
CHANGE DETECTION IN STREAMS OF SIGNALS WITH SPARSE REPRESENTATIONS

Cesare Alippi, Giacomo Boracchi∗

Dipartimento di Elettronica, Informazione
e Bioingegneria, Politecnico di Milano

Brendt Wohlberg†

Theoretical Division
Los Alamos National Laboratory

ABSTRACT

We propose a novel approach to performing change-detection based
on sparse representations and dictionary learning. We operate on
observations that are finite support signals, which in stationary con-
ditions lie within a union of low dimensional subspaces. We model
changes as perturbations of these subspaces and provide an online
and sequential monitoring solution to detect them. This approach
allows extension of the change-detection framework to operate on
streams of observations that are signals, rather than scalar or multi-
variate measurements, and is shown to be effective for both synthetic
data and on bursts acquired by rockfall monitoring systems.

Index Terms— Change detection, sparse representation, dictio-
nary learning, sequential monitoring.

1. INTRODUCTION

This paper addresses the problem of detecting, in an online and se-
quential manner, changes in an unknown data-generating process,
i.e., departures of the process from its nominal (or original) station-
ary state. In particular, we address the specific case where each ob-
servation is a finite support signal, admitting a sparse representation
on an unknown dictionary.

Most change-detection algorithms [1] operating on streaming
data assume independent and identically distributed (i.i.d.) observa-
tions, and changes in stationarity are detected by applying sequential
techniques directly to raw observations. Other techniques assume
datastreams characterized by temporal dynamics [2], to be approxi-
mated by means of suitable predictive models. Change detection is
carried out by either inspecting residuals (the discrepancy between
real and predicted data) or model parameters estimated on a sliding
window basis [1].

However, the above mechanisms are not viable when the process
generates independent signals, each characterized by a deterministic
structure that can not be described by a single model (e.g., in situa-
tions where signals arrive intermittently or are characterized by dif-
ferent modalities). An example of these processes is provided by the
rockfall monitoring application. The enlargement of existing (mi-
cro)fractures within the rock face and their coalescencing into larger
dimensions generate bursts of microacoustic (microseismic) emis-
sions whose signals can be retrieved with geophones or accelerom-
eters [3]. Moreover, falling off stones hitting the neighbor of the
sensors could also trigger burst recording, though these latter show
a different structure. All these bursts can be seen as generated from
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a unique burst-generating process in a stationary state, until the coa-
lescencing phenomenon evolves or a fault occurs in the sensing ap-
paratus. Geologists claim that changes in stationarity are associated
with macroscopic structural variation in the phenomenon, eventually
leading to the rock collapse. Immediate detection of process changes
allow civil engineers (within a structural risk monitoring application)
and geophysicist (rockfall and rock toppling) to assess the risk and
possibly build predictive mechanisms for it. Aside from this sce-
nario, there are other environmental, industrial or structural health
monitoring scenarios [4, 5] characterized by similar processes.

The solution we propose to detect changes in streams of sig-
nals is to model the stationary conditions as having some generating
sparse representation [6] with respect to a fixed but unknown dictio-
nary. An estimate of the dictionary is obtained via dictionary learn-
ing techniques [7], and a change in the process is detected when
there is a change in the characteristics of the sparse representation
estimated from the observed signals. The specific detection mech-
anism considered here is monitoring the residual error of the esti-
mated sparse representation by means of a change-point method [8].

1.1. Observation Model and Problem Statement

We consider a process S generating observed signals s ∈ RM mod-
eled as

s = D0x+ ν (1)

for some D0 ∈ RM×N , x ∈ RN , and ν ∈ RM . We assume that x
is sparse [6], i.e. ‖x‖0 = L � N , where the `0 “norm” of x is the
number of non-zero components in x or that s is compressible [9]
with respect to dictionary D0, i.e., that |xk|, k ∈ {1, . . . , N} have
a power law decay with increasing k, xk being the kth sorted com-
ponent of x. In the latter case D0x does not have an exact sparse
representation, but it can be approximated to high accuracy by such
a representation. In (1), ν represents a homoscedastic, zero-mean,
noise term (i.e., E[νk] = 0 and E[ν2k ] = σ2, k ∈ {1, . . . ,M},
where E[·] denotes the mathematical expectation). We do not make
any assumption regarding x other than that signals s are either sparse
or have suitable decay properties [10].

