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The problem of a single, polarized, laser pulse propagating as a travelling wave in an anisotropic, cubically nonlinear, lossiess
medium is investigated as a Hamiltonian system. This Hamiltonian system describes the travelling-wave dynamics of two nonlin-
early coupled complex laser modes. Invariance of the Hamiltonian function under changes of phase of the complex two-compo-
nent electric field amplitude reduces the phase space to the two-sphere, S?, on which the problem is completely integrable. The
fixed points and bifurcations of the phase portrait on S? are studied as the beam intensity and medium parameters are varied, and
homoclinic and heteroclinic connections are identified in each parameter domain. Horseshoe chaos is analytically shown to arise
when the optical parameters of the medium are perturbed due to spatially periodic inhomogeneities, by using the Melnikov
method. The resulting sensitive dependence on initial conditions has implications for the control and predictability of nonlinear

optical polarization switching in birefringent media.

1. Introduction

Nonlinear effects in intense polarized light beams
have been studied for nearly three decades, since the
invention of the laser. For instance, the precession
of the polarization ellipse for a laser beam in a non-
linear medium is demonstrated in ref. [1]. More re-
cently, dynamical systems methods have begun to be
applied to the study of the potentially chaotic be-
havior of intense travelling-wave optical pulses. For
example, polarization bistability in an isotropic me-
dium and numerical evidence for chaos in the po-
larization dynamics of travelling waves are discussed
in ref. [2]. Interpretations of some experimental op-
tical data in terms of chaotic behavior in travelling-
wave optical pulses are also given in ref. [3]. How-
ever, a complete analysis of the polarization dynam-
ics for travelling-wave optical pulses has remained
open until now.

This paper treats optical polarization dynamics,
using the Stokes description [4] for a single laser
pulse propagating as a travelling wave in an aniso-
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tropic cubically nonlinear lossless medium. Hamil-
tonian methods are used to reduce the phase space
C* (the two-component, complex-vector electric field
amplitude) for the travelling-wave dynamics to the
spherical surface S° (the Poincaré sphere). Bifur-
cations of the phase portrait on S? as functions of
material properties and beam intensity, are deter-
mined, and homoclinic and heteroclinic orbits con-
necting hyperbolic fixed points are identified. These
homoclinic and heteroclinic orbits are separatrices
(i.e., stable and unstable manifolds of hyperbolic
fixed points) which separate regions on S? having
different types of periodic behavior in the travelling-
wave frame. Under spatially periodic perturbations
of the medium parameters, the separatrices are shown
to tangle and produce a Smale horseshoe in the Poin-
caré map induced from this periodic perturbation.
The presence of this tangle is diagnosed via the Mel-
nikov method, which identifies intersections of these
separatrices and estimates the width of the tangled
region on S°. The analysis presented here character-
izes the location of the chaotic set, or stochastic layer,
on the Poincaré sphere and the dependence of its
width on the material parameters, spatial modula-
tion amplitude and wavelength, and the optical beam
intensity.

29



Volume 138, number 1,2
2. Problem formulation

Propagation of an optical travelling wave pulse in
a cubically nonlinear medium 1s described by the fol-
lowing system of equations [5,6],

ia_;e/ =X[‘A])€A+3X/(A]I;>n€k€/€:7- (21)
where 7 i1s the independent variable for travelling
waves, J, k, [, m=1, 2, and the complex two-vector
e= (e, ¢,)TeC? represents the electric field ampli-
tude. The complex susceptibility tensors x4’ and
7'3), parametrize the linear and nonlinear polariz-
ability, respectively. Far from resonance and in a
lossless medium, the susceptibility tensors are con-
stant and Hermitian in each e—e* pair and 3’ pos-
sesses a permutation symmetry:

X/(A] ) =X/(\11 * - X;/}/))I =XI(\'/3»)17 s

X/l/\}//)n =Xf()?k)// :X/(/;\I)n . (22)
Hence, we may write the system (2.1) in Hamilto-
nian form as

de,Jdt=1e, H} = —i0H/de* .

