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Abstract—Many material and biological samples in scientific
imaging are characterized by non-local repeating structures.
These are studied using scanning electron microscopy and elec-
tron tomography. Sparse sampling of individual pixels in a 2D
image acquisition geometry, or sparse sampling of projection
images with large tilt increments in a tomography experiment,
can enable high speed data acquisition and minimize sample
damage caused by the electron beam.

In this paper, we present an algorithm for electron to-
mographic reconstruction and sparse image interpolation that
exploits the non-local redundancy in images. We adapt a
framework, termed plug-and-play priors, to solve these imaging
problems in a regularized inversion setting. The power of
the plug-and-play approach is that it allows a wide array of
modern denoising algorithms to be used as a “prior model” for
tomography and image interpolation. We also present sufficient
mathematical conditions that ensure convergence of the plug-
and-play approach, and we use these insights to design a new
non-local means denoising algorithm. Finally, we demonstrate
that the algorithm produces higher quality reconstructions on
both simulated and real electron microscope data, along with
improved convergence properties compared to other methods.

Index Terms—Plug-and-play, prior modeling, bright field elec-
tron tomography, sparse interpolation, non-local means, doubly
stochastic gradient non-local means, BM3D.

I. INTRODUCTION

TRANSMISSION electron microscopes are widely used for
characterization of material and biological samples at

the nano-meter scale [1]–[3]. In many cases, these electron
microscopy samples contain many repeating structures that are
similar or identical to each other. High quality reconstruction
of these samples from tomographic projections is possible
by exploiting the redundancy caused by repeating structures.
As an important example, cryo-electron microscope (EM)

S. Sreehari and C. A. Bouman are with the School of Electrical and
Computer Engineering, Purdue University, West Lafayette, IN, USA. *E-mail:
ssreehar@purdue.edu

S. V. Venkatakrishnan is with Lawrence Berkeley National Laboratory,
Berkeley, CA, USA

B. Wohlberg is with Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM, USA

G. T. Buzzard is with the Department of Mathematics, Purdue University,
West Lafayette, IN, USA

L. F. Drummy and J. P Simmons are with Air Force Research Laboratory,
Dayton, OH, USA

This work was supported by an AFOSR/MURI grant #FA9550-12-1-0458,
by UES Inc. under the Broad Spectrum Engineered Materials contract, and
by the Electronic Imaging component of the ICMD program of the Materials
and Manufacturing Directorate of the Air Force Research Laboratory, Andrew
Rosenberger, program manager.

tomography involves single particle reconstructions using sev-
eral views of the same particle [1]. However, in the more
general area of 3D transmission electron microscopy (TEM)
tomography, no solution currently exists to fully exploit the
redundancy in images constituted by many similar or identical
particles.

Another important imaging problem is that raster scanning
an electron beam across a large field of view is time consuming
and can damage the sample. For this reason, there is growing
interest in reconstructing full resolution images from sparsely
sampled pixels [4], [5]. The redundancy in material and
biological samples suggests that it is possible to reconstruct
such images with sufficient fidelity by acquiring only a few
random samples in the image and using an advanced image
reconstruction algorithm that exploits non-local redundancies.

Conventionally, model-based iterative reconstruction
(MBIR) solves a single optimization problem that tightly
couples the log likelihood term (based on the data) and the
log of the prior probability [6]–[14]. MBIR can, in principle,
exploit redundancy in microscope images for tomographic
reconstruction, but this requires selection of the appropriate
log prior probability, which is very challenging in practice.

Patch-based denoising algorithms such as non-local means
(NLM) [15]–[17] and BM3D [18] have been very successful
in exploiting non-local redundancy in images. Inspired by the
success of NLM, several researchers have proposed methods
for non-locally regularized inversion. Chen et al. [19] proposed
an MRF-style prior, but with non-local spatial dependencies, to
perform Bayesian tomographic reconstruction. They adopted
a two-step optimization involving a non-local weight update,
followed by the image update. However, since the cost func-
tion changes with every iteration, there is no single fixed cost
function that is minimized. Chun et al. [20] proposed non-local
regularizers for emission tomography based on alternating
direction method of multipliers (ADMM) [21]–[24], using the
Fair potential [25] as the non-local regularizer. This model is
restricted to convex potential functions, which in practice is
a very strong constraint, and severely limits how expressive
the model can be. Yang et al. proposed a unifying energy
minimization framework for non-local regularization [26],
resulting in a model that captures the intrinsically non-convex
behavior required for modeling distant particles with similar
structure. However, it is not clear under what conditions
their method converges. Non-local regularizers using PDE-like
evolutions and total variation on the image patch graph have
been proposed to solve inverse problems [27], [28]. However,
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since patch-based denoisers are typically not formulated as
cost functions, it is unclear how to use them as prior models
in Bayesian iterative reconstruction frameworks like MBIR.

Image interpolation or inpainting is also a widely researched
problem [29]. Existing approaches can be broadly classified
into two categories - those based on local regularization and
those on non-local regularization. In local approaches, the
missing pixels are reconstructed from an immediate neighbor-
hood surrounding the unknown values to encourage similarity
between spatially neighboring pixels [30].

An important subclass of these problems is interpolation
from a sparsely sampled set of points. We refer to this type
of problem as “sparse interpolation” to distinguish it from
the interpolation or inpainting of relatively large contiguous
regions from densely sampled points on the boundaries of
those regions. Spurred by the success of non-local means,
there have been several efforts to solve the sparse interpolation
problem using global patch based dictionary models [5], [31]–
[34]. Li et al. [35] adapted a two stage approach similar to
[36] and used the BM3D denoising algorithm for the problem
of sparse image reconstruction. However, this approach is not
immediately applicable to the incorporation of a wider variety
of non-local denoising algorithms such as are described by
Milanfar in [37]–[39]. The simplicity and success of NLM and
BM3D has also led to the question of how these algorithms can
be used to solve other inverse problems. In fact, Danielyan et
al. [36] have adapted BM3D for image deblurring through the
optimization of two cost functions balanced by the generalized
Nash equilibrium.

Venkatakrishnan et al. [40] developed a semi-empirical
framework termed plug-and-play priors, but limited results
were presented and the convergence of the algorithm was
not discussed. Rond et al. [41] have used the plug-and-play
framework to propose a Gaussian denoising algorithm for
Poisson noisy inverse problems. Chan et al. have adapted
plug-and-play for a variety of image restoration problems
[42], while Teodoro et al. have used a class-adapted Gaussian
mixture model as a prior within the plug-and-play framework
for image deblurring and sparse reconstruction [43]. Several
techniques have proposed to recover degraded and incomplete
images by repeatedly applying denoising filters [44]–[46].
Heide et al. [47] used ADMM and the primal-dual algorithm
to apply any Gaussian denoiser as an image prior in various
blocks of the camera imaging pipeline, including demosaicing
and interlaced high dynamic range (HDR) imaging.