In the sequel we consider a streaming scenario where signals
(1) arrive over time and changes in the generating process S are
inspected online, in a possibly infinite stream of signals drawn from
S:

S = {si}i=1,..., (2)

where si denotes the ith signal. More precisely, if we denote by
I∗ the change point, we consider changes affecting the signals as
follows:

si =

{
D0xi + νi i < I∗

D1xi + νi i ≥ I∗
, (3)

where D1 is a new dictionary having one or more columns that can-
not be sparsely or compressibly represented onD0. Thus, we expect



to be able to detect a change in S if we monitor a suitable measure
of the degree to which the observed signals are sparse or compress-
ible on D0. Note that D1 could consist of D0 together with some
atoms that are not sparsely representable with respect to D0: in this
case, the change model in (3) corresponds to the presence of additive
components that are not sparsely representable on D0.

The change-detection problem can be formulated as computing,
in an online manner, an estimate, Î , of the change point I∗. We
do not address the problem of detecting at which sample of sI∗ the
change has occurred, since each signal is considered to be acquired
at once. For change-detection purpose, we require a suitable training
set containing I0 signals generated by S in stationary conditions and
insert each training signals in a column of the training matrix T0 =
{si}i∈{1,...,I0}.

1.2. Related Works

The use of sparse representations for detection problems has mainly
been considered in the compressive sensing literature [11, 12, 13, 14,
15], where signal detection algorithms have been proposed. These
works [12, 13, 14, 15] assume that observations provided in station-
ary conditions are just noise, and detect the presence of any struc-
tured signal from compressive measurements of the observations. In
contrast, we assume that in stationary conditions observations live
in a union of subspaces (3), and – by means of standard signal sam-
pling – we address the change detection problem, i.e., the detec-
tion of whatever departure of S from its initial stationary state that
can be represented as (3). The algorithm in [11] instead aims at
identifying a signal of interest in the superimposition of noise and
interference signals. The algorithm requires two dictionaries, each
yielding sparse representations of the interference and signal of in-
terests, while we do not assume any specific information concerning
the signal to be detected.

Furthermore, the above algorithms leverage one shot detection
techniques, such as the Neyman-Pearson detector, and make deci-
sions considering each observed signal alone, while we enforce a
sequential change-detection technique. Sequential techniques allow
the detection of small perturbations when these are persistent, while
subtle changes become difficult to detect by means of one-shot tools.

It is also worth mentioning the anomaly detection literature
(see [16] and references there in), which addresses the detection of
anomalous patterns in datastreams. However, these works target of-
fline processing, and provide data analysis method rather than online
detection techniques; furthermore, none of these works considers
sparse representations to model processes.

2. PROPOSED APPROACH

We proceed as follows to detect changes in S: first we character-
ize the stationary state of S by learning a dictionary D̂0 that yields
sparse representations of signals generated from S. Then, we use
D̂0 to compute a sparse representation (sparse coding) of each in-
coming signal si, and detect a change in S when there is a change in
the degree to which an incoming signal can be sparsely represented
w.r.t. D̂0. To quantitatively assess the extent to which a signal is
sparse w.r.t. D̂0, we compute a sparsity-related feature, which is
monitored by a change-detection algorithm during the operational
period. There are many possible ways to apply this general model;
in the remainder of this section we describe the specific solution we
have adopted in the experiments of Section 3.

2.1. Dictionary Learning

Since the dictionaryD0 characterizing the stationary state of S is un-
known, it is necessary to to learn it from training data sampled from
the stationary state. The dictionary learning problem can be formal-
ized as a joint optimization over both dictionary and coefficients of
a sparse representation of the training data; the usual approach con-
sisting of alternating between a sparse coding stage (minimization
with respect to the coefficients) and a dictionary update stage (min-
imization with respect to the dictionary). The specific form of the
problem we adopt here is

D̂0 = argmin
D∈RM×N ,X∈RN×I0

‖DX − T0‖F

such that ‖xk‖0 ≤ L0 ∀k (4)

where ‖ · ‖F denotes the Frobenius norm, D ∈ RM×N is a ma-
trix representing a dictionary, X ∈ RM×I0 is such that each col-
umn contains the coefficients of the corresponding signal in T0 w.r.t.
the dictionary D, xk is the kth column of X , and L0 determines
the required sparsity of the solutions. Exact solution of this opti-
mization problem is computationally intractable (the problem is NP-
hard), but a greedy solution can be obtained via the K-SVD dictio-
nary learning algorithm [17], which utilizes Orthogonal Matching
Pursuit (OMP) [18] for the sparse coding stage of the algorithm.

