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Abstract. Application codes reliably achieve performance far less than
the advertised capabilities of existing architectures, and this problem is
worsening with increasingly-parallel machines. For large-scale numerical
applications, stencil operations often impose the greater part of the com-
putational cost, and the primary sources of inefficiency are the costs of
message passing and poor cache utilization. This paper proposes and
demonstrates optimizations for stencil and stencil-like computations for
both serial and parallel environments that ameliorate these sources of in-
efficiency. Additionally, we argue that when stencil-like computations are
encoded at a high level using object-oriented parallel array class libraries,
these optimizations, which are beyond the capability of compilers, may
be automated.

1 Introduction

Modern supercomputers generally have deep memory hicrarchies comprising a
small fast memory (registers) and increasingly large, increasingly slow memo-
ries. Five such levels exist for the Los Alamos National Laboratory ASCI Blue
machine: each processor sces a register file, level one (L1) and level two (1.2)
caches, main memory, and remote main memory. Future architectures may rely
on yet deeper memory hierarchies.

It is clear that the realization of modern supercomputer potential relics crit-
ically on program-level cache management via the staging of data flow through
the memory hierarchy to achieve maximal data re-use when resident in the up-
per memory levels. In general it is important to utilize the spatial- and temporal
locality of reference in a problem. Data exhibits temporal locality when multiple
references are close in time; spatial locality when nearby memory locations are
referenced. This is important because memory access time (from the same level)
may not be uniform, e.g. in loading a cache line or memory page.

Much rescarch has been devoted to studying pragmatic issues in memory
hicrarchies [3,9- 13] but relatively little to the basic understanding of algorithms
and data structures in the context of memory access times. Recently hierarchical
memory models have been proposed [1,2] and efficient algorithms for a number
of basic problems have been proposed under these models.



A promising approach for modeling memory hierarchies as a part of the com-
putational model was undertaken by Aggarwal et al. [1,2]. In their Hierarchical
Memory Model (HMM) are an unbounded number of registers Ry, Rs, Rs,. ..,
each of which can store a datum of fixed type. The operations are similar to
those of a RAM [4], except that accessing register R; takes time roughly log I?,.
The HMM can be viewed as having a hierarchy of N memory levels where for
0 < i < N —1 there are 2¢ memory locations requiring time 4 to access. The
authors prove that the HMM is fairly robust. They and others have devised algo-
rithms for a variety of problems using this model of computation. In the context
of the LANL ASCI Blue Mountain machine it is casy to why the model is valid:
cach level of the memory hicrarchy is close to an order of magnitude larger and
slower than its predecessor-- a coarsened realization of the HMM.

2 Background and Relationship to Previous Work

Relazation is a well-known technique in the solution of many numerical problems.
We follow the notation of Leiserson et al. [6] for the rest of this section to describe
the ideas. A prototypical problem in this context can be described by a graph
G(V,E) in which cach vertex v € V contains a numerical value z, which is
iteratively updated. At iteration ¢, of the lincar relaxation process, the state of
v is updated using the equation :1:(1,” = Z(“‘“)GE AE,,[;),:E(U,FI) where 45,',) denotes
the relaxation weight of the edge (w,v). This equation may written using matrix

=1 where 2 =< :1:(1”.,:17.(2”., R ,:1:1(:?) >. The goal of

notation as () = 40zl
the relaxation is to compute a final state vector 27 given an initial state vector
249 In this paper, we will assume that 4 does not change over time.

A simple and effective way to compute relaxation is to update the state of
each vertex in the graph according to the equation given above and then repeat
this step until we obtain 2(7). This is inefficient in today’s computing architec-
tures where the memory system typically has two or more levels of cache between
the processor and the main memory. The time required to access a data value
from memory depends crucially on the location of the data; the typical ratios
of memory specds are 1 : 10 : 100 between the first level cache, second level
cache and the main memory. As CPUs get faster these processor-memory gaps
are expected to widen further. As a result it is important to design transforma-
tions for applications (in this case relaxation methods) that take into account
the memory latency. Such algorithms seck to stage the computation so as to
exploit spatial and temporal locality of data. Common compiler transformations
such as blocking mainly address spatial locality. As will be shown, significant
performance can be obtained by addressing temporal locality.