In this paper, we extend our plug-and-play framework of
[40], [48] to present a robust algorithm for tomographic
reconstruction and sparse image interpolation that exploits
the non-local redundancies in microscope images. The plug-
and-play framework is based on ADMM [22], [23] which
decouples the forward model and the prior model terms in
the optimization procedure. This results in an algorithm that
involves repeated application of two steps: an inversion step
only dependent on the forward model, and a denoising step
only dependent on the image prior model. The plug-and-play
takes ADMM one step further by replacing the prior model
optimization by a denoising operator.

However, while it is convenient to be able to use any

denoising operator as a prior model, this new plug-and-play
framework also raises the question as to whether plug-and-play
necessarily inherits the convergence properties of ADMM.
We answer this important question by presenting a theorem
that outlines the sufficiency conditions to be satisfied by the
denoising operator in order to guarantee convergence of the
plug-and-play algorithm. We also present a proof for this
convergence theorem partly based on the ideas presented by
Moreau [49] and Williamson et al. [50]. Using this result,
we then modify NLM to satisfy these sufficiency conditions,
naming the resultant variant doubly stochastic gradient NLM
(DSG-NLM).

We then apply DSG-NLM as a prior model to the tomo-
graphic reconstruction and sparse interpolation problems. This
new DSG-NLM algorithm is based on symmetrizing the filter
corresponding to the traditional NLM algorithm. Interestingly,
Milanfar [51] has also discussed the benefit of symmetrizing
the denoising operator, albeit in the context of improving the
performance of denoising algorithms.

The plug-and-play electron tomography solution presented
in this paper builds on the existing MBIR framework for bright
field electron tomography [14], which models Bragg scatter
and anomaly detection. We demonstrate that our proposed
algorithm produces high quality tomographic reconstructions
and interpolation on both simulated and real electron micro-
scope images. Additionally our method has improved conver-
gence properties compared to using the standard NLM or the
BM3D algorithm as a regularizer for the reconstruction. Due
to the generality of the plug-and-play technique, this work
results in an MBIR framework that is compatible with any
denoising algorithm as a prior model1, and thus opens up a
huge opportunity to adopt a wide variety of spatial constraints
to solve a wide variety of inverse problems.

II. PLUG-AND-PLAY FRAMEWORK

In this section, we outline the plug-and-play framework
for model-based iterative reconstructions [40]. Let x ∈ RN
be an unknown image with a prior distribution given by
pβ(x) where β parameterizes a family of distributions, and
let y ∈ RM be the associated measurements of the image
with conditional distribution given by p(y|x). We will refer
to p(y|x) as the forward model for the measurement system.
Then the maximum a posteriori (MAP) estimate of the image
x is given by

x̂MAP = argmin
x∈RN

{l(x) + βs(x)}, (1)

where l(x) = − log p(y|x) and βs(x) = − log pβ(x). Notice
that in this case β is a positive scalar used to control the level
of regularization in the MAP reconstruction. In order to allow
for the possibility of convex constraints, we will allow both
l(x) and s(x) to take values on the extended real line, R ∪
{+∞}. Using this convention, we can, for example, enforce
positivity by setting l(x) = +∞ for x ≤ 0.

1However convergence of plug-and-play is not guaranteed unless the
denoising operator meets the sufficiency conditions that we outline in Theorem
III.1.



3

The solution to equation (1) may be computed using a vari-
ety of optimization methods, such as the alternating direction
method of multipliers (ADMM), the fast iterative shrinkage
thresholding algorithm (FISTA) [52], the two-step iterative
shrinkage thresholding (TwIST) [53], or sparse reconstruction
by separable approximation (SpaRSA) [54]. We choose the
ADMM algorithm because it provides an effective framework
for incorporating denoising operators as prior models by
decoupling the forward and prior models. There are other
methods, including those listed above, that also allow such
a decoupling, but we focus on ADMM due to its competitive
convergence properties [55] and do not consider the corre-
sponding alternative forms of the plug-and-play framework.

The first step in applying ADMM for solving equation (1)
is to split the variable x, resulting in an equivalent expression
for the MAP estimate given by

(x̂, v̂) = arg min
x,v∈RN
x=v

{l(x) + βs(v)} . (2)

As in [24, Section 3.1.1], this constrained optimization prob-
lem has an associated scaled-form augmented Lagrangian
given by

Lλ(x, v;u) = l(x) + βs(v) +
1

2σ2
λ

‖x− v + u‖22 −
‖u‖22
2σ2

λ

, (3)

where σλ > 0 is the augmented Lagrangian parameter.2

For our problem, the ADMM algorithm consists of iteration
over the following steps:

x̂ ← arg min
x∈RN

Lλ(x, v̂;u) (4)

v̂ ← arg min
v∈RN

Lλ(x̂, v;u) (5)

u ← u+ (x̂− v̂) , (6)

where v̂ is initialized to some value and u is typically
initialized as zero.

In fact, if l(x) and s(x) are both proper, closed, and convex
functions, and a saddle point solution exists, then the ADMM
converges to the global minimum [22]–[24].

We can express the ADMM iterations more compactly by
defining two operators. The first is an inversion operator F
defined by

F (x̃;σλ) = argmin
x∈RN

{
l(x) +

‖x− x̃‖22
2σ2

λ

}
, (7)

and the second is a denoising operator H given by

H(ṽ;σn) = argmin
v∈RN

{
‖ṽ − v‖22

2σ2
n

+ s(v)

}
, (8)

where σn =
√
βσλ can be interpreted as the assumed noise

standard deviation in the denoising operator. We say that H is
a Moreau proximity operator, i.e., H is the proximal mapping
for the proper, closed, and convex function s : RN → R ∪
{+∞}. Further, if l(x) is convex, then the inversion operator,
F , is also a Moreau proximity operator.

2The augmented Lagrangian parameter, σλ, is related to the ADMM penalty
parameter, λ, through the simple expression σλ = 1√

λ
.

Using these two operators, we can easily derive the plug-
and-play algorithm shown in Algorithm 1 as a special case
of the ADMM iterations. This formulation has a number of
practical and theoretical advantages. First, in this form we can
now “plug in” denoising operators that are not in the explicit
form of the optimization of equation (8). So for example, we
will later see that popular and effective denoising operators
such as non-local means (NLM) [56] or BM3D [18], which
are not easily represented in an optimization framework can be
used in the plug-and-play iterations. Second, this framework
allows for decomposition of the problem into separate software
systems for the implementation of the inversion operator,
F , and the denoising operator, H . As software systems for
large inversion problems become more complex, the ability
to decompose them into separate modules, while retaining the
global optimality of the solution, can be extremely valuable.

One important advantage of the plug-and-play method is
that it can simplify the selection of the regularization param-
eter. In order to understand this, notice that the plug-and-play
algorithm only requires the selection of two parameters, β and
σλ, with the remaining parameter being set to σn =

√
βσλ.

We can see from equation (1) that only β controls the amount
of regularization, and therefore the value of σλ does not affect
the final reconstructed image. However from equation (3) we
see that σλ controls the weight of the constraint term in the
augmented Lagrangian, and therefore the value of σλ must be
chosen appropriately in order to achieve rapid convergence.

