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Abstract

We describe a multilevel multiscale mimetic (M3 ) method for solving two-
phase flow (water and oil) in a heterogeneous reservoir. The governing equations
are the elliptic equation for the reservoir pressure and the hyperbolic equation
for the water saturation. On each time step, we first solve the pressure equation
and then use the computed flux in an explicit upwind finite volume method to
update the saturation. To reduce the computational cost, the pressure equation
is solved on a much coarser grid than the saturation equation. The coarse-grid
pressure discretization captures the influence of multiple scales via the subgrid
modeling technique for single-phase flow recently proposed in [23, 17, 22]. We
extend significantly the applicability of this technique by developing a new ro-
bust and efficient method for estimating the flux coarsening parameters. Specif-
ically, with this advance the M3 method can handle full permeability tensors
and general coarsening strategies, which may generate polygonal meshes on the
coarse grid. These problem dependent coarsening parameters also play a criti-
cal role in the interpolation of the flux, and hence, in the advection of saturation
for two-phase flow. Numerical experiments for two-phase flow in highly hetero-
geneous permeability fields, including layer 68 of the SPE Tenth Comparative
Solution Project, demonstrate that the M3 method retains good accuracy for
high coarsening factors in both directions, up to 64 for the considered models.
Moreover, we demonstrate that with a simple and efficient temporal updating
strategy for the coarsening parameters, we achieve accuracy comparable to the
fine-scale solution, but at a fraction of the cost.

1 Introduction

The ever increasing power of computers combined with the growing sophistication of
numerical algorithms and visualization tools is driving the demand for quantitative
simulations of multiscale phenomena. Typical multiscale applications include, con-
taminant flow in aquifers, enhanced oil recovery, power generation in fission reactors,
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and reacting flows in catalyst beds. Here, the term multiscale is intended to convey
two important properties of these applications. First, the processes being modeled
involve disparate length and time scales. Second, the fine-scale spatial structure and
temporal coupling strongly influences coarse-scale properties of the solution, such as
average flow rate through an aquifer. Thus, a naive simulation that does not address
the influence of the fine-scales is terribly inaccurate, even for coarse-scale properties
of the solution, while a fully resolved simulation is computationally intractable.

Thus, the goal of multiscale modeling is to develop methods that balance the com-
peting demands of accuracy and efficiency. Specifically, we are interested in methods
that not only capture the influence of fine or unresolved scales, but provide a method-
ology that facilitates achieving the desired accuracy in the computation of specific
quantities of interest with the least possible computational work. Ultimately, these
methods need to include error estimation and error control throughout the simulation,
but this is beyond the scope of this research.

In modeling single and two-phase flow in porous media, the strongest multiscale
influence arises from the heterogeneous structure of the subsurface environment. It
is well understood that employing simple averages of the fine-scale parameters in a
model of the same form has significant limitations. In particular, only a few hetero-
geneous structures are such that the coarse-scale flow under a uniform coarse-scale
gradient is described by the same mathematical model with an equivalent or upscaled
permeability. In general, a rigorous treatment of the fine-scale structure introduces a
full tensor permeability, as well as additional closure or non-local terms in the coarse-
scale model. For example, even in two-scale periodic media, classical homogenization
using asymptotic expansions leads to a full tensor permeability for the coarse-scale
model, even if the fine-scale permeability was a scalar [4, 20]. Thus, upscaling the
fine-scale model, not just its parameters, is a fundamental challenge in modeling
multiscale phenomena.

Recently, research in multiscale methods has focused on this more rigorous ap-
proach by upscaling flow models through the creation of multiscale basis functions.
Although these concepts have appeared in various forms in a number of applications,
such as the shape functions in reactor physics [31], and Generalized Finite Element
Methods for conductivity in composite materials [3, 27], they were introduced to the
subsurface flow modeling community through the Galerkin Multiscale Finite Element
Method (MsFEM) [18]. In this method multiscale basis functions are created on
each coarse-scale cell by solving local flow problems for the pressure. Using these
basis functions in the weak form of the pressure equation to create a coarse-scale
discretization captures the influence of the fine-scale structure directly, and in par-
ticular, this discretization is an upscaled model, not simply a model with upscaled
parameters. However, this approach does not generate locally conservative velocity
fields, which is desirable for two-phase and multiphase flow calculations.

To address this problem researchers turned to the first-order form of the bulk flow
equations (i.e., writing mass conservation and Darcy’s law as a first order system).
Hence, using a Control Volume Finite Element Method (CVFEM) or a Mixed Finite
Element Method (MFEM) to discretize the fine-scale model explicitly enforces local

2



mass conservation. Moreover this approach provided a natural setting to develop
multiscale methods that explicitly enforce local mass conservation. For example, the
initial work of Chen and Hou [9] introduced the Mixed Multiscale FEM (MMsFEM),
which used local problems to develop multiscale basis functions for the velocity field.
A modified version of this method was developed by Aarnes [1] to treat wells and
to provide a locally conservative flux on both the fine and coarse scales. In addi-
tion, Efendiev et al. [14] introduced a Multiscale Finite Volume Element Method
(MsFVEM) for two-phase flow calculations.

In all of these methods, the accuracy of the solution depends critically on the
accuracy of the local boundary conditions that are used to create the multiscale
basis functions. This motivates various approaches to capture the influence of the
heterogeneous structure, such as local oscillatory conditions or oversampling [18],
as well as special source and boundary functions for near-well regions [1]. However,
for channelized flows arising from permeability fields with long correlation lengths,
an effective local approach may not be possible and global flow information may
be needed. For example, in [14] a highly accurate fine-scale global solution at the
initial time is used to construct the boundary conditions for the the MsFEVM basis
functions. Similarly, in [2] a global solution at the initial time is used to define the
local boundary conditions throughout a two-phase flow simulation. In both cases
the robustness and accuracy was improved significantly with the use of this global
information.

However, this rigid distinction between local and global is largely an artifact of
the convenient but artificial partitioning of scales into resolved and unresolved, or
fine-scale and coarse-scale. Specifically, this domain-decomposition style partitioning
is what places the demands on these boundary conditions, because as the coarsen-
ing factor increases these artificial internal boundary conditions become increasingly
important. In fact, most upscaling methods achieve a coarsening factor of approxi-
mately 10 in each coordinate direction, while the trends in fine-scale realizations of
large reservoirs requires a coarsening factor of 100 or more.

These observations motivate our interest in developing truly multilevel methods
that build on the success of robust variational multigrid methods. Here the issue
of efficiently generating a hierarchy of coarse-scale models that accurately captures
the influence of the fine-scale structure is handled through a minimization princi-
ple. Given a fine-scale discrete operator, a coarse-grid, and an interpolation operator,
the coarse-scale operator that minimizes the error in the range of the interpolation
is readily obtained. This is dubbed the variational or Galerkin coarse-grid opera-
tor, and it is the workhorse of robust multigrid solvers such as Black Box Multigrid
(BoxMG) [11, 12], Algebraic Multigrid (AMG) [28, 29], and Smoothed Aggregation
based AMG [30, 5]. This procedure does not simply average coefficients, but up-
scales the discrete model algebraically in a manner that captures the low energy
modes of the fine-scale operator. The accuracy and efficiency of this coarsening pro-
cedure was demonstrated in the Multilevel Upscaling (MLUPS) method introduced
by MacLachlan and Moulton [24] for single-phase steady-state flow. In particular, it
was demonstrated that even for highly heterogeneous permeability fields with long
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correlation lengths accuracy comparable to MsFEM [18] could be obtained much more
efficiently. However, like MsFEM this method does not produce locally conservative
velocity fields. While regaining locally conservative fields through postprocessing is
of interest, here we consider another approach with greater flexibility in terms of the
underlying discretization.

In this work we develop a new multilevel multiscale mimetic (M3 ) method for
finite difference discretizations of the first order system for pressure and bulk fluid
velocity. This approach uses the subgrid modeling technique for single-phase flow
recently proposed in [23, 17, 22]. We extend significantly the applicability of this
technique by developing a new robust and efficient method for estimating the flux
coarsening parameters. Specifically, with this advance, the M3 method can handle full
permeability tensors and general coarsening strategies, which may generate polygonal
meshes on the coarse grid. The M3 method is readily extended to polyhedral meshes
by leveraging recent developments in mimetic finite difference (MFD) methods [8, 7].

