 \times H^1_0(\Omega)^n \times (H^1(\Omega) \setminus \mathbb{R}), \]

and FOSLS functional \(G_2(\cdot; f) : V_2 \to \mathbb{R}\) by

\[G_2(V, v; q; f) = \| f + (\nabla \cdot V^t)^t - \nabla q \|^2_{0,\Omega} + \| V - \nabla v^t \|^2_{0,\Omega} + \| \nabla \times V \|^2_{0,\Omega} + \| \nabla \cdot v \|^2_{0,\Omega} + \| \nabla \text{tr} V \|^2_{0,\Omega} \quad \forall (V, v, q) \in V_2. \]

Then the FOSLS minimization problem for model problem II is find \((U, u, p) \in V_2\) such that

\[G_2(U, u, p; f) = \inf_{(V, v, q) \in V_2} G_2(V, v; q; f). \]

The variational problem associated with (3.25) is find \((U, u, p) \in V_2\) such that

\[F_2(U, u, p; V, v, q) = f_2(V, v, q) \quad \forall (V, v, q) \in V_2, \]
where bilinear form $F_2(\cdot, \cdot): V_2 \times V_2 \to \mathbb{R}$ is defined by

$$
F_2(U, u, p; V, v, q) = ((\nabla \cdot U)^t - \nabla p, (\nabla \cdot V)^t - \nabla q)_{0, \Omega} + (U - \nabla u', V - \nabla v')_{0, \Omega} + (\nabla \times U, \nabla \times V)_{0, \Omega} + (\nabla \cdot U, \nabla \cdot V)_{0, \Omega}
$$

and linear functional $f_2(\cdot): V_2 \to \mathbb{R}$ is given by

$$
f_2(V, v, q) = (f, (\nabla \cdot V)^t - \nabla q)_{0, \Omega}.
$$

To establish continuity and coercivity bounds for bilinear form $F_2(\cdot, \cdot)$, assume that domain Ω has a $C^{1,1}$ boundary and the following H^2 regularity result holds:

$$
(3.27) \quad \|u\|_{2, \Omega} + \|p\|_{1, \Omega} \leq C \|f\|_{0, \Omega},
$$

where C is a positive constant that depends only on domain Ω. Bound (3.27) is established in [14] for problem (3.14)–(3.17). Then the following theorem holds [9].

Theorem 3.2. Assume that domain Ω has a $C^{1,1}$ boundary and that regularity bound (3.27) holds. Then there exists constant $C > 0$ such that for any $(U, u, p) \in V_2$,

$$
(3.28) \quad \frac{1}{C}(\|U\|^2_{1, \Omega} + \|u\|^2_{1, \Omega} + \|p\|^2_{1, \Omega}) \leq \mathcal{G}_2(U, u, p; 0, 0)
$$

and

$$
(3.29) \quad \mathcal{G}_2(U, u, p; 0, 0) \leq C(\|U\|^2_{1, \Omega} + \|u\|^2_{1, \Omega} + \|p\|^2_{1, \Omega}).
$$

4. Numerical results. This section presents numerical results for AFACx on adaptively refined Cartesian and curvilinear coordinate grids, using the model problems described in the previous section with inhomogeneous boundary conditions.

4.1. Model problem I. We discretize (3.10) using bilinear finite elements on adaptively refined curvilinear grids. The resulting linear systems are solved approximately using several iterations of AFACx.

To analyze the performance of AFACx, three subproblems with the following known nonzero solutions satisfying (3.1)–(3.2) are constructed:

$$
p_1(x, y) = \sin(\pi x) \sin(\pi y) \quad \forall (x, y) \in \Omega,
$$

$$
p_2(x, y) = x(1 - x)y(1 - y) \quad \forall (x, y) \in \Omega,
$$

and

$$
p_3(x, y) = 25e^{-625\pi((x-x_0)^2 + (y-y_0)^2)} \quad \forall (x, y) \in \Omega.
$$

The problems are denoted I(a), I(b), and I(c) and are specific cases of (3.1)–(3.2) with $\delta = 0$, $f = -\Delta p_i$, and $\phi = p_i |_r$ for $i = 1, 2,$ and 3, respectively. (Numerical experiments for the case $\delta = 1$ produced similar results, and hence are not reported here.) Domain Ω is chosen to be either the unit square, $\Omega_a \equiv [0, 1]^2$, or the quarter annulus region, Ω_b, depicted in Figure 3.