These optimizations form a specific instance of a more general optimiza-
tion that originates in older out-of-core algorithms, main memory in this case
is treated as slower storage (out-of-core). In this case we treat the instance of a
stencil operation on a structured grid as a graph and define covers for that graph.
The covers define localized regions (blocks) and form the basis of what we will



define to be T-neighborhood-covers. The general idea behind applying this trans-
formation to structured grid computations is to cover {or block or tile) the entire
grid by smaller sub-grids, solving the problem for each subgrid sequentially.
Let n be the number of grid points in a two dimensional square domain, and
A be a i x /i grid. Let the size of L) cache be M. Now consider solving the
linear relaxation problem for a subgrid S of size k x k. In the first iteration, all
the poiuts in S can be relaxed. After the second iteration, points i the grid of
size (k —2) x (k — 2) have the correct value. After continuing the procedure for =
iterations, it follows that a subgrid of size (k — 27) x (k — 27) has been computed
up to 7 time steps. Thus we can now cover the \/n x \/n by (T}% which
can be rewritten as (T%W: The total number of loads into the L; cache is no

I

more than k?g“"—)ﬁ'. In order to carry out the relaxation for T time units, the
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total number of L, loads is no more than k&* —2 =L By setting k = VM, and
a ) g

—27)2 T
7 = V/M /4, we can obtain an improvement of O(v/A) in the number of L, loads
over a naive method (which would take O(Tn) time).

In practice, for the solution of elliptic equations using multigrid methods on
structured grids, 7 is typically a small constant between 2 and 10 and thus the
asymptotic improvement calculated above does not directly apply; nevertheless
the analysis shows that we can get constant factor improvements over the naive
method in terms of the memory access. The naive method we refer to here is the
blocking introduced by the compiler. Of course less efficient methods could be
proposed (e.g. local relaxation methods) which would permit significantly larger
values of 7, but these less efficient solution methods are not of practical interest.
The idea can be extended in a straightforward way to the cases when the value
at a grid point is calculated by using not only the neighboring values but all
neighbors that are a certain bounded distance away.

In the above calculations we have chosen to recaleulate the values on the
boundary of cach subgrid since this does not give us any additional asymptotic
disadvantage. In practice, however, these values are maintained in what we call
transitory arrays. This introduces additional complications, namely the need to
ensure that the transitory arrays are resident in the L; cache. This implies that
for a 2-dimensional case we need to maintain arrays with total size 4k + 4(k —
2) 4+ -+ 4k - 2(r — 1)) ~ O(k?). Although asymptotically this is still the
same as the size of our subgrid, the constants need to be carefully calculated
in order to determine the best parameter values. The memory requirements for
the transitory array could be reduced slightly by lexicographically ordering the
subgrids in terms of the grid coordinates. This allows us to throw away the left
and the top boundary of a subgrid.

These ideas can be extended to general graphs that capture the dependency
structure. For this purposes, given a graph G(V, E) let N7(v) = {w | d{w,v) <
7}. Here d(w,v) denotes the distance in terms of number of edges from v to w.

Definition. T-Neighborhood Cover: Given a graph G(V,E), a 71-
neighborhood cover G = {G,,..., G} is set of subgraphs G;, 1 < i < k, such
that Vo € V| there exists a G; with the property that N7 (v) C V.



Given a graph G(V,E), a sparse r-neighborhood cover for G is a 7-
neighborhood cover with the additional properties Vi, 1 < i < k, |G;] < M,
and k = O(|E|/M). Note that a vertex v can belong to more than one subgraph
G but for the purposes of computing its value there is at least one subgraph G,
that may be regarded its “home”, meaning that the state :1:5,7) at a vertex v at
time 7 can be calculated by just looking at the graph G,. Existence of sparse
neighborhood covers for a graph G imply the existence of memory efficient al-
gorithms for linear relaxation on G. Specifically, given a graph G with a sparse
r-neighborhood cover, it is possible to complete T steps of relaxations using
O(L|E)) loads in the L; cache as opposed to O(T|E]) loads in the naive imple-
mentation. This can be scen by observing that 7 steps of the linear relaxation
can be completed using no more than O(M)O(|E|/M) L, loads. Certain well
known classes of graphs (e.g. graphs for finite difference computational grids)
have sparse neighborhood covers.