In this subgrid modeling technique the accurate approximation of the flux coars-
ening parameters is critical for applications involving highly heterogeneous media or
unstructured and distorted meshes. For example, using the solution of local problems
to approximate these parameters [17, 1, 2] is not sufficiently accurate for channelized
flows. Moreover, the cost of solving local problems for every macro-edge may ap-
proach or exceed the cost of performing a global solve on the fine grid. The novel
technique that we propose for estimating the flux coarsening parameters is based on
an approximate and inexpensive solution of this flow problem. To compute this ap-
proximate solution, we apply a small number of AMG cycles (many less than required
for solving the fine-grid flow problem) to the equivalent symmetric positive definite
system for the Lagrange multipliers. As noted earlier, a robust variational multigrid
algorithm efficiently captures the effects of the fine-scale structure on the flow, and
hence, quickly provides accurate estimates of the problem dependent flux coarsening
parameters. By design, the structure of the coarse-scale system is identical to the
original fine-scale system, hence we can apply the coarsening procedure recursively
to obtain a multilevel algorithm. This algorithm is very flexible with a number of
free parameters, including the number of coarse levels, the coarsening factor for each
level, and the accuracy of the flux coarsening. Numerical experiments show that the
cost of the multigrid cycles is a negligible part of the overall simulation cost.

The paper is organized as follows. In Section 2 we introduce a continuum model
of two-phase flow in porous media, along with its mimetic finite difference (MFD)
discretization. The new multilevel multiscale method for upscaling the pressure equa-
tion, which combines the novel subgrid-modeling technique proposed in [23, 17, 22]
and a new AMG based methodology for computing the flux coarsening parameters, is
developed in in Section 3. Section 4 presents an algorithm for simulating two-phase
flow that uses the IMPES (IMplicit Pressure, Explicit Saturation) scheme with the
new multilevel multiscale method for pressure. A discussion of the computational
complexity is presented as well. Numerical results of two-phase flow through highly
heterogeneous media are presented in Section 5. Finally, in Section 6 we present
conclusions and directions for future work.
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2 Problem formulation

2.1 Continuum model

We consider immiscible two-phase flow in a two-dimensional porous medium, Ω [10].
The effects of gravity, compressibility, and capillary pressure are neglected. The two
immiscible phases will be referred to as oil and water, and will be denoted with the
subscripts o and w, respectively. The governing equations are given by,

φ
∂Sj

∂t
+∇ · ~uj = −qj, j = o, w, (2.1)

where Sj and ~uj are the saturation and the velocity of phase j, respectively, and the
porosity, φ, is to be constant. We assume that the two phases fill the pore volume
completely so that the saturation satisfies the constraint,

So + Sw = 1.

The source and sink terms, which represent injection and production wells, are de-
noted by qj. The velocity of each phase is given by a generalized form of Darcy’s
law,

~uj = −
krj(Sj)

µj

K∇p , (2.2)

where K is a symmetric and uniformly positive definite permeability tensor, krj is the
relative permeability of phase j, and µj is its viscosity. The relative permeability krj

depends on saturation in such a way that the permeability of one phase is reduced
by the presence of other. The total, or bulk fluid, velocity is defined by

~u = ~uw + ~uo .

The phase mobility λj(Sj) and the total mobility λ(Sw) are defined as follows:

λj(Sj) =
krj(Sj)

µj

and λ(Sw) = λo(1− Sw) + λw(Sw). (2.3)

Let us introduce the Buckley-Leverett fractional flow functions

fw(Sw) =
λw(Sw)

λ(Sw)
and fo(Sw) =

λo(1− Sw)

λ(Sw)
.

Then, combining the governing equations (2.1) with Darcy’s law (2.2), we obtain the
pressure equation,

∇ · (λ(Sw) K∇p) = qo + qw , (2.4)

and the saturation equations,

φ
∂Sj

∂t
+∇ · (fj~u) = −qj, j = o, w . (2.5)
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Since the saturations Sj sum to one, we use water saturation and pressure as the
primary variables of the model. We will refer to the equations presented above as the
fine-scale model. In order to close this model, boundary and initial conditions must
be imposed. We consider no-flow (Neumann) boundary conditions and homogeneous,
Sw = const, initial condition for water saturation.

2.2 Discretization of the fine-scale model

In this section we define a fine-scale discretization of equations (2.4) and (2.5). Let
Ωh be a polygonal partition of the domain Ω that is referred to as the fine-grid (or
fine-scale) partition:

Ωh =
N⋃

i=1

ei.

In this paper we use the mimetic finite difference (MFD) method [8] to discretize the
pressure equation. However, the multiscale method proposed in the next section may
be adopted easily to other mixed methods, such as the mixed finite element (MFE) [6]
and control volume finite element (CVFE) [15] methods.

For each cell ei, we define one pressure unknown, pi, which represents the integral
average of p. Let p be the vector of all pressure unknowns. For each edge ℓj of
polygon ei, we define one unknown, ui,ℓj

, which represents the average normal flux
~u · ~n (a scalar) through this edge. Hereafter, we will refer to ui,ℓj

as simply the flux
unknown. Let u be the vector of flux unknowns. The size of u is the number of
boundary edges plus twice the number of internal edges. When two cells ei and ek

share a common edge ℓ, the following continuity condition holds:

ui,ℓ = −uk,ℓ. (2.6)

We use the IMPES approach (IMplicit Pressure and Explicit Saturation) to dis-
cretize equations (2.4) and (2.5) in time. First, the pressure equation is solved. Sec-
ond, the hyperbolic saturation equation is integrated explicitly using the single-point
upwind finite volume method [16, 25]. Thus, the MFD discretization of the pressure
equation may be written in the form,




M(Sn) BT CT

B 0 0

C 0 0







un

pn

λn


 =




0

qn

0


 , (2.7)

where n denotes the time step, M(Sn) is the mass matrix computed using the sat-
uration from the current time step, matrix B represents the divergence operator
multiplied by the matrix of polygon areas, matrix C represents continuity of the nor-
mal flux across mesh edges (2.6), λn is the vector of Lagrange multipliers, and qn

is the source term. Due to scaling of the divergence operator, components of qn are
integrals over fine-grid polygons of the source and sink function qo + qw.
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A saddle-point matrix with the same structure appears in the hybrid MFE method.
The weak form of the velocity continuity condition (the last equation in (2.7) or
equivalently (2.6)) naturally gives rise to an efficient solution algorithm. Specifically,
the mass matrix is block-diagonal with as many blocks as there are cells in Ωh;
therefore, velocity and pressure unknowns can be easily eliminated, resulting in a
sparse symmetric positive definite problem for Lagrange multipliers.

3 Upscaling of the pressure equation

In a direct single-scale implementation of the IMPES algorithm, the solution of the
pressure equation (2.7) dominates the computational time. For example, in the direct
fine-scale and reference solution computations in Section 5, approximately 90% of
the computational time is spent in solving for the pressure. The objective of the
proposed method, and of multiscale methods in general, is to mitigate this cost by
solving the pressure equation on a much coarser grid. In this section we describe a
robust multilevel technique for generating this coarse-grid system. For simplicity, we
omit the time superscript from (2.7). The method is truly multilevel and produces
locally conservative coarse-grid velocities.

We begin by describing a two-level coarsening method, a building block for the
multilevel method. Let N0 = N , cN1 ≤ N0, with 0 < c < 1, and

ΩH =

N1⋃

i=1

Ei, Ei =
⋃

k∈F(Ei)

ek,

where F(Ei) is a set of indices of fine-grid cells and Ei is a macro-cell (a polygon).
Let |F(Ei)| be the cardinal number of set F(Ei), i = 1, . . . , N1. We assume that the
coarse-grid partition ΩH is non-overlapping and conformal, and that each edge of a
macro-cell Ei is a segment of a straight line.