— a1 3 a3
H:é’f‘,k )ek+§€rek‘/(l\/))n€/e?;a . (23)

-

In addition, the intensity, r=|e| = e | +|e.]", is
conserved. We introduce the three-component Stokes
vector, u, given by (see ref. [7]) u=e} (o) €, with
o= (0,, 0., 03), the standard Pauli matrices. The
travelling wave equation (2.1) then becomes

du

a:(b+W-u)><u, b=a+|u|c=a+rc, (2.4)
where the constant vectors @ and ¢, and the constant
symmetric tensor W, are given by

a= (o)’ e=3(a) il -
W——_%(G)/\/X/(/?/I))I(J)/l” :diag(i,, )“2« 11) . (25)

The material parameters &, ¢, and W are all real. Ac-
cording to eq. (2.5), the parameters @ and ¢ repre-
sent the effects of linear and nonlinear anisotropy,
respectively. They lead to precession of the Stokes
vector # with (vector) frequency b. The tensor W is
symmetric, so a polarization basis may always be as-
sumed in which W is diagonal, W= (4, 4., 4;), in
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analogy to the principal moments of inertia of a rigid
body.

In terms of the Stokes parameters, u, the Hamil-
tonian function # in eq. (2.5) may be rewritten as

H=b-u+iu-W-u (2.6)

and the equations of motion (2.9) may be expressed
in Hamiltonian form as du/dr={u, H}, by using the
Lie-Poisson bracket {F, G}:=u-VF(u)xXVG(u)
written in triple scalar product form, just as in the
case of the rigid body. The intensity r= |u| is the
Casimir function for this Lie—Poisson bracket. That
is, r Poisson-commutes with all functions of u when
the above Lie~Poisson bracket is used; so the inten-
sity » in the Stokes description of lossless polarized
optical beam dynamics may be regarded simply as a
constant parameter. (See ref. [8] for discussions and
references concerning Lie—Poisson brackets and their
usage, for example, in the study of Lyapunov sta-
bility of equilibrium solutions of dynamical systems. )

Solving the system (2.4) when (a) two eigenval-
ues of W coincide, and (b) one or more of the com-
ponents of & vanish, can be done easily for two cases
which are inequivalent under cyclic permutations of
indices of u. In the first case, we set W= diag(!.
1.2) and b=(b,, b-. 0): eqgs. (2.4) then read

du du-

_drl =(b—wu-)us . 7d{ =(wu,—b)Hu, .

du

‘d—;‘ :blug—hzll] . (2.7)

Hence. a Duffing equation emerges for u,

du N
dr; =Au;(B—u3) .
) I(hI+ b2
A:%wﬁ Bzﬂ_rl_ﬂb_—_)~ (2.8)

w w?

The other two components of # may be determined
algebraically from the two constants of motion r and
H. When B increases through zero, the Duffing equa-
tion (2.8) develops a pair of orbits, homoclinic to
the fixed point u; (see, e.g.. refs. [9] and [107]).
Likewise, in the second case, we set W=wdiag(l. 1,
2) and b= (b, 0, b3): eqs. (2.4) then become
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du d .

d—;=—b3u2—wu2u3, d—i_’:bz—(b1 sin ¢+ b; cos p) cot 6

d —r(A, sin’p+4i;cos’p—24,) cos 8. 2.12

G ot it~y F(4, sin’p+2; cos’p—15) (2.12)
H The system (2.9) is completely integrable, since it is

dus b 59 a one-degree-of-freedom Hamiltonian system. Its so-

dar 1 (2.9) lutions are expressible in terms of elliptic integrals.

Hence, provided b, # 0, we find
d*us
dr?
A =by(H-iwr*), B =wH-iw*r*—bi-b3,

(2.10)

=A'"+B'us +C'u3+D'ui,

C'=—30b;, D'=—iw’.

Thus, the polarization dynamics for this case re-
duces to the motion of a particle in a quartic poten-
tial, whose solution is expressible in terms of elliptic
integrals. Again, the components #, and #, may be
determined algebraically from the two constants of
motion, r and H. We shall return to these two cases
later, when we discuss the effects of perturbations.
For now, these cases suffice to demonstrate that the
system (2.4) possesses bifurcations in which ho-
moclinic orbits are created.

The system of equations (2.9) further reduces the
Poincaré sphere X, of radius r upon transforming to
spherical coordinates

(uy, u>, u3)=(rsin @ sing, r cos 6, r sin 6 cos @) .