Importantly, the regularization parameter β is unitless. The
fact that β is unitless makes its selection much easier in
practice. This is in contrast to conventional regularization
parameters that can be tricky to set because they have units
related to the quantity being reconstructed [57]. In fact, it
turns out that 1 if often a good starting point for the value
of β. The value of β can then be increased or decreased for
more or less regularization, respectively. Intuitively, denoising
algorithms such as NLM only requires the specification of
the noise variance, but do not require knowledge about the
scale of the image being restored. Consequently, the plug-
and-play algorithm inherits the scale invariance property of
denoising algorithms such as NLM, and the regularization of
the resulting plug-and-play reconstruction algorithm can be
therefore set with a unitless parameter β.

In theory, the value of σλ does not affect the reconstruc-
tion for a convex optimization problem, but in practice, a
well-chosen value of σλ can substantially speed up ADMM
convergence [24], [58], [59]; so the careful choice of σλ is
important. Our approach is to choose the value of σλ to
be approximately equal to the amount of variation in the
reconstruction. Formally stated, we choose

Formally stated, we choose

σ2
λ ≈

1

N

N−1∑
i=0

var[xi|y] . (9)

to be the average variance of the pixels in x.
This choice for the value of σ2

λ is motivated by its role as the
inverse regularizer in equation (7). In practice, this can be done
by first computing an approximate reconstruction using some
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Algorithm 1 Plug-and-play algorithm for implementation of a
general inversion operator F (x̃;σλ), and a prior model specified by
the denoising operator in H(ṽ;σn).

initialize v̂
u← 0
while not converged do

x̃← v̂ − u
x̂← F (x̃;σλ)
ṽ ← x̂+ u
v̂ ← H(ṽ;σn)
u← u+ (x̂− v̂)

end while

baseline algorithm, and then computing the mean squared pixel
variation in the approximate reconstruction.

Of course, for an arbitrary denoising algorithm, the question
remains of whether the plug-and-play algorithm converges.
The following section provides practical conditions for the
denoising operator to meet that ensure convergence of the
iterations.

III. CONVERGENCE OF THE PLUG-AND-PLAY ALGORITHM

It is well known that the ADMM algorithm is guaranteed to
converge under appropriate technical conditions. For example,
if the optimization problem is convex and a saddle point
solution exists then the iterations of ADMM converge [22]–
[24]. However, in our plug-and-play approach, we will be
using general denoising algorithms to implement the operator
H(ṽ;σn), and therefore, the function s(x) is not available for
analysis. This raises the question of what conditions H(ṽ;σn)
and l(x) must satisfy in order to ensure that the plug-and-play
algorithm converges.

In the following theorem, we give conditions on both the log
likelihood function, l(x), and the denoising operator, H(x),
that are sufficient to guarantee convergence of the plug-and-
play algorithm to the global minimum of some implicitly
defined MAP cost function. This is interesting because it
does not ever require that one know or explicitly specify the
function s(x). Instead, s(x) is implicitly defined through the
choice of H(x).

Theorem III.1. Let the negative log likelihood function l :
RN → R∪{+∞} and the denoising operator H : RN → RN
meet the following conditions:

1) H is a continuously differentiable function on RN ;
2) ∀x ∈ RN ,∇H(x) is a symmetric matrix with eigenvalues

in the interval [0, 1];
3) There exists a y in the range of H such that l(y) <∞;
4) There exists at least one fixed point of H: H(x0) = x0;
5) l is a proper closed convex function which is lower

bounded by a function f(‖x‖) such that f(r) is monotone
increasing with

lim
r→∞

f(r) =∞ .

Then the following results hold:
1) H is a proximal mapping for some proper closed convex

function s on RN ;

2) There exists an element which attains the infimum, which
is the MAP estimate, x̂MAP , such that

p∗ = inf
x∈RN

{l(x) + βs(x)} = l(x̂MAP ) + βs(x̂MAP ) ;

3) The plug-and-play algorithm converges in the following
sense,

lim
k→∞

{x̂(k) − v̂(k)} = 0;

lim
k→∞

{l(x̂(k)) + βs(v̂(k))} = p∗ ,

where x̂(k) and v̂(k) denote the result of the kth iteration.

The proof of this theorem, which is presented in Ap-
pendix A, depends on a powerful theorem proved by Moreau
in 1965 [49]. This theorem states that H is a proximal mapping
if and only if it is non-expansive and the sub-gradient of a
convex function on RN . Intuitively, once we can show that
the denoising operator, H , is a proximal mapping, then we
know that it is effectively implementing an update step of the
form of the ADMM algorithm of equation (8).

The first and second conditions of the theorem ensure that
the conditions of Moreau’s theorem are met. This is because
the structure of H(x) with eigenvalues in the interval [0, 1]
ensures that H is the gradient of some function φ, that φ is
convex, and that H is non-expansive.

The additional three conditions of Theorem III.1 ensure that
the infimum can be attained and the MAP estimate actually
exists for the problem. Importantly, this is done without
explicit reference to the prior function s(x). More specifically,
the third condition ensures that the set of feasible solutions is
not empty, the fourth condition will be seen to imply that the
function s(x) in the conclusion takes on its global minimum
value, i.e., that the minimum is not achieved toward infinity,
and the fifth condition ensures that the MAP cost function
grows towards infinity, forcing the sum l(x) + βs(x) to take
on its global minimum value. Since H is a denoising operator,
the assumption of a fixed point is quite natural: a constant
image is a fixed point of most denoising operators.

In general, verifying the sufficiency conditions of Theo-
rem III.1 may be more difficult for some denoising algorithms
than it is for others. There could exist some denoising opera-
tors for which these sufficiency conditions may not hold. But
importantly, in the next section, we will show that some real
denoising operators can be modified to meet the conditions of
this theorem. In particular, the symmetrized non-local means
filters investigated by Milanfar [51], [60] are designed to
create a symmetric gradient, and we build on this approach to
introduce a NLM filter that is symmetric and doubly stochastic
with eigenvalues in the interval [0, 1].

IV. NON-LOCAL MEANS DENOISING WITH SYMMETRIC,
DOUBLY STOCHASTIC GRADIENT

In order to satisfy the conditions for convergence, the
gradient of the denoising operator must be a symmetric matrix
with eigenvalues in the interval [0, 1]. However, the standard
NLM denoising algorithm does not satisfy this condition. In
addition, to ensure that the NLM filter has unit gain, the
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NLM weight matrix must be stochastic. Due to the symmetry
requirement, the unit-gain NLM filter must therefore have a
doubly stochastic weight matrix.

In this section, we introduce a simple modification of the
NLM approach, which we refer to as the doubly stochastic
gradient NLM (DSG-NLM), that satisfies the required con-
vergence conditions. Interestingly, the symmetrized non-local
means filters investigated by Milanfar [51] also achieve a
symmetric and stochastic gradient, but require the use of a
more complex iterative algorithm to symmetrize the operator.