The two-level method consists of two steps, which are illustrated in Fig. 1. First,
for each macro-cell, we eliminate all internal velocity unknowns, and replace all inter-
nal pressure unknowns with a single pressure. This elimination process is performed
by equivalent modifications of the original system. The unknowns in the resulting
system are shown in the middle schematic of Fig. 1. Second, we perform a conser-
vative flux coarsening procedure that defines one flux unknown per macro-cell edge
from the fine-grid fluxes on the macro-edge. The final form of the reduced system,
shown in the right schematic of Fig. 1, is identical to the original system.

3.1 Elimination of internal degrees of freedom

To eliminate the internal degrees of freedom we use the algorithm proposed by
Y. Kuznetsov (see [23, 17, 22] where this algorithm is described for the diffusion-
reaction problem). Let us consider a macro-cell E formed by np ≡ |F(E)| fine-grid
cells ek, k ∈ F(E). Let Γ ≡ ∂E be its boundary formed by nbnd

u fine-grid edge γk.
Furthermore, let nint

u be the number of internal edges of E.
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Figure 1: Schematic of the two steps of the two-level upscaling method for a 2 × 2
square macro-cell. The cell-centered pressure unknowns are represented by circles,
and the velocity unknowns are represented by arrows. The first step is an equivalent
reduction, while the second is approximate.

Using the continuity condition (2.6), we eliminate duplicated internal fluxes and
the corresponding Lagrange multipliers. Equations for the remaining unknowns as-
sociated with the macro-cell E may be written in the form,




MΓΓ MΓi BT
Γ

MiΓ Mii BT
i

BΓ Bi 0







uΓ

ui

pi


 =




gΓ −CT
ΓλΓ

gi

qi


 , (3.1)

where ui is the vector of of size nint
u of internal flux unknowns, uΓ is the vector of size

nbnd
u of boundary flux unknowns, pi is the vector of size np of pressure unknowns, λΓ

is the vector of size nbnd
u of the remaining Lagrange multipliers, and qi is the vector

of size np of source data. All the introduced vectors are parts of vectors in the global
formulation (2.7). For the fine-grid discretization, gi = 0 and gΓ = 0; however, in a
multilevel framework they may be non-zero in macro-cells containing sources.

By properties of the discretization method, the leading 2 × 2 matrix in (3.1) is
symmetric and positive definite. Let us define the following Schur complement matrix:

S = Bi M
−1
ii BT

i . (3.2)

Note that
S = ST ≥ 0 and kerS = kerBT

i . (3.3)

It can be shown that the null space has dimension one and that it is spanned by the
vector ψ = (1, . . . , 1)T of size np. Let us consider the generalized eigenvalue problem

Swi = νi Dwi, i = 1, . . . , np,

where D is the positive definite diagonal matrix with cell areas of the diagonal:

D = diag {|ek1
|, . . . , |eknp

|}, ki ∈ F(E).
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The reason for choosing such a diagonal matrix is explained at the end of this sub-
section. We assume that the eigenvectors are D-orthonormal and ν1 = 0. We define
the pseudo-inverse matrix, S+, as follows

S+ =

np∑

i=2

1

νi

wiw
T
i .

It is easy to verify that

S+S = I−
1

α2
ψψTD, α2 = ψTDψ, (3.4)

Note that system (3.1) is compatible being a part of the compatible system (2.7).
Therefore, it can be solved for ui and pi:

pi = S+(BΓ −Bi M
−1
ii MiΓ)uΓ + η,

ui = RiΓuΓ + ξ (3.5)

where
RiΓ = −M−1

ii BT
i S+(BΓ −Bi M

−1
ii MiΓ)−M−1

ii MiΓ,

η = −S+[qi −BiM
−1
ii gi] + βψ,

ξ = M−1
ii BT

i S+[qi −BiM
−1
ii gi] + M−1

ii gi,

and β is an arbitrary number.
Let us multiply the second two block equations in (3.1) by the matrix RT

iΓD and
add the result to the first block equation. Note that

(BΓ + RT
iΓB

T
i )pi =

1

α2
BT

Γψψ
TDpi ≡ B̂Γ pE,

where pE is the coarse-grid pressure unknown given by

pE =
1

α2
ψTDpi =

∑
k∈F(E)

pk|ek|

∑
k∈F(E)

|ek|
.

This formula is physically sound (pE is the integral average of fine-grid pressure
unknowns) and explains the definition of the pseudo-inverse matrix given in equa-
tion (3.4). Now, we multiply the last block equation in (3.1) by ψT and use property
(3.3). The reduced system may be written in a matrix form:




M̂ΓΓ B̂T

Γ

B̂Γ 0








uΓ

pE



 =




ĝΓ −CT

ΓλΓ

qE



 , (3.6)

where

M̂ΓΓ =
[

I RT
iΓ

] [
MΓΓ MT

iΓ

MiΓ Mii

] [
I

RiΓ

]

and
ĝΓ = gΓ −MT

iΓξ + RT
iΓ(gi −Miiξ), qE = ψTqi.
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3.2 Conservative flux coarsening

After elimination of internal fluxes and reduction to a single pressure, we obtain a
discretization with several flux unknowns per macro-edge (see the second picture in
Fig. 1). To obtain a discretization with only one flux unknown per macro-edge, we
closely follow the approach proposed by Y. Kuznetsov and described in [17], and then
introduce our new methodology for approximating the flux coarsening parameters in
Section 3.3.

Let L denote a macro-edge of a macro-cell E. By assumption, L is a segment
of a straight line. First, we consider the case in which L consists of two fine-grid

ℓ2

ℓ1

u2

u1

UL

Figure 2: Macro-cell and its edge L (left) consisting of two fine-grid edges ℓ1 and ℓ2.

edges ℓ1 and ℓ2 (see Fig. 2). Let u1 and u2 be the fluxes corresponding to ℓ1 and ℓ2,
respectively. Without loss of generality, we assume that |u1| ≤ |u2|. The goal of the
coarsening procedure is to define the flux UL through the macro-cell edge L in terms
of the fine-grid fluxes. Mass conservation dictates that

UL(|ℓ1|+ |ℓ2|) = u1|ℓ1|+ u2|ℓ2|. (3.7)

where |ℓi| denotes the length of edge ℓi.
Let α be the ratio of fine-grid fluxes:

α =






u1

u2

, u2 6= 0,

1, otherwise.
(3.8)

This ratio characterizes the first moment of the flux, and will play an essential role
in our algorithm. In Section 3.3.1 we show that using the exact ratio leads to an
optimal coarse-grid system in the sense that it reproduces fine-scale quantities exactly.
However, this calculation is equivalent to solving the fine-scale system, and hence, it
is not a practical multiscale method. We introduce new method for approximating
the flux ratios, α, in Section 3.3.2 and show its robustness and efficiency in Section
5 with numerical experiments for challenging test problems. Here, we suppose that
α is given. Then, condition (3.7) gives

u1 =
α(|ℓ1|+ |ℓ2|)

α|ℓ1|+ |ℓ2|
UL and u2 =

|ℓ1|+ |ℓ2|

α|ℓ1|+ |ℓ2|
UL.
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In other words, α defines the 2×1 interpolation matrix QL such that

[
u1

u2

]
= QLUL. (3.9)

If the coarse-grid edge L consists of m fine-grid edges, we have m − 1 coarsening
parameters αi, i = 1, . . . m − 1. For simplicity we assume again that the fine-grid
fluxes satisfy |ui| ≤ |ui+1|. Then,

αi =






ui

ui+1

, ui+1 6= 0,

1, otherwise.

Using the same arguments as above, we derive that

ui =
r
(1)
i

r
(2)
i

m∑

j=1

|ℓj|UL, (3.10)

where r
(1)
m = 1,

r
(1)
i =

m−1∏

j=i

αj, i ≤ n− 1, and r
(2)
i = |ℓm|+

m−1∑

j=1

|ℓj|

m−1∏

k=j

αk.

Formula (3.10) defines the interpolation matrix QL in this case.

