The analogy between spin glasses and Yang-Mills fluids
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A dictionary of correspondence is established between the dynamical variables for spin-glass
fluid and Yang-Mills plasma. The Lie-algebraic interpretation of these variables is presented
for the two theories. The noncanonical Poisson bracket for the Hamiltonian dynamics of an
ideal spin glass is shown to be identical to that for the dynamics of a Yang-Mills fluid plasma,
although the Hamiltonians differ for the two theories. This Poisson bracket is associated to the
dual space of an infinite-dimensional Lie algebra of semidirect-product type.

I. INTRODUCTION
A. Background physics

Halperin and Saslow' and Andreev® have introduced
condensed-matter theories of spin glasses, i.e., disordered
magnetic spin systems whose ground states are degenerate
under rotations. Condensed-matter systems whose ground
states are degenerate under a continuous symmetry are often
described macroscopically in terms of an order parameter
field taking values in the Lie group associated with that sym-
metry. The order parameter ficld describing the low-tem-
perature configurations of a spin glass in the Halperin-Sas-
low—Andreev theory is a spatially varying orthogonal matrix
O(x), acting on classical spin vectors at each point x. The
matrix O(x) is assumed to be slowly varying in space (see
also Toulouse, Henley et al.,* Bray and Moore,® Saslow,®
and Henley”). The spins themselves may be eliminated in the
Halperin-Saslow—Andreev theory and their dynamics re-
placed by that of the order parameter field, O(x,?).

Singularities in the order parameter field are called de-
fects. These defects can be classified topologically by con-
ventional homotopy theory (Toulouse and K1éman,® Volo-
vik and Mineev,” Mermin, '® and Michel'!). The presence of
defects (singularities in the order parameter field) suggests
introducing additional degrees of freedom that may be de-
scribed by gauge fields associated to the symmetry group of
the degenerate ground state. For spin glasses, the symmetry
group is SO(3) and these additional gauge fields have been
introduced heuristically (in Dzyaloshinskii and Volo-
vik, 213 Hertz," José and Hertz,'® and Dzyaloshinskii'®'”)
by replacing ordinary space derivatives with covariant de-
rivatives according to the SO(3) minimal-coupling prescrip-
tion in Hamilton’s principle at the level of Ginzburg-Lan-
dau mean field theory for the order-parameter dynamics.
(See also Fischer'® and Rozhkov'®.) This Ginzburg-Lan-
dau type of model could presumably be derived from a lattice
model in three dimensions (by the renormalization group
method, for example), but as yet no explicit connection
seems to have been made between the macroscopic gauge
fields and microscopic concepts such as frustration in more
than two dimensions. For the two-dimensional case, the con-
cept of local exchange invariance on a frustrated planar lat-
tice leads naturally to an analogy between nonlinear spin-
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glass hydrodynamics and Yang-Mills SO(3) gauge theory
(see, e.g., Refs. 12 and 13).

The Ginzburg-Landau theory with covariant deriva-
tives describes the dynamics of isolated defects in terms of
dynamics of a gauge field. Interactions among defects (An-
dreev?®) and defect cores (Kawasaki and Brand®’) may be
introduced by modifying the Hamiltonian or free energy of
the system. For the case of spin glasses, the phenomenologi-
cal theory so defined lacks the couplings between space and
spin indices that complicate the free energies of superfluid
3He-B (Toulouse and K1éman®), and cholesteric liquid crys-
tals (Toulouse and K1éman,® Bouligand ez a/.,”! Mermin'?),
which can also be described by order parameter fields taking
values in SO(3). Other generalizations also exist, such as
(1) local anisotropy (Saslow??), (2) remanence, an external
field, or a tendency toward ferromagnetism (Halperin and
Saslow'), and (3) dissipation, e.g., spin diffusion and relaxa-
tion of the order parameter (Halperin and Saslow’). Recent
reviews of spin glasses are given in Fischer'® and Chowdhury
and Mookerjee.?