The NLM algorithm is known to produce much higher qual-
ity results than traditional local smoothing-based denoising
methods [56]. It works by estimating each pixel/voxel3 as a
weighted mean of all pixels in the image4. In this section, ṽ
will denote a noisy image with pixel values ṽs at locations
s ∈ S. Generally, S is a discrete lattice, so for 2D images
S = Z2 and for 3D volumes S = Z3.

Using this notation, the NLM denoising method can be
represented as

v̂s =
∑
r∈Ωs

ws,rṽr , (10)

where v̂s is the denoised result, the coefficients ws,r are the
NLM weights, and Ωs is the NLM search window defined by

Ωs = {r ∈ S : ‖r − s‖∞ ≤ Ns} .

Note that the integer Ns controls the size of the NLM search
window; we assume Ns ≥ 1 to avoid the trivial case of a
window with a single point. In general, larger values of Ns
can yield better results but with higher computational cost.

Using this notation, the plug-and-play denoising operator is
given by

H(ṽ;σn) = Wṽ ,

where the matrix

Ws,r =

{
ws,r if r ∈ Ωs

0 otherwise
.

Now if we fix the weights, then it is clear that

∇H(v;σn) = W .

Condition 2 of Theorem III.1 requires that W be a sym-
metric matrix with eigenvalues in the interval [0, 1]. In order
to enforce this, we propose the following five step procedure

3From this point forward, we will use the term “pixel” for both the 2 and
3-D cases.

4In practice, we only compute the weighted mean of pixels/voxels in a
search window, instead of the whole image.

for computing the DSG-NLM filter weights,

ws,r ← exp

{
−‖Pr − Ps‖22

2N2
pσ

2
n

}
Λ

(
s− r
Ns + 1

)
(11)

ws,r ← ws,r√(∑
r∈Ωs

ws,r
) (∑

s∈Ωr
wr,s

) (12)

α ← 1

maxs
∑
r∈Ωs

ws,r
(13)

ws,r ← αws,r (14)

ws,s ← ws,s +

(
1−

∑
r∈Ωs

ws,r

)
, (15)

where Ps ∈ RN
2
p denotes a patch of size Np×Np centered at

position s, and the function

Λ(s) =

dim(s)∏
i=1

(1− |si|)+

is the separable extension of the triangle function.
Notice that equation (12) renormalizes that weights so that

the rows and columns sum approximately to 1. Therefore, in
our experiments we observed that α from equation (13) typi-
cally takes on a value of approximately 0.95. Equations (14)
and (15) then rescale the weights and add a positive quantity
to the diagonal that ensure that rows and columns of the
matrix must sum to 1. Further, we stop adapting the DSG-
NLM weights as the plug-and-play algorithm progresses. This
is a critical step to ensure that we indeed have a symmetric
gradient with eigenvalues in the interval [0, 1]. Such a gradient
fulfills condition 2 of Theorem III.1 and therefore meets the
conditions that guarantee convergence of the plug-and-play
algorithm.

The following theorem ensures that the DSG-NLM weight
matrix W generated by equations (11) through (15) meets
condition 2 of Theorem III.1 that is required for convergence
of the plug-and-play algorithm.

Theorem IV.1. The DSG-NLM weight matrix W generated by
equations (11) through (15) is a symmetric, doubly stochastic
matrix with eigenvalues in the interval [0, 1].

Proof. See Appendix B.

V. 3D BRIGHT FIELD EM FORWARD MODEL

In this section, we formulate the explicit form of the
inversion operator, F (x̃, σλ), for the application of 3D bright
field EM tomography. For this problem, we adopted both the
forward model and optimization algorithms described in [14].
More specifically, the negative log likelihood function is given
by

l(x, d, σ) =
1

2

K∑
k=1

M∑
i=1

βT,δ

(
(yk,i −Ak,i,∗x− dk)

√
Λk,ii

σ

)
+MK log (σ) + C ,
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where K is the number of tilts, λk,i is the electron counts
corresponding to the ith measurement at the kth tilt, yk,i =
− log λk,i, λD,k is the blank scan value at the kth tilt, dk =
− log λD,k, Ak is the M ×N tomographic forward projection
matrix associated with the kth tilt, Ak,i,∗ is the ith row of
Ak, σ2 is a proportionality constant, Λk is a diagonal matrix
whose entries are set such that σ2

Λk,ii
is the variance of yk,i,

d = [d1, ..., dK ] is the offset parameter vector, C is a constant,
and βT,δ(·) is the generalized Huber function defined as,

βT,δ(x) =

{
x2 if |x| < T

2δT |x|+ T 2(1− 2δ) if |x| ≥ T .
(16)

The generalized Huber function is used to reject measurements
with large errors. This is useful because measurement may
vary from the assumed model for many practical reasons. For
example, in bright field EM, Bragg scatter can cause highly
attenuated measurements that otherwise would cause visible
streaks on the reconstruction [61].

To compute the inversion operator F of equation (7), we
minimize the cost function below with respect to x, d, and σ.

c(x, d, σ; x̃, σλ)

=
1

2

K∑
k=1

M∑
i=1

βT,δ

(
(yk,i −Ak,i,∗x− dk)

√
Λk,ii

σ

)

+MK log (σ) +
‖x− x̃‖22

2σ2
λ

. (17)

So the inversion operator is computed as

F (x̃;σλ) = arg min
x≥0,d,σ

c(x, d, σ; x̃, σλ). (18)

As in the case of sparse interpolation, we set
c(x, d, σ; x̃, σλ) = +∞ for x < 0 in order to enforce
positivity.

The details of the optimization algorithm required for equa-
tion (18) are described in [14]. The optimization algorithm
is based on alternating minimization with respect to the
three quantities and uses a majorization based on a surrogate
function to handle the minimization of the generalized Huber
function [62].

For this complex problem, we note some practical deviations
from the theory. First, the negative log likelihood function,
l(x), is not convex in this case, so the assumptions of the plug-
and-play convergence do not hold. With such a non-convex
optimization, it is not possible to guarantee convergence to a
global minimum, but in practice most optimization algorithms
generate very good results. Also, the global optimization of
equation (18) is approximated by three iterations of alternating
minimization with respect to x, d, and σ. Nonetheless, in our
experimental results section, we will illustrate our empirical
observation that the plug-and-play algorithm consistently con-
verges even with these approximations to the ideal case.

VI. SPARSE INTERPOLATION FORWARD MODEL

In this section, we formulate the explicit form of the
inversion operator, F (x̃, σλ), for the application of sparse
interpolation (the noise-free limit of approximation by sparse

measurements). More specifically, our objective will be to re-
cover an image x ∈ RN from a noisy and sparsely subsampled
version denoted by y ∈ RM where M � N . More formally,
the forward model for this problem is given by

y = Ax+ ε , (19)

where A ∈ RM × RN . The sampling matrix A contains a
subset of the rows of an identity matrix. We also define I(j) =∑
iAi,j so that I(j) = 1 when the jth pixel is sampled, and

I(j) = 0, if it is not. Furthermore, ε is an M -dimensional
vector of i.i.d. Gaussian random variables with mean zero and
variance σ2

w.
For such a sparse sampling system, we can write the

negative log likelihood function as

l(x) =
1

2σ2
w

‖y −Ax‖22 + C , (20)

where C is a constant. In order to enforce positivity, we also
modify the negative likelihood function by setting l(x) = +∞
if any component of x is negative. We include positivity in
l(x) rather than in the denoising operator so that H remains
continuously differentiable. Also, A has a nontrivial null space,
so l(x) does not satisfy the growth condition in Theorem
III.1 (5). However, setting l(x) to be +∞ outside some large
ball (depending on maximum possible pixel value) produces a
function that does satisfy the growth condition and that does
not affect the final result. In practice, this modification to l(x)
is not needed since the denoising step is nonexpansive.