The conucept of graph covers closely resembles the concept of tiling that has
been extensively used in the past to reduce the synchronization and memory ac-
cess costs. Tiling tranformation is one of the primary transformations used to im-
prove data locality. Tiling generalizes two well-known transformations, namely,
strip-mine and interchange and wnroll and jam. Graph covers can be thought
of as a generalization of tiling. In order to see this, we recall some basic defini-
tions from compiler theory [14,7] to which we refer the the reader, and to the
referenced cited therein, for more details on this topic.

Iteration Space. A sct of n nested for loops are represented as a polytope
7" with the bounds of the polytope corresponding to the bounds placed on the
loops. Each iteration now corresponds to a point in Z"™. We think of these points
as vertices of a graph called the dependence graph. The vertex is identified by
a vector p = (p1,...,Pn), where p; is the value of the it loop index in the
nest while counting from outermost to the innermost loop. It is easy to see
that cach axis represents a loop and each vertex represents an iteration that is
performed. With this notation, it is clear that an iteration p = (py1,...,p,) has
to be executed before another iteration g = (g, ..., q,) il p is lezicographically
smaller than g' (denoted p < q). This intuition can be captured via the notion
of distance and dependence vectors or edges. Viewing the points corresponding to
the iterations in Z" as vertices of a graph, we have a directed edge from a vertex
p to a vertex g with label d if p < ¢ and d = ¢ — p. The directed graph (called
the dependence graph) assigns a partial order to the vertices corresponding to
the iterations; the important point is that any complete ordering of the original
vertices that respect the partial ordering is a feasible schedule for exccuting of
the iterations.

Tiling. In general tiling maps a n-deep nested loop structure into a 2n deep
nested loop structure with only a small fixed number of iterations. Graphically,
tiling can be viewed as way to break the iteration space into smaller blocks with
the following conditions:

1. The blocks are disjoint.

Pp<qiff 1 <i<n,pi < g5



2. The individual points in cach block and the block themselves are ordered
in such a way so as to prescrve the dependency structure in the original
iteration space; i.e. if p < g, then p is exccuted before g. Stated another
way, the complete ordering for scheduling the execution of the iterations
should respect the partial ordering given by the dependence graph.

3. The blocks are by and alreg rectangular, excepting when the iteration spaces
arc themselves of a different shape (c.g. trapezoidal, triangular).

4. Typically, if the original problem had a set of n loop indices, the trans-
formation yields 2n indicies (one new index for cach old index) such that
the bounds on original n indices do not depend on cach other, but rather
depend only on the corresponding new index created in the process of the
transformation.

In contrast, graph covers create a set of smaller subgraphs and yield a trans-
formed instance in which either certain iterations are revisited (i.e. steps at those
times arc recalculated) thus creating overlapping tiles, or it stores the interine-
diate values and avoids the extra computation. Intuitively, tiling based on graph
covers creates trapezoidal tiles, and uses temporary storage to make sure that
the dependency graph partial order is maintained.

In this paper Jacobi relaxation is used as an example relaxation code, using a
two-dimensional array and a five-point stencil (diagonal clements are excluded).
Such computations appear as parts of more sophisticated algorithms as well {(e.g.
multigrid methods). A single iteration or sweep of the stencil computation is of
the form

for (int i=1; i != I-1; i++)
for (int j=1; j !'= J-1; j++)
AT1 0] = wi*A[i-1103] + w2*A[i+11[§] + w3*ALil [j-11 + wa=A[il[j+1];

Typically several sweeps are made, with A and B swapping roles to avoid copying.
It is casy to sce that the dependence graph of this loop is not strict. Thus the
tiling theory developed elsewhere [14,15,7] cannot be applied directly to yield
the type of transformations we obtain.