Remark 3.1 Expression (3.10) can be simplified if we introduce m parameters β1, . . . , βm

such that αj = βj/βj+1. Then

ui =
βi

∑n
j=1 |ℓj|∑n

j=1 βj|ℓj|
UL. (3.11)

Let QE be the interpolation matrix for the macro-cell E that is assembled from
the edge-based matrices QL. Then, given coarse-grid fluxes ûΓ, we may calculate the
fine-grid fluxes by

uΓ = QEuc
Γ.

Substituting this expression in (3.6), and multiplying the first equation by QT
E, we

obtain the coarse-grid discretization for the macro-cell E:




ME BT

E

BE 0








uc

Γ

pE



 =




QT

EĝΓ −CEµ

qE



 (3.12)

where

ME = QT
EM̂ΓΓQE, BE = B̂ΓQE, CE = diag {|L1|, . . . , |Lm|},
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and
µ = C−1

E QT
ECΓλ.

The coarse-grid discretization (3.12) is illustrated in the right schematic of Fig. 1.
The structure and scaling of matrix CE has been designed to match the structure
and scaling of matrix CΓ in (3.1). The global coarse-grid system is obtained by
assembling the elemental systems (3.12) for all macro-cells, and is closed by adding
flux continuity conditions similar to (2.6). After solving the coarse-grid system, we
obtain a vector uc of coarse-grid fluxes and a vector pc of coarse-grid pressures pE.
The fine-grid velocities needed for the transport equation are calculated using first
the interpolation operators QE and then formula (3.5). Moreover, since this global
coarse-grid problem has exactly the same sparsity structure as the fine-grid problem
(2.7), the multi-level method may be constructed by recursion.

3.3 Flux coarsening parameters

In the M3 method the accuracy of the flux coarsening parameters directly influences
the overall accuracy of the flow calculation, and particularly, the advection of satura-
tion. Specifically, the coarse-grid pressure solve preserves mass locally and provides
the zeroth order moment or average flux through each macro-edge. The flux coars-
ening parameters characterize the distribution, or first moment, of the flux along the
macro-edge, and hence, significantly impact the accuracy of interpolation of the flux
to the fine-grid.

Although standard approaches in parameter upscaling and in the generation of
multiscale basis functions could be used to approximate the flux coarsening parame-
ters, the limitations of these methods, which were highlighted in the introduction, are
naturally present in this sub-grid modeling technique as well. Thus, to address these
limitations in a robust and efficient manner we introduce a novel approach in Sec-
tion 3.3.2 that is motivated by the important observation formulated in Lemma 3.1.

3.3.1 Exact flux coarsening

In this subsection we assume that the exact flux ratio, αex, is known for each macro-
edge in the coarse-grid. We prove that the fluxes obtained by the multiscale method
are exactly the fine-grid fluxes. For this proof it is sufficient to analyze the two-level
method.

Lemma 3.1 Let αex be the exact flux ratio for each macro-edge corresponding to the
solution of (2.7) on the fine grid. Then interpolation of coarse-scale fluxes, obtained
by the solving equations (3.12) on the coarse-grid, yields exactly the fine-grid fluxes.

Proof. Without loss of generality, we consider a macro-edge L consisting of two
fine-grid edges ℓ1 and ℓ2. Let u1 and u2 be the fine-grid fluxes corresponding to these
edges. Using (3.7), we define the restriction operator RL,

RL

[
u1

u2

]
=
|ℓ1|u1 + |ℓ2|u2

|ℓ1|+ |ℓ2|
= UL,
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where UL is the flux through macro-edge L. Using the interpolation operator QL

defined in (3.9), we write the following equation for the interpolation error:

[
ε1

ε2

]
=

[
u1

u2

]
−QL RL

[
u1

u2

]
.

A straightforward calculation shows that:

ε1 = (u1 − αexu2)
|ℓ2|

αex|ℓ1|+ |ℓ2|
and ε2 = (αexu2 − u1)

|ℓ1|

αex|ℓ1|+ |ℓ2|
.

Since αex = u1/u2, then ε1 = ε2 = 0. Thus vector (u1, u2)
T is the eigenvector of the

matrix QL RL which corresponds to eigenvalue λ = 1.
The global interpolation and restriction matrices are block diagonal with as many

blocks as there are coarse-grid edges, therefore the interpolation of coarse-grid fluxes
coincides with the fine-grid fluxes on all fine-grid edges. This proves the assertion of
the lemma. �

This lemma proves that if the exact flux ratios, αex, are known for a specific
problem, then the second step in the scheme shown in Figure 1 is an equivalent
reduction as well as the first step.

3.3.2 Flux coarsening with algebraic multigrid

The overarching goal of this research is to develop a multilevel algorithm that provides
a flexible hierarchical approach to balancing the competing demands of efficiency
and accuracy. This is particularly important for problems with highly heterogeneous
permeability fields that lack scale separation or have long correlation lengths, as these
are not effectively treated with local approximation methods [14]. Indeed, it is critical
that global information be incorporated in an efficient and hierarchical manner that
does not require a highly accurate solution of the fine-scale pressure equation.

We propose to define the coarsening parameters α from an approximate solution
of (2.7) calculated with an efficient multigrid method.

Algorithm 1 New method for calculating flux coarsening parameters

1: Form the Schur complement of system (2.7) for the Lagrange multipliers, λ.

2: Perform a few preconditioned conjugate gradient (PCG) iterations with a single
V(1,1)-cycle of the Ruge-Stüben algebraic multigrid [26, 28] as the preconditioner,
until a weak convergence tolerance εr is reached.

3: Calculate fluxes from elemental systems (3.1) and the flux coarsening parameters
α from (3.8).

For problems involving the second-order form of the pressure equation, the alge-
braic multigrid method (AMG) is known to be a good candidate. In particular, AMG
uses the fine-scale discrete model to create a hierarchy of coarse-scale models through
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a variational principle that minimizes the error in the range of the interpolation. This
methodology is critical to the robustness of AMG for problems with discontinuous
and tensor permeabilities. Moreover, this is a very efficient way to incorporate tightly
coupled scales ranging from the cell size to the domain size. Note that a robust multi-
grid method that deals directly with the saddle point problem (2.7) does not exist;
therefore Step 1 is required. The Schur complement matrix is symmetric and posi-
tive definite. It is formed element-by-element ensuring the linear complexity of this
algorithm.

The AMG method provides optimal algorithmic scaling with respect to mesh
resolution, and achieves a typical convergence rate of 0.1 − 0.3 for the permeability
fields considered in Section 5. The conjugate gradient method is used to accelerate
convergence of the AMG method. In the numerical experiments, we use a small
number of PCG iterations, typically 3–5, to solve the Lagrange multiplier system to
a relative residual tolerance εr, in the L2 norm. In following discussions the accuracy
of the coarsening parameters α will be described by the convergence criteria εr.

Although the multilevel formulation that we presented above defines key com-
ponents that could be used in a multilevel solution algorithm for the saddle point
problem, there are still many unresolved issues, such as smoothers, that are beyond
the scope of this article.

4 Two phase flow simulation

4.1 The M3 method

In this implemention of the multilevel multiscale mimetic (M3 ) method for two-phase
flow we use the IMPES time discretization scheme (IMplicit Pressure and Explicit
Saturation). As noted in the previous section, the solution of the pressure equation
is the most computationally demanding part of each time-integration step. To solve
it more efficiently, we use the new multilevel method described in the previous sec-
tion. Having solved the pressure equation on the coarsest grid, we interpolate the
fluxes onto the fine-scale mesh and use them to update the saturation explicitly. By
construction this interpolation is conservative.

The accuracy of the multiscale solution depends on the various facets of the M3

method that impact how accurately α approximates αex (Section 3.3.1) throughout
the simulation. For example, the exact flux ratio αex varies with time, and hence,
updating α in time will improve the overall accuracy of the multiscale solution. In
fact, updating α at each time-step to high precision is equivalent to solving the fine-
grid problem. However, in many multiscale methods, such as the MsMFEM [2],
MsFVEM [14], and Multiscale Finite Volume (MsFV) [19] method, the fine-grid pres-
sure equation is solved to high precision only once, at the initial time step. Then, the
corresponding multiscale basis functions are used throughout the entire simulation.
Although we implement this approach for comparison purposes (see Section 5.1.1),
we are more interested in the gains in overall efficiency offered by occasional, compu-
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tationally inexpensive corrections of α. These gains in efficiency are possible because
of our multigrid approximation technique (see Section 3.3.2), which is not only com-
putationally efficient, due to the fast multigrid convergence, but provides estimates
that include valuable information about global flow behavior.