Using equation (7), the interpolation inversion operator is
given by

F (x̃;σλ) = argmin
x≥0

{
1

2σ2
w

‖y −Ax‖22 +
1

2σ2
λ

‖x− x̃‖22
}
.

Due to the simple structure of the matrix A, we can also
calculate an explicit pixel-wise expression for F . In the limit
as σ2

w tends to 0, F reduces to the following form

Fi(x̃;σλ) =

[yi]+ if I(i) = 1

[x̃i]+ if I(i) = 0.
(21)

where [·]+ represents zeroing of any negative argument. In
this noise-free limit, the minimizer is forced to take on the
measured values at the sample points, hence motivating the
name sparse interpolation.

VII. RESULTS AND DISCUSSION

In this section, we present experimental results on both real
and simulated data for the applications of bright-field EM
tomography and sparse interpolation. For all experiments, we
present convergence plots that compare both primal and dual
residuals using different priors. The normalized primal and
dual residues [24, p. 18], r(k) and s(k) respectively, at the kth
iteration of the plug-and-play algorithm are given by

r(k) =
‖x̂(k) − v̂(k)‖2
‖x̂(∞)‖2

; (22)

s(k) =
‖v̂(k) − v̂(k−1)‖2
‖u(k)‖2

, (23)
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where x̂(k), v̂(k), and u(k) are the values of x̂, v̂, and
u respectively after the kth iteration of the plug-and-play
algorithm, respectively, and x̂(∞) is the final value of the
reconstruction, x̂. The primal and dual residues are normalized
to ensure that they represent relative feasibility measures rather
than absolute feasibility measures. This property makes plug-
and-play residues scale invariant [63].

We stopped adapting the DSG-NLM weights after 20 itera-
tions in the tomography experiments and after 12 iterations in
the sparse interpolation experiments. This step was critical in
achieving a doubly stochastic gradient for DSG-NLM, thereby
satisfying the sufficiency conditions of our convergence the-
orem. Finally, using an interpolation experiment, we discuss
the case where we do not stop adapting the weights of DSG-
NLM, and show that plug-and-play may not converge in this
case.

The plug-and-play parameters have been chosen to produce
the best possible reconstruction for each prior, based on mean
squared error or visual inspection when the ground truth was
unavailable.

A. Bright Field EM Tomography

In this section, we present the results of bright field tomo-
graphic reconstruction of (1) a simulated dataset of aluminum
spheres of varying radii, (2) a real dataset of aluminum
spheres, and (3) a real dataset of silicon dioxide. We compare
four reconstruction methods – filtered backprojection, MBIR
with qGGMRF prior [64], plug-and-play reconstructions with
3D NLM and 3D DSG-NLM as prior models. We used
qGGMRF, 3D NLM and 3D DSG-NLM as prior models within
the plug-and-play framework. Filtered backprojection was
used as the initialization for all MBIR-based reconstructions.
All the reconstruction results shown below are x-z slices (i.e.,
slices parallel to the electron beam). The qGGMRF parameters
used for all reconstructions are as follows: q = 1, p = 1.2,
and c = 0.001. The NLM and DSG-NLM patch size used for
all reconstructions is 5×5×5. We stopped adapting the DSG-
NLM weights at 20 iterations of the plug-and-play algorithm.
The plug-and-play parameters used are given in Table II.

In all the experiments, we observe from Tables III and IV
that the DSG-NLM ensures that the plug-and-play algorithm
converges fully, while NLM achieves convergence to within
a fraction of a percent. We note that the qGGMRF operator
has the form of equation (8) with s(v) a convex function that
attains its minimum. In this case, Prop 7.d of [49] implies
that this operator is continuously differentiable, Theorem A.1
(originally of the same paper) implies that condition 2 of
Theorem III.1 is also satisfied, and Lemma A.4 implies that
condition 4 is satisfied. The remaining conditions are satisfied
by l, so plug-and-play is guaranteed to converge fully, which
we observe in the plots.

1) Aluminum spheres (simulated) dataset: The aluminum
spheres simulated dataset contains 47 equally-spaced tilts
about the y-axis, spanning [−70◦,+70◦]. The attenuation co-
efficient of the spheres are assumed to be 7.45 × 10−3 nm.
The noise model is Gaussian, with variance set equal to the
mean. The phantom also contains effects that resemble Bragg

scatter. The dimensions of the phantom are 256 nm, 512 nm,
and 512 nm along z, x, and y axes, respectively.

Figure 1: 0◦ tilt of the aluminum spheres (simulated) dataset.

Fig. 1 shows a 0◦ tilt projection of the simulated TEM data.
Since this is a bright-field image, the aluminum spheres appear
dark against a bright background. Fig. 2 shows the ground
truth along with three reconstructions of slice 280 along the
x-z plane. The NLM and DSG-NLM reconstructions have
no shadow artifacts, and also have low RMSE values (see
Table I). The edges are also sharper in the NLM and DSG-
NLM reconstructions.

Table I: RMSE of the reconstructed Al spheres image compared to the ground truth
(after 200 plug-and-play iterations)

FBP qGGMRF NLM DSG-NLM

14.608 4.581 2.531 2.488
×10−4 nm−1 ×10−4 nm−1 ×10−4 nm−1 ×10−4 nm−1

2) Aluminum spheres (real) dataset: The aluminum spheres
dataset (see Fig. 4) has 67 equally-spaced tilts about the y-
axis, spanning [−65◦,+65◦]. Fig. 4 shows a 0◦ tilt projec-
tion of the real aluminum spheres TEM data. Fig. 5 shows
three reconstructions along the x-z plane. The NLM-based
reconstruction has fewer smear artifacts than the qGGMRF re-
construction, and more clarity than the filtered backprojection
reconstruction. Also, the NLM and DSG-NLM reconstructions
have visibly suppressed missing-wedge artifact.

3) Silicon dioxide (real) dataset: The silicon dioxide
dataset (see Fig. 7) has 31 tilts about the y-axis, spanning
[−65◦,+65◦].

Fig. 7 shows a 0◦ tilt projection of the real silicon dioxide
TEM data. Fig. 8 shows three reconstructions along the x-
z plane. The NLM and DSG-NLM reconstructions have less
smear artifacts than the qGGMRF reconstruction, and far more
clarity than the filtered backprojection reconstruction.
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(a) The aluminum spheres phantom (ground truth)

(b) Filtered Backprojection

(c) qGGMRF (T = 3; δ = 0.5)

(d) 3D NLM using plug-and-play

(e) 3D DSG-NLM using plug-and-play

Figure 2: Tomographic reconstruction of the simulated aluminum spheres dataset. NLM
and DSG-NLM reconstructions are clearer and relatively artifact-free.