4.1.1. Asymptotic convergence factors for AFACx. To assess the efficiency of AFACx, we first measure asymptotic convergence factors. This is done by computing the ratios of the L^2 norms of successive residuals after enough iterations of AFACx that these ratios settle to a constant limiting value (20 iterations has proved
Domains Ω_a and Ω_b with uniform 20×20 grids.

Table 1
Asymptotic convergence factors for point-Gauss–Seidel-based AFACx, problems I(a)–I(c), $\Omega = \Omega_a$.

<table>
<thead>
<tr>
<th>(ν_1, ν_2)</th>
<th>(1, 1)</th>
<th>(2, 1)</th>
<th>(3, 1)</th>
<th>(2, 2)</th>
<th>(3, 2)</th>
<th>(3, 3)</th>
<th>(4, 1)</th>
<th>(4, 2)</th>
<th>(4, 3)</th>
<th>(4, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$n=1$</td>
<td>0.34</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>$n=2$</td>
<td>0.34</td>
<td>0.36</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>$n=3$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
<td>0.33</td>
<td>0.34</td>
</tr>
<tr>
<td>$n=4$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=5$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=6$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=7$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=8$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=9$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
<tr>
<td>$n=10$</td>
<td>0.36</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
<td>0.33</td>
<td>0.36</td>
</tr>
</tbody>
</table>

to be more than enough in practice). Also, in practice, several grid patches can exist on each refinement level. However, for simplicity, our numerical experiments use only one uniform subgrid patch on each refinement level, with 20 grid lines in each coordinate direction on the coarsest grid, as shown in Figure 3. We study the effect of varying the number of refinement levels and the number of restricted and fine-grid smoothing steps on the asymptotic convergence factors. To do this effectively, placement of the refinement patches is fixed in advance. The initial guess on each level is set to zero and point-Gauss–Seidel smoothing is used on every level but the coarsest, the current iterate values at each node being updated separately in turn. A direct solver capable of handling multiple right sides is used to solve the linear systems on the coarsest level. The initial cost of performing an LU factorization for the direct solve is amortized over multiple iterations of AFACx. The experiments were run on SUN Ultra-10 workstations in double-precision arithmetic.

Tables 1 and 2 present asymptotic convergence factors for problems I(a)–I(c). We study asymptotic convergence factors as the number of refinement levels (n), the number of restricted-grid smoothing steps (ν_1), and the number of fine-grid smoothing steps (ν_2) are varied. The numerical results show that asymptotic convergence factors do not degrade as the number of refinement levels is increased, confirming the theoretical results established in [21]. Moreover, increasing the number of restricted and fine-grid smoothing steps does not significantly improve the performance of AFACx. This suggests that, to attain reasonable convergence factors, it is sufficient to perform
Asymptotic convergence factors for point-Gauss–Seidel-based AFACx, problems I(a)–I(c), Ω = Ω_b.

<table>
<thead>
<tr>
<th>(ν_1, ν_2)</th>
<th>(1, 1)</th>
<th>(2, 1)</th>
<th>(2, 2)</th>
<th>(3, 1)</th>
<th>(3, 2)</th>
<th>(4, 1)</th>
<th>(4, 2)</th>
<th>(4, 3)</th>
<th>(4, 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=1</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=2</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=3</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=4</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=5</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=6</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=7</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=8</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=9</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>n=10</td>
<td>0.62</td>
<td>0.43</td>
<td>0.43</td>
<td>0.47</td>
<td>0.62</td>
<td>0.44</td>
<td>0.47</td>
<td>0.44</td>
<td></td>
</tr>
</tbody>
</table>

n: number of refinement levels.
ν_1: number of restricted-grid smoothing steps at each level.
ν_2: number of fine-grid smoothing steps at each level.