Another important facet of the M3 method is the coarsening strategy. Specifi-
cally, in a multilevel algorithm the coarsening factor between levels, as well as the
total coarsening factor, affects the trade-off between accuracy and efficiency. In the
numerical examples, we consider rectangular meshes and generally coarsen uniformly
in each coordinate. Hence, using cl to denote the coarsening factor between levels l
and l + 1 in each coordinate, we may describe a coarsening strategy in a hierarchy of
L levels with the compact notation c1 : c2 : . . . : cL−1. Moreover, the total coarsening
factor in each coordinate may be written

cT =
L−1∏

l=1

cl .

while the total coarsening factor is simply CT = c2
T . For example, a two-level method

with c1 = 4, and a three-level method with c1 : c2 = 2 : 2, both have a total coarsening
factor of CT = 16. However, as we will see in the next subsection, the computational
cost of forming the coarse-scale pressure system favors hiearchies that use coarsening
factors of two.

These facets of the M3 method are summarized in the following list:

- the coarsening strategy and the total coarsening factor (see Sec. 5.1.1);

- the total number and frequency of flux ratio updates (see Sec. 5.1.2);

- the convergence tolerance, εr, of the PCG(AMG) iteration
used to determine the flux ratios (see 5.1.2).

The role of the corresponding parameters are highlighted in pseudo-code descrip-
tion below, Algorithm 2. In the numerical tests, we investigate the impact of these
parameters on the quality of the multiscale solution.

4.2 Computational complexity

The most computationally demanding part of the M3 method is derivation of ma-
trices M−1

ii and S+ in (3.2) – (3.5). To analyze the method complexity, we consider
rectangular meshes and neglect all algorithmic operations except matrix inversions.
Let us assume that the coarsening factors in each direction are cl = 2k. Then, each
macro-cell consists of nc(k) = 22k sub-cells and has ni(k) = 2k+1(2k − 1) internal
edges. Matrices M−1

ii and S+ have sizes ni(k) and nc(k), respectively. Recall that
inversion of a dense symmetric matrix of size n requires O(n3) arithmetic operations.
These inversions are independent of each other and can be easily parallelized.
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Algorithm 2 The M3 Method for Two-Phase Flow

1: Estimate parameters α using Algorithm 1 (see Section 3.3.2) with a convergence
tolerance εr.

2: Set the number of levels L, and the coarsening factors c1 : c2 : ... : cL−1.

3: Form hierarchy of coarse-scale discretizations of the pressure equation (3.12).

4: while tn < Tf do

5: if ( update of parameter α is scheduled ) then

6: compute new parameters α using Algorithm 1 with the conver-
gence tolerance εr.

7: else

8: use the parameters α from the previous time step
9: end if

10: Update coarse-scale discretizations using the criteria described in
Section 5.1.3 and the upscaling algorithm described in Section 3.

11: Solve the pressure equation on the coarsest level.

12: for L,L − 1, . . . , 2 do

13: Interpolate fluxes from level l to level l − 1 using formulas (3.9), (3.5).
14: end for

15: Define time step ∆tn using the saturation based criterion [10, Section 7.3].

16: Update the saturation.

17: n← n + 1; tn ← tn−1 + ∆tn.
18: end while

If we perform L− 1 levels of coarsening with the factor 2k on each level, the total
number of numerical operations Noper per a coarsest macro-cell is

Noper ∼

L−1∑

l=1

Nc(l)(n
3
c + n3

i ) =
L−1∑

l=1

22k(L−l)(26k + 2(3k+3)(2k − 1)3),

where Nc(l) = 22k(L−1−l) is the number of macro-cells on the l-th level.
Now we fix the total coarsening factor. Note that one level of coarsening with the

factor 2k corresponds to two levels of coarsening with the factor 2k/2 or to four levels
of coarsening with the factor 2k/4 and so on.

The estimation of Noper for different numbers of coarsening levels shown in Figure
3 demonstrates that the coarsening strategy based on the factor 2 in each direction
is the most efficient from computational point of view. In this case M−1

ii and S+

are symmetric 4 × 4 matrices. A similar conclusion regarding memory savings can
be made. The multilevel strategy based on the coarsening factor 2 in each direction
requires much less memory.
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Figure 3: Log of a computational work requires to generate local matrices for a macro-
cell consisting of 16× 16 fine-scale cells as a function of a number of coarsening levels
(L − 1) and a coarsening factor on each level (2k in each direction).

5 Numerical results

To demonstrate the effectiveness of the proposed multiscale method, we consider
two models of the permeability. In both models the permeability field is assumed
to be a highly heterogeneous scalar function constant on each fine-grid cell. The
first model uses realizations of layered media generated using the GSLIB software
package [13]. The second model is taken from the Tenth SPE Comparative Solution
Project. Specifically, we used the two-dimensional field defined by layer 68 of the
three-dimensional reservoir in model 2. As noted in [21], this is a fluvial layer that
provides a challenging test for multiscale methods.

We have three research goals. First, we analyze different coarsening strategies
and different total coarsening factors (Sec. 5.1.1 and 5.2). Second, we analyze how
frequency of updates of the coarsening parameters α’s impacts solution accuracy
(Sec. 5.1.1 and 5.2). Third, we analyze how solution accuracy is affected by accuracy
of α’s (Sec. 5.1.1).

To complete the definition of the two-phase flow model given in Section 2, we
define the the relative permeability curves as,

krw(S) = (S∗)2 kro(S) = (1− S∗)2 S∗ =
S − Swc

1− Swc − Sor

, (5.1)

where Swc is the critical saturation, and Sor is the residual saturation. We set Swc =
Sor = 0.1. In addition, the initial saturation is set to a constant, S(t = 0) = Swc = 0.1;
the phase viscosities are µw = 1 and µo = 4; and the porosity of the medium is
assumed to be constant, φ = 0.2. For all simulations we use no-flow boundary
conditions. The flow is driven by source and sink terms, which are considered as
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injector and producer wells with constant rates. The time is expressed in PVI (Pore
Volume Injected) units, which is a common practice in reservoir simulations.

To estimate the accuracy of the multiscale solution obtained using the proposed
M3 method (Algorithm 2), we define a reference solution. The reference solution is
computed by forming the MFD discretization (Section 2.2) on a mesh that is twice
finer, in each direction, than the fine-grid. We also define a fine-scale (or fine-grid)
solution which uses the MFD discretization on the fine-grid. For both the fine-scale
and reference solutions the pressure equation is solved with PCG to a tolerance of
εr = 10−8, and the IMPES time discretization approach is used to advance saturation.
The PCG solver is preconditioned with a single V(1,1) cycle of standard Ruge-Stüben
AMG [28] per iteration, and hereafter, will be refered to as PCG(AMG).

We focus our investigation of accuracy on three quantities that are important in
two phase flow simulations: water-cut, saturation in the production wells, and the
breakthrough time. The relative error in the saturation at the production wells, δS(t),
is defined as follows:

δS(t) =
|Sr(t)− S(t)|

Sr(t)
, (5.2)

where Sr(t) denotes the reference saturation. For strongly heterogeneous permeability
fields, the reference solution may be much closer to the continuum solution than the
fine-grid solution. Therefore, using it in (5.2) results in a more reliable estimate of
the simulation error.

We also choose several macro-edges in the domain and monitor the behavior of
the flux ratios on these edges as functions of time. In particular, we study how well
the computed flux ratio α approximates the exact αex. In addition, we study how
different parameters of the M3 method affect the quantities of interest.