B. Problem statement

As one can glean from the previous remarks, there exists
at least a partial analogy between fluid dynamics with inter-
nal degrees of freedom (e.g., spin-glass dynamics, super-
fluids, and other quantum liquids) and Yang—Mills fluid dy-
namics. This analogy was introduced for spin glasses by
Dzyaloshinskii and Volovik'>'* and Volovik and Dot-
senko,’* and discussed for superfluids and other quantum
liquids by Dzyaloshinskii and Volovik'® and Khalatnikov
and Lebedev.”® Here, we propose to examine this analogy in
the framework of the Hamiltonian formulation of nonlinear
hydrodynamic theories. In Sec. II, we present a unification
of the nondissipative theories of spin-glass dynamics, Yang—
Mills plasmas, and Yang-Mills magnetohydrodynamics
that combines their various Hamiltonian formulationsinto a
single Poisson bracket, which we associate in Sec. III to the
dual space of a Lie algebra endowed with two different types
of nontrivial generalized two cocycles.

During the past few years, Poisson bracket methods
have been used to derive nonlinear hydrodynamic equations
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for various complex fluid systems. These systems include
spin glasses (Dzyaloshinskii and Volovik'*); hydrodyna-
mics of defects in the continuum description of condensed
matter, e.g., vortices in superfluid “He and disclinations in a
planar magnet (Volovik and Dotsenko®*); rotating super-
fluid “He and *He with spin and orbital angular momentum
(Khalatnikov and Lebedev,® Holm and Kupershmidt®);
as well as Yang-Mills plasmas (Gibbons, Holm, and Ku-
pershmidt,”” Holm and Kupershmidt?®).

The Poisson bracket method provides a guide for deter-
mining conservation laws and a framework for studying
Lyapunov stability of equilibrium solutions (see Holm et
al.?®), as well as a structure for pointing out similarities and
differences among various theories. We emphasize the latter
structural aspect in this work, by showing that the Poisson
brackets for spin glasses and Yang-Mills plasmas are iso-
morphic. Thus, although the Hamiltonians and physical in-
terpretations of the two theories differ, the Lie-algebraic na-
ture of their Hamiltonian structures is the same. This
Lie-algebraic nature allows us in Sec. IV to set up a dictio-
nary of correspondence between the dynamical variables for
spin-glass fluid and Yang-Mills plasma.

il. SPIN-GLASS DYNAMICS AND YANG-MILLS
MAGNETOHYDRODYNAMICS

The gauge-field formulation of the nonlinear hydrody-
namic equations describing the continuum dynamics of de-
fects in condensed matter is developed in Dzyaloshinskii and
Volovik.'>!*3 In this formulation, gauge fields are intro-
duced via the minimal-coupling hypothesis in Hamilton’s
principle as additional variables coupled to the defects, rep-
resented in turn as densities of gauge charges. Physical appli-
cations include crystals with continuously distributed dislo-
cations and disclinations; superfluid Helr with vortices;
liquid crystals with rotational disclinations; and two-dimen-
sional spin glasses, regarded as the continuum limit of a
planar lattice of magnets with disclinations.

The problem of formulating nonlinear dynamical equa-
tions for ideal (nondissipative) media containing continu-
ously distributed defects is addressed here via the Hamilto-
nian approach. That is, the dynamics of a continuously
defected medium is represented in Hamiltonian form, i.e., as

d,u={Hu}, 2.1

for Hamiltonian H and Poisson bracket { , } defined on the
space of dynamical variables u.

An example of such a system and the starting point for
the present analysis is the theory for spin glass (continuum
limit of an antiferromagnet having nonzero equilibrium dis-
clination density) of Volovik and Dotsenko.?* In this theory,
the gauge-charge density G is the three-component magneti-
zation density, which generates the internal symmetry group
of three-dimensional rotations. The corresponding gauge
potential 4;, i = 1,2,3, transforms under these internal sym-
metry rotations like a gauge field (see, e.g., Drechsler and
Mayer®'). The disclination density is identified with the
gauge-field intensity

By =A,, — Ay, + [4:,4, ] (2.2a)
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or, componentwise,

Bi =Aj —A3, +15,474, (2.2b)
with notation explained below.