4.1.2. Discretization errors. To measure discretization errors, we use problems I(a)–I(c) again with f and φ chosen for each problem as described at the beginning of this section. Since the gradient variables U = ∇p are computed during the FOSLS solution process, the exact values of ∇p_i for i = 1, 2, and 3 are also computed. A sufficient number of AFACx iterations (typically, 20 to 30 iterations) are used to find the approximate solution on composite-grids with various levels of discretization. (We used this many iterations to ensure that the errors properly reflect discretization accuracy.) Figures 4–7 give an example of a series of uniformly refined composite-grids that are used in our computations. Note that by uniform refinement of a composite-grid we mean refinement of each of the uniform component-grid patches (in this case, three) whose union forms the composite-grid. Tables 3 and 4 show the discretization errors and their convergence factors on uniformly refined composite-grids with different numbers of refinement levels. The data presented in these tables suggests that discretization error on the composite-grids is O(h^2) in the L^2 norm, where h represents a local measure of the quasi-uniform composite-grid mesh spacing.

4.2. Model problem II. The variational equations derived from the FOSLS formulation of problem (3.14)–(3.17) described in the previous section are discretized using bilinear finite elements on adaptively refined meshes. Multiple iterations of AFACx are then used to solve the resulting linear system approximately. Again, a known nonzero solution satisfying (3.14)–(3.17) is constructed. Specifically, letting

u_1(x, y) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} (x(1-x))^2(2y - 6y^2 + 4y^3) \\ -(2x - 6x^2 + 4x^3)(y(1-y))^2 \end{pmatrix}

and

p_1(x, y) = x^2 - y^2 \quad \forall (x,y) \in \Omega,

we set f = -Δu_1 + ∇p_1, Φ = u_1|_Γ, and U_1 = ∇u_1. Note then that (u_1, p_1) satisfies (3.14)–(3.17) and (U_1, u_1, p_1) satisfies (3.18)–(3.24).

4.2.1. Asymptotic convergence factors. Asymptotic convergence factors for AFACx applied to this problem are measured by computing the ratio of the L^2 norms of the residuals at successive steps after a sufficient number of iterations. (We used
A sequence of uniformly refined composite-grids, each with 3 refinement levels.

30 iterations here because of the somewhat slower speed of the multigrid solves.) The domain, Ω, the number of refinement levels, the number of fine-grid and restricted-grid relaxations are all varied to study their effects on the asymptotic convergence factors. To perform numerical experiments without introducing effects due to the specific regridding and error estimation algorithms used, we fix the placement of the refinement patches. Also, for simplicity, each refinement level again has only one grid patch. These experiments were also run on SUN Ultra-10 workstations using double precision arithmetic.

Tables 5 and 6 present the asymptotic convergence factors for AFACx applied to the Stokes model problem. A point-Gauss–Seidel smoother is used where, at each node in turn, the current iterate values for each variable are updated separately.
Table 3

<table>
<thead>
<tr>
<th>Problem</th>
<th>I(a)</th>
<th>I(b)</th>
<th>I(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sub>r</sub></td>
<td>N</td>
<td>L<sup>2</sup> norm factor</td>
<td>L<sup>2</sup> norm factor</td>
</tr>
<tr>
<td>10</td>
<td>0.09675</td>
<td>-</td>
<td>0.00747</td>
</tr>
<tr>
<td>20</td>
<td>0.02153</td>
<td>0.2261</td>
<td>0.0108</td>
</tr>
<tr>
<td>40</td>
<td>0.00498</td>
<td>0.23152</td>
<td>0.00038</td>
</tr>
<tr>
<td>80</td>
<td>0.00119</td>
<td>0.23951</td>
<td>0.00009</td>
</tr>
</tbody>
</table>

N_r: number of refinement levels on each composite grid.
N: number of grid lines in each direction on the coarsest uniform grid.

Experiments with block smoothers showed no significant improvement in convergence rates, and hence are not reported here. The coarsest level was solved approximately using a fast transpose-free QMR solver from the PETSc library.