5.1 GSLIB model

The fine grid is a 128x128 uniform partition of a square domain Ω = [0, 1000m]2. We
consider two heterogeneity scenarios for the permeability field generated such that the
log10(K) is normally distributed with mean zero and variance four. The correlation
lengths along the principle axes of statistical anisotropy are 0.8 and 0.04, leading
to a strongly layered structure with a dynamic range of approximately 6 orders of
magnitude. The average direction of high permeability layers is vertical in Scenario 1
and is rotated by 45◦ clockwise in Scenario 2 (see Fig. 4). Both scenarios represent
structures that are difficult to upscale. The source is located at the south-west corner
of Ω and the sink is in the north-east corner (see Fig. 5).

5.1.1 Simulations with fixed coarsening parameters α’s

The goal of the first group of experiments is to demonstrate that the accuracy of the
M3 method decreases very modestly with the number of levels, L. This is important
because using smaller coarsening factors, and hence more levels, improves the effi-
ciency of the method (see Section 4.2). Here we consider three coarsening strategies
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Scenario 1 Scenario 2

Figure 4: Two permeability fields generated by the GSLIB package: Scenario 1 (left)
and Scenario 2 (right).

D

C

B

A

Figure 5: Locations of the injector (×) and production (◦) wells and four monitored
macro-edges A, B, C, and D.

with a total coarsening factor of 8, and a 16× 16 coarsest mesh. Specifically we con-
sider a two-level method, c1 = 8, a three-level method, c1 : c2 = 4 : 2, and a four-level
method, c1 : c2 : c3 = 2 : 2 : 2.

At the initial time the fine-scale system (2.7) is solved with PCG(AMG) to a
tolerance εr = 10−8. This solution is used to determine the flux ratio α for each
macro-edge. The flux ratio is fixed for the rest of the simulation. The water-cut
curves and relative errors of saturation in the producer well are shown in Fig. 6.

The full scale water-cut curves shown in Fig. 6, (a1) and (a2), are in excellent
agreement with the reference solution for all three coarsening strategies. However,
differences are apparent in the zoomed water cuts shown in Fig. 6 (b1) and (b2), and
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in δS(t) shown in Fig. 6 (c1) and (c2). Specifically, the water cut for Scenario 1 (verti-
cal streaks) shows that as the number of coarsening levels increases, the breakthrough
time decreases. Moreover, for all coarsening strategies the shape of the water cut is
very similar to the fine-scale solution, while the reference solution has even earlier
but less abrupt breakthrough. In the simulation of Scenario 2 (streaks at 45 degrees),
the water cut for different coarsening strategies is still in excellent agreement with
the fine-scale solution. However, once again, the reference solution exhibits an earlier
breakthrough than the fine-scale solution. Nevertheless, the difference in the break-
through time between any of these coarsening strategies and the fine-grid solution is
less than the difference in the breakthrough time between the fine-grid solution and
the reference solution. This indicates that new M3 method has captured the multi-
scale nature of the fine-grid model very well, while the fine-grid model has not fully
resolved the continuum model.

Similarly, the relative error in the saturation, δS(t) is plotted in Fig. 6, (c1) and
(c2), and shows that over the majority of the simulation the error is less than 2%.
Note that the large peaks in δS(t) are due to small errors in the breakthrough times.
By definition (5.2) values of these peaks are bounded by 8.

In the next group of tests, we demonstrate that even with a large total coarsen-
ing factor, we obtain reasonable accuracy in the multiscale solution. Specifically, we
consider from four to seven levels, with ci = 2 on each level. This produces a total
coarsening factor that varies from 8 to 64, in each direction. The coarsening param-
eters, α, are determined as in the first group of tests; to a high tolerance, only at
the initial time. From the viewpoint of computational efficiency, there is no need to
use more than four to six levels for such small two-dimensional problems. However,
the experiments demonstrate that the M3 method produces a reasonable solution
even for a rather extreme total coarsening factor, and this may be necessary in real
large-scale models.

The water-cut curves and relative errors of saturation in the producer wells are
shown in Fig. 7. Here the full scale water-cut curves, (a1) and (a2), are in good agree-
ment with the reference solutions. In contrast to the previous tests, discrepancies are
noticeable in these plots for both scenarios with the 2× 2 coarsest mesh, and for Sce-
nario 2 with the 4×4 coarsest mesh. The zoomed water cuts shown in Fig. 7 (b1) and
(b2) indicate that the overall trend of earlier breakthrough with increased coarsening
has continued. However, there are interesting differences in the performance for these
scenarios, particularly for the coarsening strategy with a 2× 2 coarsest mesh. First,
with Scenario 1 (vertical layers), the overall shape of the water-cut is well approxi-
mated, despite its early breakthrough. In contrast, for Scenario 2 the breakthrough is
not significantly earlier than with the other coarsening strategies, and is in fact later
than the reference solution. However, the shape of the water-cut is more complex,
and is not tracked well beyond approximately 0.5 PVI. This problem is apparent
in the plots of δS(t) shown in Fig. 7 as well. Specifically, we see that for Scenario 1
the error is well below 5% for most of the simulation, while for Scenario 2, despite
achieving a good estimate of the breakthrough time, δS(t) ≈ 10% for 0.2– 0.4 PVI
time range. Thus, in order for the M3 method to achieve the desired robustness and
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Figure 6: Comparison of three coarsening strategies for Scenario 1 (left column) and
Scenario 2 (right column): water-cut curves (a1, a2), zoom of water-cut curves near
the breakthrough time (b1, b2), and relative saturation error δS(t) in the producer
well (c1, c2).
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accuracy with a large total coarsening factor and over a broad class of problems, the
temporal dependence of the coarsening parameters must be addressed.

5.1.2 Simulations with updated coarsening parameters α’s

In the previous section, the coarsening parameters α were computed very accurately
but only once, at the initial time step. In this section, we propose to perform a
similar amount of the computational work but to distribute it more uniformly across
the whole simulation. More precisely, instead of solving the fine-scale problem very
accurately (εr = 10−8) at the initial time step, we solve it approximately (εr =
10−1 − 10−2) several times during the simulation. This approach provides a flexible
strategy for controlling the accuracy of α’s and, in turn, the accuracy of the multilevel
solution.

The total computational work required to compute the α’s depends on the fre-
quency of the updates and the convergence tolerance, εr. The convergence rate of the
PCG(AMG) iteration is bounded well below one independent of the mesh size, and
is dominated by the heterogeneous structure of the absolute permeability. Conse-
quently, the number of PCG(AMG) iterations required to achieve the tolerance εr, is
essentially fixed independent of time. In addition, the total amount of work is always
controllable, and is significantly less than solving the fine-scale model. Thus, the
trade-off between accuracy and efficiency in the M3 method has significantly greater
potential to be monitored and controlled than typical upscaling methods.

Different update strategies for α can be realized. In this section we demonstrate
the importance of these updates using the simplest strategy: the flux ratios are
updated 10 times in equal time intervals of 0.15 PVI. We consider four macro-edges
located at points A, B, C, and D (see Fig. 5) and study the time behavior of the
flux ratios for the fine-grid and multiscale solutions. The results are shown in Fig. 8,
where it is clear from the fine-scale solution that rapid variations in the flux ratio of
approximately 10% occur as the saturation front passes through these macro-edges.
Moreover, the extent to which the flux ratios return to their initial values (the level
line marking the non-updated case) depends on the location as well as the local flow
characteristics. The stair-step approximation that we obtain with 10 equally spaced
updates is shown for two different values of the convergence tolerance, ε = 0.1 and
ε = 0.01.