In our notation, Latin indices i, j,£,..., run from 1 to n
(n =3 for three-dimensional space), script Latin indices
a,be,..., un from O to n, and the charge G'belongs to the dual
g* of the gauge-symmetry Lie algebra g, with 4,eg. The ad-
joint representation map ad: g— End g denotes multiplica-
tion in g: ad(y)z = [y,z]. Another map g—g*, gDy — *peg*
is defined by the rule

(*y,2) = (»,2), (2.3)

where (, ) is an invariant symmetric nondegenerate form on
g (e.g., the Killing form, for g semisimple). The structure
constants of g are denoted ¢ [see (2.2)] in a basis with
elements e, , where Greek indices run from 1 to M = dim g.
In this basis, we have the commutator relation

[exses] =thge,. (2.4)
Wedenote 4; = A4 e, and G = G e% wheree®, a = 1,...,.M,
are elements of the dual basis, satisfying (%, e; ) = 83. The
rule (2.3) associates to each element yeg a corresponding
dual element *yeg¥*, via

Y2t = (*,2) = (0,2) =:1)°8,57°, (2.5)
where g5 = (e,,e5) is the matrix of the invariant form in
the basis {e_ }.

To the linear operation ad on g, there corresponds an-
other linear operation ad* (essentially minus the transpose
of ad, in a matrix representation), which acts on g* as de-
fined by

(ad*(p)*zx): = (*z,[xy])
for x,peg and *zeg*. In components, then,
(ad*(y)*2),x* = (ad*(y)*zx) = — (*z,ad(y)x)

(2.6)

= —(*z2,[yx]) = —z,t%,y"x%,
so that
(ad*(»)*2), = —yPt},z,. (2.7)

We may now define (n + 1) covariant derivative opera-
tors acting on g-valued functions of space and time. Namely,

D=V —ad(A), (2.8a)
with n spatial components

D, =9, —ad(4,), (2.8b)
and

D, =3, —ad(4,), (2.9)

for the time component. Similarly, one defines (n + 1) co-
variant derivative operators acting on g*-valued functions

D* =V —ad*(A), (2.10a)
with components

D¥=9; —ad*(4,), (2.10b)
and

D¥* =9, —ad*(4,). (2.11)

If ¢ and & are functions of space and time with values in g and
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8*, respectively, then, for example, we have the partial-deriv-
ative relations

(8:8), ={(D).8) + (3.(D,$)), (2.12)
since

DF=— (D), (2.13)
where ' stands for the “adjoint.”

We also have
*[D,(w)] =D*(*w), VYweg, Vae(0,.,n). (2.14)

Indeed, for any yeg, we have, denotingx = A4_,
(*[D. (W) 1) = (D, (W)y) = (w, — ad, (w),y)
= (w,p) — ([xwly)

= (w.») + (w,[xy]), (2.15a)
and
(D*(*w)y) = (*w_.py) — (ad?(*w).p)
= (w, ) + (*w,[xy])
= (w, ) + (w,[xp]). (2.15b)

Comparison of (2.15a) and (2.15b) proves (2.14).
From the covariant derivative operators, one defines the
fields

E =4, —Ay; + [4,4)] =Fyy = — Fy,  (2.17a)

B;=A,;,—A4;,+ [4:4;] = - F,, (2.17b)
where subscript-comma notation is used for partial deriva-
tives, e.g., 4y; = (d4,/x). In n spatial dimensions, the
one-form E has n spatial components E,, and the two-form B
has n(n — 1)/2 independent spatial components B, with
B; = — B, (skew symmetric).

In Yang-Mills plasma theory (Gibbons, Holm, and
Kupershmidt,”” Holm and Kupershmidt®®), the Yang~
Mills fields F,, appearing in (2.17) satisfy

*(D,F*)y=J% a,4,=01,..,n, (2.18)

where J# with components J° = G, J* = GV, is the gauge
current density, with v/, i = 1,...,n, denoting velocity compo-
nents of the moving medium. Script indices are raised and
lowered by the Lorentz metric, with signature (n — 1). The
gauge charge is conserved, since

D*J4=D**(D _F) [by (2.18)]
=*(D,D,F*%) [by (2.14)]
= —Jad(F,,)F“=0 [by (2.16) and (2.17)].

(2.19)

In the Volovik-Dotsenko spin-glass theory, the struc-
ture constants 7 g, in (2.2) for the gauge symmetry algebra
are those of so(3): 75, = €,4,, the totally antisymmetric

