
Volume 108A, number 9 PHYSICS LETTERS 29 April 1985 

H A M I L T O N I A N  STRUCTURE FOR ALFVEN WAVE TURBULENCE E Q U A T I O N S  

Darryl D. H O L M  t 

UCSD Project in Nonlinear Science and Scripps Institution of Oceanography, 
University of California at San Diego, La Jolla, CA 92093, USA 

Received 18 February 1985; accepted for publication 20 February 1985 

A harniltonian formulation using a noncanonical Poisson bracket is presented for a nonlinear fluid system that includes 
reduced magnetohydrodynamics and the Hasegawa-Mima equation as limiting cases. Nonlinear integral invariants for the 
system are found to be in the kernel of the noncanonical Poisson bracket. This Poisson bracket is given a Lie algebraic 
interpretation. 

In troduct ion .  Planar Alfvgn wave turbulence in 
magnetized plasmas has been modelled by differential 
equations of  the form [1,2] 

~tV2~ + [~b, V2~] -- [4, V2~] = 0 ,  

at~ + [¢, 4] + ~[¢J, x] = 0 ,  

atX + [~b,X] - [4,  V2~] = 0 ,  

(1) 

(2) 

(3) 

for functions ~, 4, and X of  (x,  y),  with constant pa- 
rameter a. Here, [a, b] is the jacobian, 

[a, b] = a x by - ay b x , (4) 

that is, [a, b] is the canonical Poisson bracket for 
functions a, b in the plane. The function ~ represents 
the electrostatic potential for drift waves, with drift 
velocity 

o--~X V~ .  (5) 

The function ~b is the normalized magnetic flux, so 
that the magnetic field in the plane is given by 

B =£X V ~ .  (6) 

Finally, the function × is the normalized deviation of 
particle density from a constant equilibrium value. 

The details of  the physical approximations which 
lead to eqs. (1)-(3)  are discussed in refs. [1-4] .  
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These equations include the physics of  both ideal re- 
duced magnetohydrodynamics (RMHD) [5-8]  in the 
low-beta limit and the Hasegawa-Mima (HM) equa- 
tion [9,10]. 

Low-beta RMHD is recovered from (1)--(3) by 
neglecting the constant parameter a in (2). This limit 
decouples the field × from the other fields, ¢ and ~k. 
The evolution of ~ and ~b then constitutes the RMHD 
description. The RMHD system (i.e., (1) and (2) with 
a = 0) is commonly used to simulate nonlinear shear- 
Alfv~n dynamics in tokamaks, see ref. [4]. 

The Hasegawa-Mima equation is recovered from 
the system (1)--(3) by assuming 

ctX = ¢ .  (7) 

This amounts physically to linearizing the adiabatic 
Maxwell-Boltzman limit for the electrons, see refs. 
[1-4] .  Then, via (7) eq. (3) implies that [4, V2~ b] = 
a tx ,  eq. (2) becomes a t#  = 0 and thus decouples 
from the system, and eq. (1) becomes 

0t(V2¢ -- t~-l¢) + [¢, V2¢] = O, (8) 

which is the HM equation for the electrostatic field. 
The HM equation (8) describes ideal drift wave turbu- 
lence in a low-beta plasma. It also has a hydrodynamic 
interpretation for geostrophic fluid flow [11-13] .  

A general evolution equation 

a t u  = A ( u ) ,  (9) 

with an operator A is said to be in hamil tonian f o r m ,  
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if there is a Poisson bracket operation { , } on the 
space of functionals of u and a hamiltonian functional 
H(u) such that (9) is equivalent to 

atF(u ) =(H, F ) ,  (10) 

for all functionals F. Recall that a Poisson bracket 
operation should be bilinear, skew-symmetric, and 
satisfy the Jacobi identity. The bracket [ , ] in (4) is 
such an operation on functions of (x, y). 

For instance, the vorticity equation, 

atw + [(V2)-16o, 6o] = 0 ,  (11) 

for vorticity 6o in two-dimensional incompressible 
flow is in hamiltonian form with the Poisson bracket 
[14] 

f [6F 6G]dxdy (12) ( F , G } = -  6o ~'~w'56o 

and hamiltonian functional 

- ~ fw(72) -16o  dx dy .  (13)  7 / ( , o )  

The operator (V2) -1 is the inverse of the laplacian 
72 on the domain of flow. For (12) and (13) to yield 
the vorticity equation (11) in hamiltonian form (10), 
appropriate boundary conditions are needed, so that 
8H/6m = -(72)-16o =: - ~ is well defined. Then, 
using (12) and (13), eq. (11) can be written as 

at6o = { H ,  6o) = [6HI6co, co] = - [ ~ ,  6o] , (14) 

in hamiltonian form. 

Purpose. In this paper, we will cast the system 
(1)-(3) into hamiltonian form, by extending the 
Poisson bracket (12) to include the additional plasma 
variables of density, X, and magnetic flux, ~0. The ex- 
tended Poisson bracket formalism we present pro- 
rides a mechanism for identifying various integral in- 
variants of the system (1)-(3). Elsewhere [3], these 
integral invariants will be used to derive classes of 
equilibrium solutions for (1)-(3) which describe soli- 
tary electromagnetic drift waves. 