The choice of L0 depends on the underlying process generating
x. When S is such that x is sparse, a natural choice is L0 = L,
which is viable if L is known or can be determined from prior in-
formation regarding S. Otherwise, L0 should be estimated from
the behavior of the plot of the reconstruction error ‖DX − T0‖F
against L0 in (4). More generally, if x has power law decay, then it
is not strictly sparse, and we must choose L0 to balance the sparsity
against the accuracy of approximation of the recovered representa-
tion. A larger L0 represents a greater fraction of the signal energy
by the sparse model, leaving a smaller unmodelled residual, but also
reduces the residual in the changed state. Conversely, decreasing L0

increases the residual in the changed state, but at the expense of a
larger residual error in the stationary state.

This parameter can be considered to control the strength of the
sparsity-based model; when L0 is small the model is very restrictive,
becoming weaker as L0 increases. Once L0 ≥ M , the sparsity-
based model is vacuous since any subset of M dictionary elements
(assuming that they are linearly independent) spans the entire signal
space. The best choice of L0 will depend on the different decay rates
of the elements of x in the stationary and changed states, and should
be set empirically.

2.2. Sparse Coding

Exploiting the model (1) requires the estimation of the sparse gen-
erating coefficients for a given signal with respect to dictionary D̂0.
When the degree to which the incoming signals can be sparsely rep-
resented changes, it is likely that S has changed. The natural choice
of sparse coding optimization corresponding to dictionary learning
problem (4) is

x̂ = argmin
x∈RN

‖D̂0x− s‖2 such that ‖x‖0 ≤ L0 , (5)

with the minimization performed via OMP. The value of L0 selected
for the dictionary learning stage is also appropriate here.

We quantitatively assess how likely si is to have been generated
by S by computing the error of its sparse coding w.r.t. D̂0, i.e.,

ei = ‖D̂0x̂i − si‖2 , (6)



where x̂i are the coefficients computed in (5). We assume that
learned dictionary D̂0 is a sufficiently good approximation of D0

for (3) to hold with D̂0 substituted for D0. Thus, the problem of
detecting a change in the stream of signals {si}i>I0 can be re-
formulated as monitoring the scalar sequence {ei}i>I0 to detect
changes in the distribution of the reconstruction error (6), and this
latter problem can be conveniently treated by means of sequential
change-detection techniques.

2.3. Detecting Changes in Stationarity

For the final change-detection step we adopt a change-point method
(CPM) [8] on the sequence of reconstruction errors (6). CPMs are
statistical tests designed for i.i.d. sequences, which have been re-
cently extended to operate online on data streams [19, 20] with
bounded computational complexity and memory requirements.
Since the distribution of (6) in stationary conditions is unknown,
we have to adopt a nonparametric CPM, and in particular we choose
one [19] based on the Lepage statistic L [21], which is a nonpara-
metric statistic used to detect changes in the location and scale of
a scalar distribution 1. The advantages of CPMs over other non-
parametric solutions (see [1, 22, 23] and reference there in), are that
CPMs operate at a controlled average run length (ARL), namely,
the expected number of samples before having a detection within
an i.i.d. sequence. Furthermore, online CPMs do not need a proper
training phase, and only few i.i.d. samples are required for configu-
ration.