[D:,D,] = ad(E),), (2.16a)  tensor in dim g = 3 dimensions, with €,,, = — 1. Let K, be
[D..D;] = ad(B;), (2.16b) the defect momentum density and p the inertial mass density
of the defects. The Poisson bracket for spin glass proposed by
with spatial components Volovik and Dotsenko® is then expressible as
|
8F oH SH 6H
HF}= — |d"x K3, +0K, +B3G,) — + B —— 4 pd, —
{H,F} f [51(,.[( ), +3,K, + B )6K,-+ T p,ap]
6F SH SH 6F 6H
+ t7,G + (9,8 —tP 47 ]+—a,. —_
5G,,[ 77 56, 4D 505t 5 9P 5k,
6F 6H SH
Be o 4 (823, +t2,47) 22 |1 2.20
5A}'[ J 5K.- (BJ By ’)5Gﬁ ] ( )

in three dimensions (n = 3) and for functionals H and F of the dynamical variables (X;,G,, p, 4 ;). In Hamiltonian matrix
form, the spin-glass equations corresponding to the Poisson bracket (2.20) are

¢ (K;d; +3,K; +B;G,) pd; 0 6H /6K,
g, 0 0 6H /8§,
3,17, =— p o e (2.21a)
A; Bj; 0 (650, +t5,4)) OH /64"
G, 0 0 (83, —1t8,47) t1,G, 8H /5G,
for Hamiltonian [ Volovik and Dotsenko,?* Eq. (6.11)]
1 1 1
H= d"x[— K>+ —p*A,-A* + — G:G“] , 2.21b
f 2PII+2p t 2 (2.21b)
with constant susceptibility y.
In general, Hamiltonian equations are expressible as
du=Db- OH _ {Hnu}, (2.22)
Su

where the Hamiltonian matrix b defines the Poisson bracket {H,F} in terms of the dynamical variables u according to the
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standard form

{H,F}=fd"x§£-b-.51’-. (223)
bu Su

The spin-glass Poisson bracket in (2.20) defined by the Hamiltonian matrix b given in (2.21a) is bilinear, skew symmetric,

and satisfies the Jacobi identity. To demonstrate the last property (which is neither self-evident nor trivial), we map the

Hamiltonian matrix b in (2.21a) into an gffine form, by using the invertible transformation

P=K+ G, A% (2.24)
and leaving p, A% and G, unchanged. Under such a map, the Hamiltonian matrix b changes according to the chain rule, i.e.,
b, = Jb-J", (2.25)

where J is the Fréchet derivative of the map (2.24) and J! is its adjoint. The resulting Hamiltonian formulation of the spin-
glass equations in the new variables (P,,0,4 {,G,, ) is found [after matrix multiplication as in (2.25) and elimination of old
variables K in favor of new ones P], to be

P, Pd, + P, pd, akA? —4 f,i Gﬂai 6H /6P,
a 0 0 0 oH /5

a, pa = — o v gl (2.26a)
4; A79,+A% 0 0 850, +15,47| |6H /547
G, 3G, 0 &89, —1t8.47 t1,G, 6H /5G4

with Hamiltonian
H=[ @] P+ G AT+ 2 ptA A+ S G267, (2.26b)
20 2 4

By being affine (linear plus constant) in the dynamical variables, the Hamiltonian matrix b, in (2.26a) yields a Poisson
bracket [given by (2.23) with b replaced by b,] that may be associated to the dual space of a certain Lie algebra with a
generalized two-cocycle on it (Kupershmidt®?). In this case, the Lie algebra is of semidirect-product type,

g, =D&{A% [(A°@g)&(A" '@g*)]}, (2.27)

where D is the Lie algebra of vector fields on R" and A’is the space of differential i forms on R". The dual coordinates are P,
dualto d,€D;p, to 1€A’% G,, to 1 ® e®e(A° ® g), i.e., functions taking values in Lie algebra g, the symmetry algebra; and 4 ¢
dualto (3, 1d"x) ®e’c(A" ' ®g*),i.e., (n — 1) forms taking values in the dual symmetry algebra g*. In (2.27), & denotes
semidirect product; ®, tensor product; and @, direct sum. Mathematical discussion of this Lie algebra is deferred until Sec.
III. At this point, we only remark that association of the b, Poisson bracket to the dual of the Lie algebra g, assures that the Ja-
cobi identity for the b, Poisson bracket is satisfied. Since b, is related to b in (2.21a) by the invertible transformation (2.24),
the Jacobi identity is also satisfied for the Poisson bracket (2.20) defined by the Hamiltonian matrix b in (2.21a).