Hamiltonianformulation. Eqs. (1)-(3) can be ex- 
pressed in hamiltonian form, letting £ .  curly = V2~ 
=: U, as 

atU=(H, U}, (15) 

Btqt =(H, ~k}, (16) 

atX =(H, X}, (17) 

where the hamiltonian H(U, ~k, ×) is given by 

H(U, ~,x) = 1 f [ - V ( v 2 ) - I U  + IV~l 2 +~x 2] dxdy, 
( 1 8 )  

and the Poisson bracket { , } is defined to be 

(F,G)=-f  dxdy {" [aF 6G] [[~f 8G] 
UL~,~J+ ~ ~L~,~J 

8F7\ -L~'wJ)+~ ([~'~] -F~ L~'~J) ~s7 

' - L ~ - ~  ' 6-X'XJ 1 !  " 
(19) 

Using (18) and (19), eqs. (15)-(17) become 

6H 6H 

(20) 

a t q ' - - ( ~ '  ~') = - q"g-O - '-g-x-x ' ( 2 1 )  

6H 

Formulae (20)-(22) are easily verified using the fol- 
lowing identities for arbitrary functions f , g  and h, 

f [lg, h]dxdy =f gth,f]dxdy =f hlf, gidxdy. 
(23) 

Identities (23) hold, provided boundary terms may be 
neglected when integrating by parts. The variational 
derivatives of the hamfltonian (18) are 

8H/6U = -(V2) -1 U =: - ~ ,  (24) 

6H15~ = --V2~, (25) 

5H/6x = otX . (26) 

Upon substituting the variational derivatives (24)-  
(26) into (20)-(22), the original equations (1)-(3) 
are recovered, now in hamiltonian form. 

The Poisson bracket (19) is clearly bflinear and 
skew-symmetric in F and G. Its Jacobi identity can be 
verified either by direct computation using the proper- 
ties of the canonical bracket [ , ] in (4), or by ob- 
serving that the Poisson bracket (19) can be associat- 
ed to the dual of the following Lie algebra, 

If1 (~(f20f3)]  @ [f2(~f3],  (27) 
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which is the direct sum of  two semidirect products. 
Here, the semidirect product actions @ in (27) are de- 
fined as follows. Let an element off2(~ ~ b e written 
as a pair (f2;f3)" For another element (f2 ;f3)] e.g., 
the second semidirect product action in (27) is deFin- 
ed by 

[(f2;f3), ( f2 ; f3 ) ]  := ([f2,f21; [f2,f31 -- [f2,f31)" 
(28) 

A similar definition applies for the first semidirect 
product action in (27). With these definitions of  the 
semidirect product actions in (27), dual coordinates 
are identified in (19), as follows: U is dual to f l  ; X is 
dual t e l 2 ;  and ~b is dual t e l 3 .  For further discussion 
of  Poisson brackets in continuum physics which are 
associated to the duals of  semidirect product Lie alge- 
bras, see, e.g., ref. [15]. 

The conservation of  energy H in (18) under the 
dynamics o f  (1 ) - (3 )  is now an immediate conse- 
quence of  the hamiltonian formulation and skew- 
symmetry of  the Poisson bracket (19). 

Conserved quantities. Analogously to the well 
known conservation of  integrals of  the vorticity in 
(11), the system (1)--(3) conserves any functionals of  
the form 

C=J[F(~b) + xG(~k) +K(~o - X)] d x d y ,  (29) 

for arbitrary (smooth) functions F, G, and K. For ex- 
ample, taking F = 0, G = 0, and K(~) = ~2 gives the 
conserved quantity 

f (602 -- 2wX -- X 2) dx dy , (30) 

which is analogous to the enstrophy invariant for the 
vorticity equation (11). 

Furthermore, the functionals C in (29) are 
"Casimirs" of  the Poisson bracket (19), in the sense 
that 

{C,J-) = O, VJ(U, ~,X). (31) 

That is, the functionals C are conserved for any 
hamiltonian J(U, ~, X), not just for the hamiltonian 
H i n  (18). 

Remarks. Although the noncanonical Poisson 
bracket (19) is presented here in an ad hoc fashion, 
there are a number o f  ways o f  deriving it systemati- 
cally. One way is via a constrained variational principle 

obtained by using the Clebsch procedure, as explain- 
ed in ref. [ 16]. In this way, a canonical (symplectic) 
Poisson bracket is first constructed in the space o f  
Clebsch variables, i.e., in the combined space o f  the 
physical variables and the Lagrange multipliers for the 
constraint equations, (2) and (3). This canonical 
bracket can then be mapped into the smaller space o f  
physical variables alone as in ref. [15],  resulting in 
the noncanonical Poisson bracket (19). 

The integral invariants (Casimirs) displayed in (29) 
are used in ref. [3] within the present hamiltonian 
context to derive classes of  equilibrium and traveling- 
wave solutions for the system (1)--(3). These solutions 
include solitary electromagnetic drift waves, which 
generalize the well-known electrostatic drift waves 
[17,18] to the case of  a magnetized plasma. 

This paper was written under the auspices o f  the 
exchange program of  the University of  California 
Institute for Nonlinear Studies. I am grateful to 
Henry Abarbanel for arranging my visit to UC San 
Diego, and for valuable discussions of  this work. This 
research was sponsored partly by the U.S. Office o f  
Naval Research and the U.S. Department of  Energy. 
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