In typical serial or parallel C++ array class library syntax the statement is

ACL,]) = wi*xA(I-1,J) + w2*A(I+1,0)+ w3*A(I,J-1) + wa*A(I,J+1);

While the transformations we will detail are general, it is the prototypical array
class syntax that is targeted for such optimizations.

3 Performance Results

Our technique is compared to a naive implementation relying on an optimnizing
compiler. The performance data were gathered on SGI Origin 2000 system com-
prising 128 MIPS R10000 processors running at 250 Mhz. Each processor has
a split L1 cache with 32 Kbytes for instructions and 32 Kbytes for data. L2 is
a unified 4 Mbytes. L1 and L2 are both 2-way associative. The ratio of L1 and
L2 line size 1:4. The system has 250 Mbytes per processor. The test codes were



compiled using the MIPSpro C++ with O3 optimization. Performance data were
gathered via the hardware performance monitors available on the processors. The
test code is a Jacobi iterative solver based on the code fragment above.

3.1 Single Processor Performance

Ideal performance is obtained when the entire working set fits in primary cache;
this is shown in Figures 1, 2, and 3. Three metrics are used: cyeles to describe
the overall execution; primary cache data misses to describe the iimpact of mem-
ory penalty, and flops to describe how efficiently, compared to the ideal, the
test code performs. All results are based on the average cost of one iteration.
Figure 1 shows that the cost of each iteration generally decreases as the num-
ber of iterations increases: all misses are first-time-load misses-- once a datum
is loaded into cache it remains resident for the duration of the computation— as
shown in Figure 2, so increasing the number of iterations amortizes the cost of
first-time-load misses.

The vast majority of scientific applications carrying out meaningful compu-
tations have a working set that is many times larger than any cache. Figure 4
shows the performance of the naive implementation of the test. The cost of each
iteration is on average the same regardless of the number of iterations. Again,
this is a consequence of the cache miss behavior; Figure 5 confirmms that every
iteration entails the same number of misses regardless of the number of itera-
tions. The efficiency is less than half of the idealized cache-resident version as
shown in Figure 6.

Most scientific applications have inherent locality; this is a simple conse-
quence of array-based computation. Modern compilers are able to detect and
exploit some locality. Compilers exploit locality only within one iteration; reuse
is minimal or nil between itervations. Exploiting temporal locality with the tech-
nique presented in the previous sections demonstrably reduces the difference
in performance from the ideal cache-resident version. Figures 4, 5, and 6 give
performance results for optimized version of the test code. In all the figures
2D-blocked and 1D-blocked (square) represent cache blocking performed using,
respectively, a two dimensional tile and a one dimensional tile (a stripe) for a
square two dimensional problem. The figures show that the 2D-blocked version
performs better than the others. Quantitatively, it is possible to observe a factor
of two improvement compared to the naive implentation. The explanation for
such differences in performance is in the number of misses, as show in Figure 5.
While in the naive version the number of misses is the same per iteration, the
optimized 2D-blocked one amortizes the number of misses. This says that in the
optimized code the number of misses performed during the first iteration are the
significant ones, besides those the number of misses performed is significantly
less, such that the total count of misses could appear, relatively, independent of
the number of iterations executed. There are noticeable similarities between the
performance of the 2D-blocked version and the ideal (cache resident) version: the
cost in cycles per iteration decreases when increasing the number of total itera-
tions; the number of misses per iteration decreases when increasing the number
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of total iterations; the efficiency, in flops per second, increases when increasing
the number of iterations. Nevertheless, it appears that there is still room for
further investigation and possible improvement since the relative flop rates show
that there is still a difference between ideal and 2D-blocked performance. The
performance obtained with the 1D-blocked version, overall, can be considered
similar to the 2D-blocked one with the exception of primary cache misses. For a
large problem size, a tile is a stripe that canuot fit in L1 or L2 cache. However,
a stripe offers more reuse potential for L2 cache.
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The performance figures show that the transformation is in fact an optimiza-
tion; validation on different platforms is needed. Of particular interest is the
comparison between 2D-blocked and 1D-blocked implementations. In theory, a
2D-blocked implementation should outperform an equivalent 1D-blocked one. In
practice, it appears that this theoretical difference in performance is not notice-
able. With the implementation of the temporal locality optimization the loop
structure, if compared to the naive one, has been significantly modified: loops
have been added and a temporary data structure is needed. We believe that
while the technique presented has a great impact on the memory access pattern,
improving by factor of 5-10 the number of misses, overall performance iinproves
by a smaller factor because of the a more complicated loop structure that makes
pipelining less efficient. This effect might be the limiting factor for the temporal
blocking technique. The maximum achievable improvement factor is still under
investigation.