Remarkably enough, a gauge-covariant Poisson bracket for spin glasses exists and is canonically related via (2.17b) to the
Poisson bracket corresponding to the Hamiltonian matrix b, expressed in (2.26a) in terms of gauge potential 4 {. The new
Hamiltonian matrix b, is expressed in terms of the gauge field (disclination density) B §, using definition (2.2) in a chain-rule
matrix multiplication as in (2.25). The resulting matrix-Hamiltonian equations for spin glass are now, in terms of B § [cf.
(2.26a)],

Pi Pkai + akPi pat - Blﬁm,i + amBg - aIBr,;i Gﬁai CSH/(st
alP 9p 0 0 0 8H /8p 228
‘|Bs| ~ 7 |Bg.+B3d —Bid, O 0 ts B | |6H /8BS, '
G, 3,G, 0 —t% BY, t1,G,| | 6H/5G,

The Hamiltonian matrix b, in (2.28) is now linear in the dynamical variables and thus (Kupershmidt*?) may be associated to
the dual of a Lie algebra. In this case, the Lie alebra is again a semidirect product,

g; =D&{A%® [(A°eg)&(A"2@g%)]}, (2.29)

with the same dual coordinates as in the case of b, associated to g,in (2.27) except that instead of 4 ¢ dual to (d; 1d "x) @ ¢*
e(A"~'®g*), we now have B dual to (9, 1J; 1 d"x) ® e’e(A" ~* @ g*), i.e., {B§} dual to (n — 2) forms taking values in
the dual gauge algebra, g*.

Yang—-Mills MHD: The Poisson matrices b, and b, for spin glasses in (2.26a) and (2.28) extend the corresponding
matrices for Yang-Mills magnetohydrodynamics (YM-MHD) (Holm and Kupershmidt®®), by allowing nonzero entries for
Poisson brackets between the gauge charges and the gauge fields. The Hamiltonian for YM-MHD is (Holm and Kuper-
shmidt?®)
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H= fd"x[_;; P|>+ U(p) + %(*Ba,.jp;;)] . » (2.30)

Remarkably, when the YM—MHD Hamiltonian (2.30) is used with the spin-glass Hamiltonian matrices b, and b, in (2.26a)
and (2.28), respectively, the same dynamical equations reemerge for YM-MHD as in Holm and Kupershmidt.?® That is,
correct YM~MHD equations reappear using the spin-glass Poisson bracket (2.28) with the YM~MHD Hamiltonian (2.30).

The spin-glass Hamiltonian matrices b, and b, extend their YM—-MHD counterparts found in Holm and Kupershmidt?®
by allowing semidirect-product actions instead of simple direct sums among quantities dual to gauge charges and gauge fields,
in the Lie algebras g, and g5. Since this extension of Hamiltonian matrices is available for YM-MHD, it is natural to expect the
Hamiltonian matrix for chromohydrodynamics (CHD: the non-Abelian Yang-Mills plasma theory from which YM-MHD
is derived) also to have an extended counterpart. This extended counterpart may, in turn, find application in the theory of
condensed matter with internal symmetry variables.

To determine this extension of the CHD Hamiltonian matrix, we propose to argue heuristically: we start from the
extended YM-MHDY/spin-glass Hamiltonian matrix in (2.26a) and enlarge it, by comparing its structure to that for Abelian
charged fluids (Holm??).

There is a standard derivation (see, €.g., Friedberg®*) of Abelian MHD from the ideal two-fluid Abelian plasma equa-
tions. Abelian MHD emerges in the course of this derivation in the limit that the dielectric constant vanishes (i.e., displace-
ment current is neglected), the inertia of one species (the electrons) is negligible compared to the other (the ions), local
charge neutrality is imposed, and drift effects (diamagnetic and Hall electric fields) are neglected. In Holm and Kuper-
shmidt® this derivation has been adapted for the purpose of obtaining the non-Abelian YM-MHD theory from the equations
of chromohydrodynamics (CHD), treated in Gibbons, Holm, and Kupershmidt.?” The CHD equations describe non-Abe-
lian Yang-Mills plasma theory, e.g., quark-gluon plasma physics, in the fluid description obtained by taking moments of the
corresponding kinetic theory with particles interacting via Yang-Mills fields (i.e., Wong’s equations). A consistent Hamilto-
nian theory of special relativistic CHD also exists (Holm and Kupershmidt*®).