To demonstrate the weak influence of the convergence tolerance we perform two
simulations for each scenario that differ only in the value of εr, namely 0.1 and 0.01.
In particular, we consider a six-level method, which has a 4× 4 coarsest mesh. The
resulting water cuts and relative errors in saturation are shown in Fig. 9. Here we
see that even this simple update strategy has significantly improved the multiscale
solution for Scenario 2 (45◦ layering). Specifically, with updates δS(t) has been re-
duced by about a factor of two, to approximately 2.5%, in the 0.2 – 0.4 PVI time
range. In addition, we see that solution with updates tracks the water cut much
more closely, than the solution without updates. The differences for Scenario 1 are
less pronounced but still apparent in the left column of Fig. 9. Most important, the
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Figure 7: Dependence on the size of the coarsest mesh for Scenario 1 (left column)
and Scenario 2 (right column): water-cut curves (a1, a2), zoom of water-cut curves
near the breakthrough time (b1, b2), and the relative saturation error δS(t) in the
producer well (c1, c2).
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Figure 8: The flux ratios for the fine-scale solution and the multilevel solutions with
flux-ratio updates on macro-edges A, B, C, and D. Left column corresponds to Sce-
nario 1, Right column corresponds to Scenario 2.
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Figure 9: Dependence on the residual convergence factor εr. The flux ratios are
updated every 0.15 PVI. The top row shows water-cuts for Scenario 1 (left) and
Scenario 2 (right). The bottom row shows the relative saturation error in the producer
well.

multiscale solutions generated with εr = 0.1 and εr = 0.01 are virtually indistinguish-
able. Thus, the design of the M3 method, along with the robust AMG preconditioner
underpinning the solver, allows a weak convergence tolerance to be used. Moreover,
after the initial time there is some level of error in the saturation. Consequently, even
if α is updated with εr = 10−8, the result would differ from those associated with the
fine-scale solution.

In Fig. 10 we set εr = 0.1, which corresponds to approximately 3 PCG(AMG)
iterations, and consider several different levels of coarsening. Although, improvements
in the solution are obtained for all coarsening strategies, it is apparent these updates
increase in importance with the number of levels. Specifically, in Scenario 2 the
temporal updates drive the water cut of the multiscale solutions back toward the fine-
scale solution. The magnitude of these temporal bumps increases with the coarsening
level, suggesting that we should consider increasing the frequency of these updates in
conjunction with more extreme coarsening.
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Figure 10: Dependence on the number of coarsening levels. The flux ratios are
updated every 0.15 PVI. The residual convergence factor is ε = 0.1 (3 PCG iterations).
The top row shows water-cuts for Scenario 1 (left) and Scenario 2 (right). The bottom
row shows the relative saturation error in the producer well.

5.1.3 Adaptive calculation of subgrid matrices

The computational complexity of the M3 method was analyzed in Section 4.2 and
focused on the construction of the matrices M−1

ii and S+ for the macro-cells. These
matrices depend on the geometry of the fine-scale cells, the media properties (total
mobility and absolute permeability tensor), and the coarsening parameters. Since,
the geometry and the absolute permeability tensor are assumed to be constant in
time, temporal adaptation of the M3 method is focused on the total mobility and the
coarsening parameters. The coarsening parameters are updated very infrequently, ap-
proximately every 5, 000 time steps in the previous GSLIB Scenarios (Section 5.1.2).
At these isolated time steps, all matrices are recomputed. Therefore, the total mobil-
ity is the primary parameter that facilitates adaptive computations of local matrices.

The total mobility varies in time and space; however, it changes significantly in
the vicinity of a sharp water front. The essential idea of the adaptive approach is to
update local matrices only for those macro-cells where a change of the total mobility
is relatively large. We implemented the update criteria proposed in [19]. Specifically
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we use the condition,
1

1 + ελ

<
λn

λn−1
< 1 + ελ , (5.3)

where λn is total mobility at time steps tn and ελ is a user-defined threshold. If this
condition fails for any sub-cell of a particular macro-cell then the corresponding local
matrices are updated. Thus, the smaller ελ, the larger the number of matrices that
will be updated. This rule is implemented on all levels of the hierarchy.

Numerical experiments with the M3 method suggest that if ελ ≈ 0.1, then the
adaptive strategy does not introduce significant errors in the multiscale solution.
These results are consistent with the results presented in [19]. Furthermore, with
ελ = 0.1 a significant savings in computational work is achieved. To characterize
this savings, let Tpr and Ttr be the times required to solve the pressure and trans-
port equations, respectively, in computing the fine-scale solution. For the problems
described in this section,

Tpr ≈ 5Ttr.

Next, let Tms be the time required to solve the pressure equation with the M3 method
using four levels and c1 : c2 : c3 = 2 : 2 : 2. Note that due to the small size of the
fine-scale model, increasing the number of levels further does not significantly reduce
the cost of the pressure solve. The numerical tests show that

Tpr ≈ 2.5Tms.

The effectiveness of the adaptive strategy depends on the time step. For larger time
steps, the mobility changes more significantly and hence the larger the number of local
matrices that must be updated. In our experiments, the adaptive strategy speeds
up the pressure solver approximately 20 times with respect to the full multiscale
algorithm:

Tpr ≈ 2.5Tms ≈ 50Tadp,

where Tadp is the time required to solve the pressure equation with the adaptive M3

method. For larger problems the speed up is even larger.
In general, the time required to update the coarsening parameters α should be

considered as well. However, in our experiments these updates are very infrequent,
and as a result, have no appreciable impact on the total simulation time.

5.2 SPE 10th Model

In this section, we consider a more realistic model from the upscaling benchmark
tests in the Tenth SPE Comparative Solution project. Here, we focus on layer 68 of
the three-dimensional reservoir. The absolute permeability field is shown in Fig. 11,
where the high permeability channels of this fluvial layer are clearly visible. The
dynamic range of the absolute permeability is approximately 6 orders of magnitude,
as it was for the GSLIB examples.

We consider the classic five-spot well configuration with the injector in the middle
of the domain and the producer wells at the corners (see Fig. 11). The fine-scale
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geological model is a Cartesian grid with 60 × 220 cells, and the two-phase flow
parameters are defined at the beginning of Section 5. We assume that the rates of
the injector and producer wells are constant, with each producer accounting for one
quarter of the injected fluid. Although, this assumption is not physically realistic, it
allows us to evaluate the new multiscale method without the additional complication
of well modeling, which is beyond the scope of this paper. Moreover, the algebraic
nature of the M3 method provides a natural mechanism to incorporate different well
models, and this will be explored in the future.

A

B D

C

E

F H

G

Figure 11: the left picture shows the permeability field of the layer 68 in the SPE
10th model. the right picture shows locations of the injector well (×) and producer
wells A, B, C, and D (◦). The monitored macro-edges (•) are located at points E, F,
G, and H.

In the first group of tests, as in Section 5.1.1, we demonstrate that the M3 method
produces reasonably accurate solutions even with a large total coarsening factor and
many levels. Specifically, we consider the total coarsening factors 8, 16, and 32 in
each direction, which correspond to methods with 4, 5, and 6 levels, respectively. In
fact, in the case of 6 levels, the coarsest mesh in the M3 method is 2× 7 macro-cells.
This is approximately a factor of 3 coarser in each direction than most upscaling
studies of this SPE benchmark. We note, that since the fine-grid dimensions are not
powers two, rectangular macro-cells are introduced as needed along the boundaries.
The coarsening parameters, α, are determined as in Section 5.1.1; to a high tolerance,
only at the initial time.

The full scale water-cut curves for the four producer wells are shown in Fig. 12.
Overall the water-cut obtained with the different coarsening strategies is in good
agreement with the fine-scale solution. However, small visible discrepancies suggest
similarities with the previous GSLIB based Scenario 2 case (45◦ layering). Specifically,
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Figure 12: Water-cut curves for total coarsening factors 8, 16, and 32 at producers A
(top-left), B (top-right), C (bottom-left), and D (bottom-right).

the water-cuts for producers A, B, and C have noticeable temporal structure. Once
again, since the spatial structure of the highly permeable flow channels is not aligned
with the grid, the single-point upwind advection scheme is stressed. Moreover, the
larger total coarsening factor is the less accurate multiscale solution is obtained. To-
gether these factors produce a noticeable drift and damping of the temporal structure,
which is most apparent in the six level multiscale solution.