In these coordinates, the reduced Hamiltonian func-
tion (2.6) and the symplectic Poisson bracket on X,
are expressible as

=1r?[ (A, sin’p+1; cos2p) sin’6+ 4, cos?6]
+rsin @ (b, sin p+b; cos ¢) +b,rcos 6,

_14F 4G

(F, G} = 1o L

rdpdcosf rdpdcosf’

(2.11)

and the equations of motion are
do

— =b, cos ¢p— b5 sin

dr 1 P—0381n @

+ (A, —4;3)rsin cos g sin ¢,

3. Bifurcation analysis

We now specialize to the case of a non-parity-in-
variant material with C, rotation symmetry about
the axis of propagation (the z-axis), for which ma-
terial constants take the form W= (4,, 4,, A3) and
b= (0, b, 0). (See ref. [11] for details of what fol-
lows.) We also introduce the following parameters,

Ar—4, b,

“damd,. A= g2
H=hamhe, A=y B=raT

(3.1)

In this case, the Hamiltonian in (2.11) and the
equations of motion become

H=4pu[(r*—u?) cos’o+u’+2prul+42,r%,

(3.2a)
du 2 2 .
—=u(r’—u*) cos @sin ¢, (3.2b)
dr
de R
% =u[Br—(cosp—A)u}, (3.2¢)

where u= rcos . We construct the phase portrait of
the system and explain how this portrait changes as
the parameters in the equations vary. The fixed points
of (3.2b,c) are easily located and classified, using
standard techniques. We list them in table 1, for z#0.
The special case where u=0, i.e., A;=A1,, requires a
separate analysis. In that case, the right-hand side of
(1.4a) vanishes identically so that the set of fixed
points of the system is the circle

b, B

OO =) Th

The phase portrait depends on two essential param-
eters, A and f, or equivalently, 1,—A, and b,/r. Bi-
furcations of the phase portrait occur when the in-
equality constraints in the third column of table |
become equalities; hence we observe that the pairs
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Table 1
The fixed points of system (3.2) and their types.

Fixed point Coordinates Constraint Saddle Center

F p=0 cos 6=4/(1-1) s s . .

B o= cos 0=/ (1—4) Br<(1=4) A1 i<l

L p=mn/2 cos 6= — B/ A s i R

R o= —1/2 cos = — B/ B<A £<0 />0

N cos’p=i+f 9=0 - fe(—A 1=1) Bé(—i 1=4)

S cos’p=A—f f=n - Be(A—1,4) Be(i—1,4)

of fixed points (F, B) and (L, R) appear or vanish
as the lines f=* (1 —-A1) and f= %1 are crossed in
the (A, ) parameter plane (see fig. 1). The (4, f)
parameter plane is partitioned into nine distinct re-
gions separated by four critical lines that intersect in
pairs at four points. Typical phase portraits corre-
sponding to each of these regions are shown in fig.
2. Note that the phase portraits of the unperturbed
system (3.2b,c) are invariant under the following
discrete transformations:

gLt

p—optn, 0-n—0,f->—4;

P9I n/2, A-1—4, -8
p—ootn/2, As1-4,60->1-0.

Thus, as far as the configurations of critical orbits on
the phase sphere are concerned, it will be sufficient
to consider the quarter plane given by A< and >

B=-n B=1-% B=2 f=2-1

AB

\ Ao

Fig. 1. The parameter plane and its bifurcation lines.

0, i.e., to restrict attention to regions 1, 2, 4, and 5.
Although no bifurcations occur when the A-axis (=0
in the parameter plane) is crossed (except for A=0,
and A=1, the set of fixed points does not change).
this line is nevertheless special. Indeed, in the inter-
val Ae (0, 1), i.e. within region RS, both poles are
hyperbolic, each one of them being attached to a pair
of homoclinic loops. When f vanishes, these ho-
moclinic loops merge together so as to form four het-
eroclinic lines (and thus four heteroclinic two-cycles)
connecting the north and south poles together. On
the A-axis the polarization dynamics reduces to that
of the rigid body. In that case, the phase portrait con-
sists of the poles N and S, and the four other points
are located on the equator of S? (this configuration
of fixed points distributed on the equator is obtained
only on this line ). Two of these, (N, S) or (F, B} or
(R, L), are unstable while the other four are stable;
which pair is unstable is decided by the value of
A=(A—2,)/(A3—4,). The pair (F, B) is hyper-
bolic when O</i<1, and (R, L) are hyperbolic
whenever 4> 1; in each of these cases, the unstable
direction is specified by the A, which is neither the
least nor the greatest among the three.

Bifurcations taking place as the beam intensity is
varied are those occurring along a vertical line in the
parameter plane; we present a list of the seven pos-
sible sequences (see ref. [11] for an exhaustive list
of the bifurcations that may take place in the phase
space when travelling along these lines):
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Regionl

/ A=12,B=1

Region 2 Region 3
A =0, p = cos(/8) A =1,B = cos(r/8)

Region 4 Region § Region 6
A =-1,B = cos(3n/8) A =172, B = cos(3/8) A =2, p=cos(3n/8)

Region 7 Region 8
A =0,B= cos(7n/8) A =1,B=cos(Tn/8)

Region 9
A=12,B=-1

Fig. 2. Phase portraits of system (3.2).