Table II: Plug-and-play parameters for tomographic reconstructions

Plug-and-play Al spheres Al spheres Silicon dioxide
parameters (simulated) (real) (real)

σλ (nm−1) 8.66×10−4 8.66×10−4 8.66×10−4

β 3.68 4.77 4.30

Figure 3: Plug-and-play primal and dual residual convergence for tomographic recon-
struction of (simulated) aluminum spheres. DSG-NLM achieves complete convergence.

Figure 4: 0◦ tilt of the very noisy aluminum spheres (real) dataset.

Table III: Normalized primal residual convergence error for tomography experiments
(after 200 plug-and-play iterations)

Primal residual qGGMRF NLM DSG-NLM
convergence error

Al spheres 3.46× 10−12 2.12× 10−3 1.02× 10−10

(simulated)

Al spheres 7.06× 10−11 3.66× 10−4 2.77× 10−9

(real)

Silicon dioxide 4.99× 10−12 8.12× 10−3 8.34× 10−10

(real)
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(a) Filtered Backprojection

(b) qGGMRF (T = 3; δ = 0.5)

(c) 3D NLM using plug-and-play

(d) 3D DSG-NLM using plug-and-play

Figure 5: Tomographic reconstruction of the real aluminum spheres dataset. NLM and
DSG-NLM reconstructions are clearer and have fewer smear and missing-wedge artifacts.

Figure 6: Plug-and-play primal and dual residual convergence for tomographic recon-
struction of (real) aluminum spheres. DSG-NLM achieves complete convergence.

Figure 7: Contrast-adjusted version of the 0◦ tilt of the silicon dioxide (real) dataset.

(a) Filtered Backprojection

(b) qGGMRF (T = 3; δ = 0.5)

(c) 3D NLM using plug-and-play

(d) 3D DSG-NLM using plug-and-play

Figure 8: Tomographic reconstruction of the silicon dioxide dataset. NLM reconstruction
is clearer and has less smear artifacts. DSG-NLM reconstruction improves upon the NLM
result through clear reconstruction of the structure on the left.

Table IV: Normalized dual residual convergence error for tomography experiments
(after 200 plug-and-play iterations)

Dual residual qGGMRF NLM DSG-NLM
convergence error

Al spheres 1.55× 10−10 7.22× 10−3 1.04× 10−9

(simulated)

Al spheres 2.61× 10−10 1.12× 10−3 5.73× 10−9

(real)

Silicon dioxide 9.06× 10−11 5.49× 10−2 3.55× 10−9

(real)
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Figure 9: Plug-and-play primal and dual residual convergence for tomographic recon-
struction of (real) silicon dioxide. DSG-NLM achieves complete convergence.

B. Sparse Interpolation

In this section, we present sparse interpolation results on
both simulated and real microscope images. We show that a
variety of denoising algorithms like NLM, DSG-NLM, and
BM3D can be plugged in as prior models to reconstruct
images from sparse samples. In all the sparse interpolation
experiments, we stopped adapting the weights of the DSG-
NLM after 12 iterations of the plug-and-play algorithm. The
plug-and-play parameters used are given in Table VI.

Our first dataset is a set of simulated super ellipses that
mimic the shapes of several material grains like Ni-Cr-Al
alloy [65]. The next dataset is a real microscope image of
zinc oxide nano-rods [66]. All the images are scaled to the
range [0, 255]. Furthermore, no noise was added to either of
the images, thus reducing the sparse interpolation inversion
operator to the simple form of equation (21).

In all experiments, the plug-and-play sparse interpolation
results are clearer than Shepard interpolation results. We
observe from Table IX that DSG-NLM typically results in
the least RMS interpolation error, though for some images we
have observed BM3D can produce lower RMSE. The RMSE

values are normalized as
‖x− x̂‖2
‖x‖2

, where x̂ is the interpolated

image and x is the ground truth image. Furthermore, we can
see from Tables VII and VIII that DSG-NLM makes plug-
and-play converge fully.

Table V: Plug-and-play parameter, σλ, for the 10% sampling case.

Plug-and-play parameter, σλ NLM DSG-NLM BM3D

Super ellipses 7.41 7.41 7.41

Zinc oxide nano-rods 9.16 9.16 9.16

Table VI: Plug-and-play parameter, β, for the 10% sampling case.

Plug-and-play parameter, β NLM DSG-NLM BM3D

Super ellipses 0.9 0.85 0.55

Zinc oxide nano-rods 0.81 0.79 0.49

Table VII: Normalized primal residual convergence error for the 10% sampling case
(after 150 plug-and-play iterations)

Primal residual NLM DSG-NLM BM3D
convergence error

Super 1.31× 10−3 2.89× 10−8 1.20× 10−3

ellipses

Zinc 2.02× 10−3 1.33× 10−9 1.14× 10−3

oxide
nano-rods

Table VIII: Normalized dual residual convergence error for the 10% sampling case
(after 150 plug-and-play iterations)

Dual residual NLM DSG-NLM BM3D
convergence error

Super 9.10× 10−3 9.93× 10−8 8.71× 10−3

ellipses

Zinc 1.14× 10−2 7.68× 10−9 3.23× 10−2

oxide
nano-rods

Table IX: Interpolation error (after 150 plug-and-play iterations): normalized RMSE of
the interpolated image compared to the ground truth

5% 10%
Interpolation error Method random random

sampling sampling

Super ellipses Shepard 10.61% 8.99%
NLM 8.51% 7.12%

DSG-NLM 8.10% 6.79%
BM3D 9.75% 7.46%

Zinc oxide nano-rods Shepard 6.01% 5.49%
NLM 4.35% 3.67%

DSG-NLM 4.32% 3.37%
BM3D 4.72% 3.80%
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(a) 5% sampling (b) Shepard 5% ran-
dom sampling

(c) NLM 5% random
sampling

(d) DSG-NLM 5%
random sampling

(e) BM3D 5% ran-
dom sampling

(f) 10% sampling (g) Shepard 10% (h) NLM 10% (i) DSG-NLM 10% (j) BM3D 10%

(k) Ground truth (l) Primal residual convergence
for 10% sampling

(m) Dual residual convergence
for 10% sampling

Figure 10: Interpolation of a 256× 256 grayscale image of a set of super ellipses.