As with model problem I, the numerical results indicate no degradation in asymptotic convergence factors for AFACx as the number of refinement levels is increased, and increasing the number of smoothing steps on the restricted- and fine-grid patches beyond a few does not improve the convergence factors significantly. Figures 8–14 show the plots of the components of u₁, pressure, p₁, and components of U₁ for

Table 4

<table>
<thead>
<tr>
<th>Problem</th>
<th>I(a)</th>
<th>I(b)</th>
<th>I(c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sub>r</sub></td>
<td>N</td>
<td>L<sup>2</sup> norm factor</td>
<td>L<sup>2</sup> norm factor</td>
</tr>
<tr>
<td>10</td>
<td>0.08737</td>
<td>-</td>
<td>0.00791</td>
</tr>
<tr>
<td>20</td>
<td>0.02197</td>
<td>0.25154</td>
<td>0.00207</td>
</tr>
<tr>
<td>40</td>
<td>0.00536</td>
<td>0.24397</td>
<td>0.00052</td>
</tr>
<tr>
<td>80</td>
<td>0.00131</td>
<td>0.24525</td>
<td>0.00013</td>
</tr>
</tbody>
</table>

N_r: number of refinement levels on each composite grid.
N: number of grid lines in each direction on the coarsest uniform grid.

Experiments with block smoothers showed no significant improvement in convergence rates, and hence are not reported here. The coarsest level was solved approximately using a fast transpose-free QMR solver from the PETSc library.
4.2.2. Discretization errors. To measure discretization errors we solve problem II with f and Φ chosen as described at the beginning of this section. The exact gradients ∇u_1 are also computed. The approximate solution is then computed on composite grids with various levels of discretization, using a sufficient number of iterations (approximately 30) of AFACx to ensure that the errors properly reflect discretization accuracy.

Table 7 shows the discretization errors and their convergence factors on uniformly refined composite-grids with different numbers of refinement levels for $\Omega = \Omega_a$. The results suggest that the discretization error on the composite-grids is $O(h^2)$ in the L^2 norm, where h represents a local measure of the quasi-uniform composite-grid mesh spacing.

4.3. Software and implementation. The AFACx solver used was implemented in C++ and uses the AMR++ adaptive mesh refinement library [23] developed as part of the Overture framework [5]. Solvers from the PETSc library [1] are used to perform global coarse-grid solves within AFACx.
Model problem II: Computed approximations to the velocity, \(\mathbf{u} = (u, v)^T \), and the pressure \(p \).

Fig. 8. Velocity (\(u \) component).

Fig. 9. Velocity (\(v \) component).

Fig. 10. Pressure (\(p \)).

Table 7

Discretization errors (\(L^2 \) norm) and their apparent convergence factors for model problem II on different composite grids, \(\Omega = \Omega_a \).

<table>
<thead>
<tr>
<th>(n \rightarrow)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0074</td>
<td>-</td>
<td>0.0087</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>0.0019</td>
<td>0.260</td>
<td>0.0021</td>
<td>0.243</td>
</tr>
<tr>
<td>40</td>
<td>0.0004</td>
<td>0.217</td>
<td>0.0005</td>
<td>0.217</td>
</tr>
<tr>
<td>80</td>
<td>0.0001</td>
<td>0.222</td>
<td>0.0001</td>
<td>0.224</td>
</tr>
<tr>
<td>160</td>
<td>2.e-05</td>
<td>0.235</td>
<td>2.e-05</td>
<td>0.240</td>
</tr>
</tbody>
</table>

\(n \): number of refinement levels.
N: number of grid lines in each coordinate direction on coarsest uniform grid.
Model problem II: Computed velocity gradient components, $\nabla u = (u_x, u_y)^T$ and $\nabla v = (v_x, v_y)^T$.

Fig. 11. u_x.

Fig. 12. u_y.

Fig. 13. v_x.

Fig. 14. v_y.
5. Conclusions. Our numerical results demonstrate uniformly bounded convergence factors for AFACx applied to FOSLS formulations of a model scalar elliptic PDE and the Stokes equations. These results confirm theoretical estimates obtained in [21] and include the first application of AFACx to systems of PDEs on adaptively refined curvilinear grids. We are not concerned here with reliability and efficiency of FOSLS local error estimators because this has already been addressed in [3]. However, our numerical results, together with the theoretical estimates in [21] and the performance results in [19], show that AFACx can be very effective within large-scale complex parallel applications that require efficient scalable solvers on adaptively refined curvilinear grids.

REFERENCES