S;: 2<0  RI<R2< R4+ R7—RY Ss: l<i<l RI<-R3<R5<R8<R9
S;; A=0  R1—R2<R7+<RY Se: A=1 Rl < R3 < R8 < RY

S;: 0<i<} RI1+<R2<R5<R7-R9 S;: A>1 Rl <R3+ R6 <> R8 < RY
S;: A=} Rl < R5 < R9
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4. Homoclinic chaos

In this section, we consider spatially periodic
modulations of either the circular-circular polari-
zation self-interaction coefficient 4, in W or the op-
tical activity b,. In each case, when the unperturbed
medium satisfies the additional condition A,=4, the
Melnikov technique [9,10,12] leads to an analyti-
cally manageable integral for the Melnikov function,
which is shown to have simple zeros. In this way,
horseshoe chaos is predicted in the dynamics of the
single Stokes pulse. We also discuss the physical im-
plications for measuring this horseshoe chaos in an
experimental situation.

We concentrate on the north pole u,=1, p=¢,,
with cos?g, =4+ f, and evaluate the conserved Ham-
iltonian at this point to find a relation between u and
» on the homoclinic orbit,

2b,

=" A(coste—7) (b

which, when substituted into the equation of motion
for ¢, gives

d

—q):ur(cosz(p—cosz(po) . (4.2)
dr

Upon integrating (4.2) we obtain (with t=z+u1, the
travelling-wave variable)

=4 ursin 2¢, . (4.3)

Substituting this formula into (4.1) gives an ana-
lytical expression for # on the homoclinic orbit:

% 1 —cos’gy sech?(t
cos’g, tanh2{t— A (1 —cos g, sech?(t) ’

(4.4)

We consider a periodic perturbation of the eigen-
value A, and the optical activity b,, that is,

Ab=A,=¢€cosvz, by=b,+e,cosvz, (4.5)

where €, ,<< | and v is the modulation frequency.
Then from (2.6) the perturbation Hamiltonian is

H'=ju,(€ 1, +26) cosvz, (4.6)
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and we easily calculate the Poisson bracket of this
perturbation with the unperturbed Hamiltonian:

{H°, H')=—pusingcosp (r*—u’)u,cosvz, (4.7)

which when formally integrated becomes the Mel-
nikov function

M(t)=p J sin (1) cos ¢(1) [r*—u’(1)]

X (e, us+te)cos[v(t—1y)] dr, (4.8)

where 7o=ut. In the particular case A,=43, this in-
tegral is manageable and can be found in standard
tables. Hence,

2np?
b3

X{r(er+e)+ier’[cos’po+ (v/2b:)°1}

Xcsch(L) sin ¥71, , (4.9)
ur sin 2,

which clearly has simple zeros as a function of 1,
implying horseshoe chaos (see, e.g., refs. [9] and
[10]). When the Melnikov function has simple ze-
ros, the dynamical evolution of a rectangular region
near the homoclinic point shows (under iteration of
the Poincaré map induced from the periodic pertur-
bation) that the region is folded, stretched, con-
tracted, and eventually mapped back over itself in
the shape of a horseshoe. This horseshoe map is the
underlying mechanism for chaos. As the horseshoe
folds and refolds, the rectangular region of phase
points initially lying near the homoclinic point de-
velops a Cantor set structure whose associated Poin-
caré map can be shown to contain countably many
unstable periodic motions, and uncountably many
unstable nonperiodic motions. (See ref. [10] for the
methods of proof of these statements and further de-
scriptions of homoclinic tangles.)

A/[(TO) =

5. Conclusions

Physically, the horseshoe chaos in the case of a pe-
riodically perturbed single Stokes pulse corresponds
to intermittent switching from one elliptical polari-
zation state, to another one whose semimajor axis is
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approximately orthogonal to that of the first state,
with a passage close to the unstable circular polari-
zation state during each switch. This intermittency
is realized on the Poincaré sphere by an orbit which
spends most of its time near the unperturbed figure
eight shape with a (homoclinic) crossing at the north
pole (circular polarization) in fig. 2. Under periodic
perturbations of either the W-eigenvalues or the op-
tical activity b,, this orbit switches deterministically,
but with extreme sensitivity to the initial conditions,
from one lobe of the figure eight to the other each
time it returns to the crossing region near the north
pole where the homoclinic tangle is located. Thus,
for the one-beam problem we predict intermittent
and practically unpredictable switching under spa-
tially periodic perturbations of the material param-
eters, as the optical polarization state passes through
a homoclinic tangle near the circular polarization
state.