3.2 Multiple Processors

In a parallel environment the arrays are typically distributed across multiple
processors. To avoid communication overhead for calculations near the bound-
aries of the segments of the the arrays, space is traded for time by creating ghost
boundaries— read-only sections of the other processors’ array boundaries. In the
parallel case the C++ array statement transparently abstracts the distribution
of data, the parallelism in the execution of the operations on the data, and the
message passing required along the partitioned edges of the distributed data.
The basic idea is to trade computation, which is relatively cheap, for commu-
nication, which is expensive, to reach an optimal compromise, by increasing the
amount of data at block boundaries, making possible multiple iterations over the
data before communication is required. Figure 7 demonstrates that this strategy
is beneficial to overall performance. This technique is described clsewhere [5).
In this work we use the message passing paradigm, using the native im-
plementation of MPIL Figure 8 shows hmprovement achieved by the optimized
code. In alimost all of the cases studied the optimized version is between two
and three times faster than the naive implementation. The improvement that
has been demounstrated for single processor is maintained, undegraded, in the
multiprocessor case. We have verified this effect up to 64 processors.?

4 Automating the Transformations

To be of practical use an optimizing transformation must be automated. In the
context of C++ array classes it does not appear possible to provide this sort
of optimization within the library itself because the applicability of the opti-
mization is context dependent-  the library can’t know how its objects are being
used. Two mechanisms for automating such optimizations are being actively
developed: the use of expression templates by others, and a source-to-source
transformation system (a pre-processor), which we are currently developing. The
ROSE II preprocessor is a mechanism for C++ source-to-source transformation,
specifically targetted at optimizing (compound) statements that manipulate ar-
ray class objects. ROSE II is described in detail elsewhere [8].

5 Conclusions and Future Work

We posit that current optimizations for stencil-based applications are inadequate
for which desirable optimizations exist that cannot reasonably be cxpected to
be implemented by a compiler. One such optimization for cache architectures
has been detailed and demonstrated to give a factor of two improvement in
performance in a realistic setting. The transformation is language-independent,
though it is demonstrated only for C code.

© Since a multidimensional space graph 1s needed to have a complete picture only a
portion of those are presented.



The use of object-oriented frameworks is a powerful tool, but performance
is generally less than that of FORTRAN 77. We expect that in the future one
will use such object-oriented frameworks because they represent both a higher-
level, simpler, and more productive way to develop large-scale applications and
a higher performance development strategy. We expect higher performance be-
cause the representation of the application using the higher level abstractions
permits the use of new tools such as the ROSE 1T optimizing preprocessor.

There is scope for generalizing the algorithm to N-dimensional tiling with
M (M < N) data partitioning. While the analytical performance predictions
agree with the empirical data, it will be revealing to make use of sophisticated
architectural sitnulators to both study potential performance gains on proposed
hypothetical architectures as well as validate the model. Use of different com-
pilers may impact performance; register allocation has a significant impact on
both overall performance, and optimized relative to unoptimized performance.

Parallel optimization is a subject of ongoing investigation. Currently only
explicit message passing using the MPI library has been cvaluated; currently
other paradigms such as threads and OpenMP pragmas are being investigated.
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