To highlight these features of the multiscale solution, Fig. 13 shows zoomed relative
errors of saturation at producer A, which has the largest δS(t), and producer D, which
has the most uniform and smallest δS(t). As expected, the errors increase modestly
with the number of levels, but are most pronounced shortly after breakthrough in
producer A. In fact, for the six-level case, the breakthrough time is well approximated,
yet the relative error in saturation is approximately 10% in the 0.1 PVI following
breakthrough, and slowly drops below to less than 5% around 0.3 PVI. Thus, to
achieve the desired accuracy and robustness we must address the temporal dependence
of the coarsening parameters.

It is important to note that, in general, the multiscale solution cannot be uniformly
more accurate than the fine-scale solution over the entire domain and throughout the
entire simulation time. However, localized anomalies will naturally arise through the
fortuitous cancellation of errors. For example, for producer A, between approximately
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0.3 and 1.2 PVI the multiscale solutions based on 4 and 5 levels appear to be more
accurate than the fine-scale solution. While errors elsewhere, at producer D for
example, increase modestly and monotonically with the number of levels.
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Figure 13: Relative error of saturation at producer A (largest relative error) and at
producer D (smallest relative error) for total coarsening factors 8, 16, and 32.
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Figure 14: Relative error in saturation at producer A (largest relative error) and at
producer D (smallest relative error) for the different number of updates. The coarsest
mesh consists of 7× 2 macro-cells. The convergence tolerance is εr = 0.01.

To reduce the errors and improve robustness, particularly for the simulations with
the large total coarsening factors, we update the coarsening parameters in time. We
focus this study on the the six-level case, with a total coarsening factor of 32. As in
Section 5.1.2 we use the simple strategy of uniform updates in time, and study the
performance of the M3 method with 10, 20, 50 and 100 updates. This corresponds
to very infrequent updates of the coarsening parameters, approximately ranging from
every 5, 000 to every 500 time steps. The convergence tolerance, ε = 0.01 is used and
corresponds to approximately 5 PCG(AMG) iterations per update.

The relative error in saturation for producers A and D with different numbers of
updates, are shown in Fig. 14. The general trend is as expected, the more frequent
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the updates of α, the more reliably the multiscale solution approximates the fine-scale
solution. A problem area worth noting is the relative error in saturation at producer
A in the first 0.1 PVI after breakthrough. Here, 10 updates does not have a significant
impact on the error, but 20 updates reduces the peak error (at about 0.18PVI) down
below 10%. With 100 updates not only this peak is reduced but the multiscale
solution exhibits a nearly uniform error of approximately 5%, which is comparable to
the fine-scale solution. Moreover, the error at later times is converging to the fine-
scale error with fewer anomalous regions over which the multiscale solutions appear
more accurate. Similar improvements are observed in producer D. Here, the error
was well behaved even without updates, but was steadily around 5% at later times.
Once again, 10 updates does not have a significant impact in the first 0.1 PVI after
breakthrough. However, once again, with 100 updates, the error after breakthrough
quickly drops below 2.5%.

To highlight further that these weak tolerance updates enable the multiscale so-
lution to better approximate the fine-scale solution, we plot the flux ratios for four
macro-edges, E, F, G, and H of Fig. 11. in Fig. 15. First, it is apparent that significant
deviations of approximately 10% from the initial flux-ratio occur as the saturation
front passes through each macro-edge. In the case of 10 updates, only macro-edge E,
which has the slowest and smoothest evolution of α, is well approximated by these
updates. For the other macro-edges, the updates generate a lagged profile that may
completely step over features, such as the drop in α around 0.4PV I for macro-edge F.
As noted in the previous section, it is the error in the saturation that dominates the
error in the flux ratios, and hence, decreasing εr will not improve the accuracy of the
flux ratios or the multiscale solution. Although, we note that the long time behavior
is captured well even with 10 updates. Thus, it is not surprising that we observed a
marked improvement in the error in saturation at later times (Fig. 14), even with only
10 updates. However, to improve the accuracy of the multiscale solution shortly after
breakthrough, it is apparent that more frequent updates are required. In particular,
the faster features are not better resolved with 20 updates (approximately every 0.1
PVI). Consequently, we did not observe a significant improvement in the accuracy for
any of the producers shortly after breakthrough (Fig. 14) using only 20 updates. In
fact, 100 updates were necessary (approximately every 0.02 PVI) to drive the error
in producer A below 5% for all times after breakthrough, which is comparable to the
error present in the fine-scale solution.

Thus, developing update strategies that adequately resolve important fine-scale
temporal features is critical to achieving a specified level of accuracy in the quantities
of interest. Moreover, the overall computational efficiency of the M3 method is main-
tained because a weak convergence tolerance on the PCG(AMG) algorithm delivers
sufficient accuracy in the coarsening parameters.
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Figure 15: The comparison of the flux ratios obtained with different update frequen-
cies.

6 Conclusions

We developed a new multilevel multiscale mimetic (M3 ) method for the IMPES time
discretization of two-phase flow models. In this formulation, the solution of the pres-
sure equation on each time step is the dominant part of the simulation cost. Hence,
a critical component of the M3 method is the new multilevel coarsening algorithm for
this equation. This algorithm brings together the recently proposed subgrid modeling
algorithm with the algebraic multigrid for accurate calculation of the flux coarsening
parameters. Through a sequence of algebraic manipulations, this algorithm generates
a hierarchy of pressure equations that all have the same form. By design, the solu-
tion on all levels of the hierarchy is locally mass conservative independently of the
accuracy of the coarsening parameters. Thus, on each time step, we first solve the
pressure equation on the coarsest level and then interpolate the solution to obtain
the fine-grid fluxes that are needed to advect the saturation.

Although, the basic elements of this approach are similar to existing multiscale
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methods, there are important features that set it apart. To explore these new features
and demonstrate the accuracy of the M3 method we considered two models of highly
heterogeneous permeability fields. In these numerical experiments we showed that
M3 is a truly multilevel method that is designed to use many levels and to enable
large total coarsening factors. Specifically, we used up to seven levels and coarsening
factors up to 64 in each direction. In contrast, typical studies consider a two-level
approach with a coarsening factor of approximately 10 in each direction. Moreover,
even with this large coarsening factor we obtained good accuracy in the water-cut
and relative error in saturation at the producer wells.

The M3 method uses a robust and efficient multigrid algorithm that naturally
incorporates global flow information into estimates of the coarsening parameters α.
When these parameters were computed very accurately only once, at the initial time
step, the multiscale solution with many levels in the hierarchy still estimated the
breakthrough time quite well. However, temporal features of multiscale solution
tended to drift and be damped after breakthrough, producing relative errors in sat-
uration of approximately 5 − 15%. The new method readily addresses this problem
by updating the α’s infrequently throughout the simulation. Specifically, we use
PCG(AMG) iterations with a convergence tolerance εr to update of α. We demon-
strated that with this multigrid approach, we achieved the required accuracy in α,
even with a weak convergence tolerance. Moreover, we observed that using more fre-
quent updates, even with this weak convergence tolerance, generated a more reliable
approximation of the fine-scale solution. For example, in the SPE benchmark updat-
ing 100 times (every 0.02 PVI or approximately every 500 time steps) with εr = 0.01
reduced the error in producer A to below 5% throughout the simulation. This level
of error, relative to the reference solution, is comparable to the error in the fine-scale
solution. Yet, the cost of these updates is a negligible part of the overall simulation
cost.

In the future, we are interested in treating more general distorted and unstruc-
tured polyhedral grids and well models for three dimensional reservoirs. Also, further
gains in efficiency may result from incorporating the estimation of the coarsening
parameters α directly into the hierarchy of first-order models, possibly by exploiting
a connection to a smoothed aggregation based AMG method.

Acknowledgments

This work was carried out under the auspices of the National Nuclear Security Ad-
ministration of the U.S. Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396 and the DOE Office of Science Advanced
Scientific Computing Research (ASCR) Program in Applied Mathematics Research.

33



References

[1] J. E. Aarnes. On the use of a mixed multiscale finite element method for greater
flexibility and increased speed or improved accuracy in reservoir simulation. Mul-
tiscale Model Sim., 2(3):421 – 439, 2004.

[2] J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale finite elements and
streamline methods for reservoir simulation of large geomodels. Adv. Water
Resour., 28(3):257 – 271, 2005.
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