From considerations of the special case in which
the Duffing equation (2.8) appears, one could have
expected homoclinic chaos to develop for nonlinear
optical polarization dynamics. Indeed, a related spe-
cial case is studied numerically by Wabnitz [13] #'.
As opposed to such numerical studies, our analytical
treatment explores the bifurcations available to the
polarization dynamics under the full range of ma-
terial parameter variations, demonstrates that the
horseshoe construct is the mechanism driving the
chaotic behavior, and characterizes the location of
the chaotic set, or stochastic layer, and the depen-
dence of its width on the material parameters, mod-
ulation frequency, and optical beam intensity.

In the cases under consideration, this stochastic
layer is bounded by KAM (Kolmogorov—Arnold-
Moser) curves on the Poincaré sphere, inside of
which the travelling-wave dynamics is regular and
orbitally stable. For a given choice of beam and ma-
terial parameters, these KAM curves define phase
space regions where chaotic behavior (for example,
sensitive dependence on initial conditions, or orbital
instability) may be found, and complementary re-
gions where chaos is absent and only regular, pre-
dictable behavior may be found.

# This reference notes that eq. (2.4) also describes the classical
dynamics of a single spin in a modulated magnetic field, and
refers to ref. [14].
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The strong dependence on intensity of the phase-
space portraits reported here indicates that control
and predictability of optical polarization in nonlin-
ear media may become an important issue for future
research. In particular, the sensitive dependence on
initial conditions in nonlinear polarization dynam-
ics found here to be induced by spatial inhomoge-
neities may have implications for the control and
predictability of optical polarization switching in bi-
refringent media. For instance, an input-output po-
larization experiment performed with input condi-
tions lying in the stochastic layer for some set of
material and beam parameters will show essentially
random output after sufficient propagation length,
depending on the amplitude and wavelength of the
material inhomogeneities and the type of (transpar-
ent) material used for the experiment. Effects on op-
tical polarization dynamics of dissipation and driv-
ing, as well as more general material descriptions and
group-velocity dispersion are presently being inves-
tigated and will appear elsewhere.

Acknowledgement

This paper was written during our stay at the Uni-
versity of Minnesota, Institute for Mathematics and
its Applications, during fall, 1988, and we wish to
thank the IMA for their invitation and their hospi-
tality. We would also like to thank S. Wiggins, A.V.
Mikhailov and Y. Kodama for stimulating scientific
discussions during the course of this work. Two of us
(D.D. and M.V.T.) acknowledge postdoctoral fel-
lowships from the National Science and Engineering
Research Council of Canada.

References

[1]P.D. Maker, R W. Terhune and C.M. Savage, Phys. Rev.
Lett. 12 (1964) 507.

[2] K. Otsuka, J. Yumoto and J.J. Song, Opt. Lett. 10 (1985)
508.

[3]1S. Trillo, S. Wabnitz and R.H. Stolen, Appl. Phys. Lett. 49
(1986) 1224,

[4]M. Born and E. Wolf, Principles of optics (Pergamon,
Oxford, 1959).

[5]1 Y.R. Shen, The principles of nonlinear optics (Wiley—
Interscience, New York, 1984),

35



Volume 138, number 1,2 PHYSICS LETTERS A 12 June 1989

[6] N. Bloembergen, Nonlinear optics (Benjamin, New York,
1965).

[7] D. David, D.D. Holm and M.V. Tratnik, Hamiltonian chaos
in nonlinear optical polarization dynamics, Preprint LA-UR-
88-1889, Los Alamos National Laboratory (1988).

[81D.D. Holm, J.E. Marsden, T. Ratiu and A. Weinstein, Phys.
Rep. 123 (1985) 123.

[9]1J. Guckenheimer and P. Holmes, Nonlinear oscillations,
dynamical systems, and bifurcations of vector fields
(Springer, Berlin, 1983).

36

[10]S. Wiggins, Global bifurcations and chaos - analytical
methods (Springer, Berlin, 1988).

[11]D. David, D.D. Holm and M. V. Tratnik. Chaotic dynamics
in a polarized optical beam submitted to periodic and
dissipative perturbations {in preparation ).

{12] V.K. Melnikov, Trans. Moscow Math. Soc. 12 (1963) 1.

[L3]S. Wabnitz, Phys. Rev. Lett. 58 (1987) 1415.

[14] K. Nakamura, Y. Okazaki and A.R. Bishop. Phys. Rev. Lett.
57 (1986) 5.