(a) 5% sampling (b) Shepard 5% (c) NLM 5% (d) DSG-NLM 5% (e) BM3D 5%

(f) 10% sampling (g) Shepard 10% (h) NLM 10% (i) DSG-NLM 10% (j) BM3D 10%

(k) Ground truth –
full view

(l) Ground truth –
zoomed into the red
box

(m) Primal residual convergence
for 10% sampling

(n) Dual residual convergence
for 10% sampling

Figure 11: Interpolation of a 414× 414 grayscale image of zinc oxide nano-rods.
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C. Importance of having a Fixed Doubly Stochastic Gradient
for Plug-and-Play Convergence

In this section, in order to illustrate the importance of our
denoising operator having a fixed doubly stochastic gradient
for plug-and-play convergence, we present a sparse interpola-
tion experiment with the same super ellipses simulated dataset
as above. In addition to the NLM, and DSG-NLM, we use
another version of DSG-NLM where we do not stop adapting
the filter weights. We see from Fig. 12 and Table X that when
the DSG-NLM weights are adapted every iteration, the primal
and dual residuals enter a limit cycle and do not seem to fully
converge.

Also, there is a very small improvement in RMSE when the
DSG-NLM weights are adapted with every iteration. However,
this slight reduction in RMSE comes at the price of increased
computation.

Finally, we have empirically observed that even if the
(standard) NLM weights are fixed after a few plug-and-play
iterations, plug-and-play does not converge fully.

(a) NLM 10% (b) DSG-NLM (adap-
tive weights)

(c) DSG-NLM
(weights fixed after
12 iterations)

(d) Zoomed-in primal residual
convergence

(e) Zoomed-in dual residual con-
vergence

Figure 12: Interpolation of simulated image of super ellipses for the convergence analysis
of DSG-NLM.

Table X: Convergence and interpolations errors for 10% sparse interpolation of simulated
super ellipses (after 150 plug-and-play iterations)

NLM DSG-NLM DSG-NLM
(adaptive (fixed
weights) weights)

Primary residual 1.31× 10−3 1.75× 10−5 2.89× 10−8

convergence error

Dual residual 9.10× 10−3 3.59× 10−4 9.93× 10−8

convergence error

Interpolation error 7.12% 6.72% 6.79%
(normalized RMSE)

VIII. CONCLUSIONS

Microscope images of material and biological samples
contain several repeating structures at distant locations. High
quality reconstruction of these samples is possible by ex-
ploiting non-local repetitive structures. Though model-based
iterative reconstruction (MBIR) could in principle exploit these
repetitions, practically choosing the appropriate log probability
term is very challenging. To solve this problem, we presented
the “plug-and-play” framework which is based on ADMM.
ADMM is a popular method to decouple the log likelihood
and the log prior probability terms in the MBIR cost function.
Plug-and-play takes ADMM one step further by replacing the
optimization step related to the prior model by a denoising
operation. This approach has two major advantages: First, it
allows the use of a variety of modern denoising operators
as implicit prior models; and second, it allows for more
modular implementation of software systems for the solution
of complex inverse problems.

We next presented and proved theoretical conditions for
convergence of the plug-and-play algorithm which depend
on the gradient of the denoising operator being a doubly
stochastic matrix. We also re-designed the non-local means
(NLM) denoising algorithm to have a doubly stochastic gra-
dient, thereby ensuring plug-and-play convergence.

In order to demonstrate the value of our method, we applied
the plug-and-play algorithm to two important problems: bright
field electron tomography and sparse image interpolation.
The results indicate that the plug-and-play algorithm when
used with the NLM and DSG-NLM priors were able to
reduce artifacts, improve clarity, and reduce RMSE (for the
simulated dataset) as compared to the filtered back-projection
and qGGMRF reconstructions. Then we performed sparse
interpolation on simulated and real microscope images with as
little as 5% of the pixels sampled – using three denoising op-
erators: NLM, doubly stochastic gradient NLM (DSG-NLM),
and BM3D. We then compared the results against Shepard’s
interpolation as the baseline. In all experiments, DSG-NLM
resulted in the least RMSE and also complete convergence of
the plug-and-play algorithm, as predicted by theory.

APPENDIX A
PROOF OF PLUG AND PLAY CONVERGENCE THEOREM

This appendix provides a proof of Theorem III.1. We start
by defining a proximal mapping as any function H : RN →
RN which can be expressed in the form

H(x) = arg min
v∈RN

{
‖x− v‖2

2
+ s(v)

}
, (24)

where s : RN → R∪{+∞} is a proper closed convex function
on RN . With this definition, we can formally state the theorem
proved by Moreau in 1965 [49] which gives necessary and
sufficient conditions for when H is a proximal mapping.

Theorem A.1. (Moreau 1965 [49]) A function H : RN → RN
is a proximal mapping if and only if
(1) H is non-expansive and,
(2) H is the sub-gradient of a convex function φ : RN → R.
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In fact, if there exists a function φ : RN → R such that
∀x ∈ RN

H(x) = ∇φ(x) ,

then we say that H is a conservative function or vector field.
The concept of conservative functions is widely used on elec-
tromagnetics, for example. The next well known theorem (see
for example [50, Theorem 2.6, p. 527]). gives necessary and
sufficient conditions for a continuously differentiable function
to be conservative on RN .

Theorem A.2. Let H : RN → RN be a continuously
differentiable function. Then H(x) is conservative if and only
if ∀x ∈ RN , ∇H(x) = [∇H(x)]

t.

In general, the sum of two proper closed convex functions,
h = f + g, is not necessarily proper. This is because the
intersection of the two sets A = {x ∈ RN : f(x) < ∞}
and B = {x ∈ RN : g(x) < ∞} might be empty. Therefore,
the following lemma will be needed in order to handle the
addition of proper closed convex functions.

Lemma A.3. Let f and g both be proper closed convex
functions and let h = f + g be proper. Then h is proper,
closed, and convex.

Proof. A proper convex function is closed if and only if it
is lower semi-continuous. Therefore, both f and g must be
lower semi-continuous. This implies that h is also lower semi-
continuous. Since h is formed by the sum of two convex
functions, it must be convex. Putting this together, h is proper,
convex, and lower semi-continuous, and therfore it must be
closed. Therefore, h is a proper, closed, and convex function
on RN .

Finally, we give a general result relating the existence of
a fixed point of a proximal map and the minimum of the
associated function s.

Lemma A.4. Let H be a proximal mapping for a proper,
closed, convex function s on RN . Then H(x0) = x0 if and
only if s(x0) is the global minimum of s.

Proof. First suppose s(x0) ≤ s(v) for all v ∈ RN . Then the
unique minimizer of M(v) = ‖x0 − v‖2/2 + s(v) is x0, so
H(x0) = x0 is a fixed point. Next suppose there exists x1

with s(x1) < s(x0), and let u = x1 − x0 and ∆ = s(x1) −
s(x0) < 0. Since s is convex, for all r ∈ [0, 1] we have
s(x0 + ru) ≤ s(x0) + r∆, and hence

‖x0 − (x0 + ru)‖2

2
+ s(x0 + ru) ≤ ‖u‖

2

2
r2 + s(x0) + r∆.

Since ∆ < 0, there exists r0 > 0 so that r0(∆ + r0‖u‖2/2) <
0. Take v0 = x0 + r0u to get M(v0) < M(x0), and so
H(x0) 6= x0.

As an immediate corollary, if H has a fixed point, then s
attains its finite minimum, hence is bounded below by some
constant c > −∞.

Using these results, we next provide a proof of Theo-
rem III.1. Without loss of generality, we will assume β = 1
and σ2

n = 1 in order to simplify the notation of the proof.