In what follows we denote by δi ∈ {0, 1}, the output of the
CPM based on the L statistics applied on {ej}j≤i, i.e. the sequence
of the reconstruction errors until the ith signal,

δi = CPML({ej}j≤i) . (7)

We apply the CPM at the arrival of each new signal, and we detect a
change in S as soon as CPML raises a detection, i.e.,

Î = min
δi=1

(i) . (8)

3. EXPERIMENTS

We test the proposed approach on several sequences composed of
500 signals generated before the change and 500 after the change
(such that I∗ = 501). We report the final performance of CPML to
indicate how these changes can be detected in sequential monitoring
applications; these are:
– FPR, the false positive rate, i.e., the percentage of detections not
corresponding to an actual change (here, when Î ≤ 500).
– DL, the detection latency, i.e., the average delay of correct detec-
tions. Here, the delay for an individual correct detection is Î − 501.
– FNR, the false negative rate, i.e., percentage of missed detections.
To keep FPR low, we configured the CPM ARL to 10000.

We also measure the change detectability comparing, by means
of the Kolmogorov-Smirnov (KS) statistic, the empirical distribu-
tions of reconstruction errors (6) before and after the change. The
KS statistic ranges in [0, 1], and has to be considered as an abso-
lute indicator of how good the reconstruction error is in indicating

1By doing so, we implicitly assume the reconstruction errors to be inde-
pendent in stationary conditions. This assumptions is reasonable as far as
D̂0 was successfully learned, and the bias term in the reconstruction error is
negligible or independent of the signal. However, when a few subspaces of
the signal space can be far better approximated than others, in practice, it is
enough for the signals to arrive in a random order w.r.t. these subspaces.

changes of S: the larger the more different the two distributions are.
To illustrate the effectiveness of the proposed approach, we also as-
sess CPML and the KS statistic on the `1 and `2 norms of the input
signals, showing that, most often, the considered changes would not
be perceivable in the signal domain. We test the proposed approach
on both synthetic datasets and on a dataset of recorded bursts from
the rockfall monitoring application.

3.1. Synthetically Generated Dataset

The synthetic dataset consists of signals ofM = 64 samples, each of
which has an L-sparse representation w.r.t. D0 orD1, two dictionar-
ies having some of their atoms in common. These L-sparse signals
are synthesized from D0 or D1 by randomly defining the L nonzero
coefficients, and then adding Gaussian white noise to achieve a spe-
cific SNR value. The dataset consists of three components: a training
set T0 containing 20000 signals generated from D0, which are used
to learn D̂0 by means of K-SVD (4); a stationary condition testing
set S0 containing an additional 20000 signals generated from D0;
and a change condition testing set S1 containing 20000 signals gen-
erated from D1. We set D0 as a Daubechies-4 wavelet basis [24],
augmented with the first 32 discrete Fourier basis elements, while
D1 contains the biorthogonal 3/7 wavelet basis [25] and the same
Fourier basis elements. These experiments are performed in the ideal
conditions where L0 corresponds to the known signal sparsity L and
the number of atoms of D̂0 coincides with that of D0.

We generated 10 datasets for each pair (L, SNR) with L ∈
{1, 2, 3, 4, 6, 8, 11, 16, 23, 32} and SNR ∈ {5, 10, 20, 40}. In each
dataset, the change-detection performance is assessed from 40 se-
quences of 1000 signals each (I∗ = 501), which are prepared by
suitably concatenating elements of S0 and S1. The KS statistic is
computed comparing all the reconstruction errors in S0 and S1.

Results averaged over all the datasets are reported in Fig. 1. In
particular, Fig. 1 (a) shows that, when the signals are sparse on D0

(L ≤ 16), the change is promptly detected even at low SNR, how-
ever, the change is not detectable when the signals are not sparse
enough, as the FNR in Fig. 1 (b) shows. The FPR, which depends
on the ARL of CPML, was always between 4% and 7%, without any
specific trend w.r.t. L or SNR (not reported in Fig.1). The KS statis-
tic in Fig. 1 (c) is consistent with the change-detection performance:
the maximum is not achieved at low values of L because 32 atoms
of D0 and D1 coincide so that there is quite a large probability that
signals after the change are generated only from atoms that are also
in D0. Remarkably, the considered change would not be detectable
by monitoring the `1 or `2 norms of the input signals: the KS statis-
tic of `1 norms in Fig. 1 (d) achieves very low values and similarly
the KS statistic of the `2 norms was always below 0.02 (without any
specific trend w.r.t. L and SNR), and for this reason has not been
reported in Fig. 1).