Proof of Theorem III.1 . To show that H is a proximal mapping
for some proper, closed, and convex function s(x), we use
Moreau’s result stated above in Theorem A.1. Note first that
∇H(x) is assumed to be symmetric, so Theorem A.2 implies
that H(x) is conservative and hence there exists a function φ
so that

H(x) = ∇φ(x) .

Furthermore, by condition 2, ∇H(x) has real eigenvalues in
the range [0, 1]. Since the eigenvalues are non-negative, φ must
be convex. Furthermore, since the eigenvalues are ≤ 1, H must
also be non-expansive. Since both conditions are satisfied,
Moreau’s Theorem implies that H is a proximal mapping
of some proper, closed, and convex function s(x); i.e., there
exists a proper, closed, and convex function, s(x), on RN such
that H can be expressed as

H(x) = arg min
v∈RN

{
‖x− v‖2

2
+ s(v)

}
. (25)

We next show result 2 of the theorem, that a MAP estimate
exists. This is equivalent to saying that the function h(x) =
l(x) + s(x) takes on its global minimum value for some x =
x̂MAP .

By condition 3 of Theorem III.1 there exists an x and y
such that y = H(x) and l(y) <∞. Since, y = H(x) we also
know that s(y) < ∞. Therefore, h(y) < ∞ and h is proper.
By Lemma A.3, h must also be proper, closed, and convex.

Now to show that h(x) takes on its global minimum, we
need only show that there exists a threshold α ∈ R such that
the sublevel set of h is a non-empty compact set; that is,

Aα = {x ∈ RN : h(x) ≤ α}

is a non-empty, compact subset of RN . Since h is a closed
function, Aα must be a closed set. Therefore, it is necessary
only to show that Aα is nonempty and bounded.

Define
p∗ = inf

x∈RN
h(x) .

Since h(x) is proper, we know that p∗ <∞. Select any α >
p∗, in which case Aα is nonempty.

To show that Aα is bounded, note that condition 4 of
Theorem III.1 (that H has a fixed point) with Lemma A.4
implies that s attains its minimum. Hence there is a constant
c so that s(x) ≥ c for all x ∈ RN . By condition 5 of
Theorem III.1 (lower bound on l(x)), there exists r > 0 so
that

f(r) > |c|+ α .

In this case, for all ‖x‖ > r, we have that

h(x) = l(x) + s(x)

≥ f(r)− |c|
> α.

Therefore, if x ∈ Aα, then ‖x‖ ≤ r, and hence Aα is a
nonempty bounded and therefore compact set. Consequently, h
must take on its global minimum value for some value x̂MAP

in the compact set Aα.



14

Finally, we show result 3 of the theorem, that the plug-and-
play algorithm converges. Since the plug-and-play algorithm
is just an application of the ADMM algorithm, we can use
standard ADMM convergence theorems. We use the standard
theorem as stated in [24, p. 16]. This depends on two assump-
tions. The first assumption is that l(x) and s(x) must be proper,
closed, and convex functions, which we have already shown.
The second assumption is that the standard (un-augmented)
Lagrangian must have a saddle point.
The standard Lagrangian for this problem is given by

L(x, v;λ) = l(x) + s(v) + λt(x− v) , (26)

and the associated dual function is denoted by

g(λ) = inf
x,v∈RN

L(x, v;λ) .

We say that x∗ ∈ RN , v∗ ∈ RN , λ∗ ∈ RK are a saddle point
if for all x, v, and λ,

L(x, v;λ∗) ≥ L(x∗, y∗;λ∗) ≥ L(x∗, y∗;λ) .

Now we have already proved that a solution to our optimiza-
tion problem exists and is given by x∗ = v∗ = x̂MAP . So we
know that the primal problem has a solution given by

p∗ = inf
x,v∈RN
v=x

{l(x) + s(v)}

= l(x∗) + s(v∗) .

Now the pair (x∗, v∗) is a strictly feasible solution to the
constrained optimization problem because x∗ and v∗ meet
the constraint and they both fall within the open set RN .
This means Slater’s conditions hold, and by Slater’s theorem,
strong duality must also hold for some λ∗ [67], [68]. More
specifically, we know that there must exist a λ∗ ∈ RN such
that

p∗ = g(λ∗) .

Using this result, we have that for any x and v,

L(x∗, v∗;λ∗) = l(x∗) + s(v∗) + [λ∗]t(x∗ − v∗)
= l(x∗) + s(v∗)

= p∗ = g(λ∗)

≤ L(x, v;λ∗).

So we have that L(x, v;λ∗) ≥ L(x∗, v∗;λ∗). Furthermore
since x∗ = v∗, we know that L(x∗, v∗;λ∗) = L(x∗, v∗;λ)
for all λ. Putting together these two results, we have that
L(x, v;λ∗) ≥ L(x∗, y∗;λ∗) ≥ L(x∗, y∗;λ), thus proving the
existence of a saddle point of the un-augmented Lagrangian,
L(x, v;λ).

Adapting the theorem of [24, p. 16], we then have the stated
convergence results of equation (10).

lim
k→∞

{x(k) − v(k)} = 0;

lim
k→∞

{l(x(k)) + s(v(k))} = p∗.

APPENDIX B
PROOF OF THEOREM IV.1

To prove that the DSG-NLM matrix W generated by
equations (11) through (15) is a symmetric doubly stochastic
matrix with eigenvalues in the interval [0, 1], we start by first
noticing that the final resulting matrix is symmetric because
all five steps of equations (11) through (15) are symmetric in
s and r, so they produce symmetric weights with the property
that ws,r = wr,s.

Next notice that equation (14) scales ws,r so that the sums
of rows and columns are ≤ 1. Equation (15) then adds the
non-negative value 1−

∑
r∈Ωs

ws,r to the diagonal of the matrix

to produce a final matrix with non-negative entries and rows
and columns that sum to 1. Putting this together, we have
shown that W is a symmetric, doubly stochastic matrix.

Finally, we show that the eigenvalues of W fall in the
interval [0, 1]. Since Ns ≥ 1, any pixel can be reached from
any other by a path with each step restricted to a neighboring
pixel. This implies that W is irreducible, and the fact that
each diagonal entry is positive implies that W is primitive,
so the Perron-Frobenius theorem [69], [70] implies that its
eigenvalues fall in the interval [−1, 1].

Furthermore, W must also be positive definite. To see this,
note that Bochner’s theorem [71] implies that exp

{
−‖P‖22

}
and Λ (s) are positive definite functions on their respective
domains (since each is the Fourier transform of a non-negative
function). From this and the Schur Product Theorem, the
matrix W resulting from equation (11) is non-negative definite.
Furthermore, the result of equation (12) is also non-negative
definite because it results from multiplication on the left and
right by the same positive diagonal matrix. Finally, equation
(14) scales the matrix by a positive number and equation (15)
adds a non-negative value to the diagonal of the matrix, so
the final matrix must be non-negative definite with eigenvalues
that lie in the interval [0, 1].
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