3.2. Rock Face Monitoring Bursts Dataset

Bursts have been recorded by a hybrid wireless-wired monitoring
system [3], which has been designed at Politecnico di Milano and de-
ployed in the Alps to monitor rock collapses. Bursts are recorded by
triaxial MEMS accelerometers, sampled at 2 kHz from seven sens-
ing nodes deployed on the rock face. As a preliminary preprocessing
step we register each 3D burst by projecting it along its principal di-
rection (computed via principal component analysis) and cropping a
signal of M = 64 consecutive samples about the burst peak.

From two years of monitoring activity we prepared a dataset of
40000 signals, 20000 of which were used for dictionary learning
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Fig. 1. Experiments on synthetically generated dataset: the detection latency of the proposed solution (a) together with the FNR (b), the values
of the KS statistic for the reconstruction errors (c) and `1 norm of the input signals (d). The individual values of the KS statistic over the
10 datasets generated for each (L,SNR) pair are reported (small dots) together with their average (solid line). It emerges that reconstruction
errors clearly indicate the occurred change as far as the signals are sparse (L ≤ 16): very good change-detection performance can be achieved
at low SNR when the signal is less than 1/4 sparse. The KS statistic for the `2 norm of the input signals was below 0.02 (not reported in the
plots); the FPR was always between 3% and 5%, without any relation to SNR and L (not reported in the plots).
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Fig. 2. Experiments on bursts dataset with synthetically induced change: (a), and (b), or simulating a real change by plugging 120 bursts
recorded from a different deployment: (c) and (d). The distributions of the reconstruction errors in (a) (KS statistic value 0.42) and (c) (KS
statistic value 0.45) clearly highlights the change, while it is more difficult to detect the change from the `1 norms of the input signals (b) (KS
statistic value 0.12) and (d) (KS statistic value 0.23).

(T0), 10000 were left untouched (S0) and the remaining 10000 (S1)
were modified by summing an element of Daubechies-4 wavelet ba-
sis scaled by a random value chosen between 10% and 50% of burst
amplitude. We experimentally set L̂ = 4 for both K-SVD and OMP,
and overcompleteness of D̂0 to 2.5.

We generated 40 sequences of signals as in Section 3.1, and we
achieved very satisfactory change-detection performance when mon-
itoring the reconstruction error since FPR = 0%, DL = 25.52 and
FNR = 0% (the KS distance was 0.42). When applying the same
CPML on the `1 norms of the input signals, i.e., ‖si‖1, the perfor-
mance dropped to FPR = 0%, MD = 124.71 and FNR = 33.33%,
(KS distance was 0.12), and similarly when testing CPML on the `2

norms of the input signals, i.e. ‖si‖2, where FPR = 9% FNR = 91%
and no detection provided (KS distance was 0.03). Figure 2 illus-
trates the empirical distributions over T0 (training), S0 (before the
change) and S1 (after the change) for both the ei (Fig. 2 a) and ‖si‖
(Fig. 2 b). These results confirm the effectiveness of the proposed
approach on real data, as it allows the detection of changes not be
detectable by monitoring the `1 or `2 norms in the signal domain.

Finally, we run an additional experiment where S1 consists of
120 signals acquired form a similar sensing unit deployed in a com-
pletely different location (i.e. generated from a different process),
thus simulating a real change by concatenating signals from the two
process (only one sequence was available for change detection). In
this case the change was promptly detected, with a delay of 40 sig-
nals, and the empirical distributions of the restoration errors (Fig. 2

c) clearly highlights the change. This change was not detected by
monitoring the `1 norms of the signals (see also the empirical distri-
butions in Fig. 2 d).

4. CONCLUSIONS

We approach the problem of detecting changes in processes gener-
ating signals by learning a dictionary yielding sparse representation
of signals generated in stationary conditions. Changes are then de-
tected online by performing sparse coding of each input signal, and
monitoring the reconstruction error with a sequential change-point
method. The solution has been successfully tested on simulated and
real changes in bursts acquired from a rockfall monitoring system.

Ongoing work includes the study of alternative sparse coding
and dictionary learning methods (e.g. based on `1 regularization)
and alternative choices of sparsity-related features for change detec-
tion. We will also investigate extensions of the proposed approach
to include structured sparsity for multichannel monitoring system.
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