Abelian MHD may also be considered as a special case of the Hamiltonian theory of Abelian charged-fluid (ACF)
motion that includes moving-material electromagnetic effects. The equations of ACF dynamics are given in the following
Hamiltonian matrix form in Holm?3:

P, P, + 3P, pd; A —A; *E'3,—3rES; 03;|| sH/sP,
p 9p 0 0 0 0 8H /8p
3|4, | = | 48, +4, 0 0 8% 53, | | 6H /64, | . (2.31)
*E, FE'—*E3 8, 0O — & 0 0 | |6H /6*E*
Qo 8.0 0 50, 0 0 8H /6Q

In (2.31) the Abelian charge density Q satisfies Gauss’s law,

ap = Q@ =div *E, (2.32)

which is preserved by the dynamics. In (2.32) the quantity a is the constant charge-to-mass ratio in ACF dynamics and *E is
the electric displacement vector. Actually, the Hamiltonian matrix in (2.31) is a slight extension of that in Holm*? to include a
generalized two-cocycle between @ and A [the terms proportional to the arbitrary constant s in (2.31)]; Holm>? chooses
s=0.

The Hamiltonian matrix for Abelian MHD may be recovered either from (2.31) fors = 1 when the displacement vector
*E is absent, or from (2.26a) in the Abelian case, when the structure constants ¢ 5, vanish.

Comparing the Hamiltonian matrices (2.26a) for non-Abelian MHD and (2.31) for Abelian charged fluids suggests the
following Hamiltonian matrix for the dynamics of non-Abelian charged fluids:

P, P.3, + 3, P, pd; 6, AP — A%, *ELJ, —I*ELS! G5 9, SH /8P,
P P 0 0 0 0 6H /6p
3| A¢|=—| 43, +42 0 0 6568F 5630, +15,AY| | SH/64% |,
*E! O *EL, —*EL3.8, 0 — 85 0 tlg *E! SH /S*E%
G, 3,G., 0 825, —t8,4]  tly *E% theG, 8H /5G,
(2.33)
25 J. Math. Phys., Vol. 29, No. 1, January 1988 D. D. Holm and B. A. Kupershmidt 25
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where s is any real constant. This Hamiltonian matrix reduces to (2.26a) when *E is absent and s = 1, and to (2.31) in the
Abelian case. In comparison with (2.20a) for YM-MHD the Hamiltonian matrix b, in (2.33) for Yang~Mills charged fluids
(YMCF) has been extended by adding a row and column for the dynamics of the variable *E %, the Yang—Mills analog of the
electric displacement vector. The vector *E j is dual to 4 § in both the algebraic and metric sense: while 4 ¢ is a one-form
taking values in the gauge algebra g, *E}, is an (n — 1) form taking values in the dual algebra g*. The mathematical

interpretation of the Poisson bracket determined from b, in (2.33) is given in Sec. III.
The relation of (2.33) for non-Abelian Yang-Mills charged fluids (YMCF) to the Hamiltonian matrix for CHD given in
Gibbons, Holm, and Kupershmidt®’ is as follows. Let M define another momentum density via the map

M, =P, +(D¥E*4,) — (*E*By) =P, + (*E5A7)  —*E’A7%,,

(2.34)

while the other variables (p,A,*E,G) in (2.33) remain the same. The resulting Hamiltonian matrix in the new variables
obtained via direct calculation using (2.25) is given (withs = 1) by

M, M3, + 3. M, 09, 0
P dp 0 0
a4 | = - 0 0 0
*E 0 0 —a38
G, 3,[Gs +*(DivE);] 0 (D)3

In the extended CHD Hamiltonian matrix (2.35) we denote
[see (2.9) and (2.12)]

(D)8 =0,80 +15,4%, (2.36a)

(D) =965 —tg, 4%, (2.36b)
and [see (2.7) and (2.15)]

*(DivE); = [Div*(*E) ], = (D)5 *EX,

[by (2.36b)] =3, *Ek — A% *Ekt3,, (2.37)

[by (27)) ={[3, —ad*(4)](*E")},.
The CHD Hamiltonian is (Gibbons, Holm, and Kuper-
shmidt*?)

H=fd"x [—21;|M+G,,A“|2+ U(p)

1 1

+ LB B+ L ontmg 238)

with variational derivatives given by
2
OH = fd"x [( — %— + U’(p))&p + (vA%)6G,
+ v8M + E*3*E,

+ (G + 2D, J847], (2.39)

where we have integrated by parts and introduced the nota-
tion

v=p""(M+G,A%), (2.40)
E=*(*E), (2.41a)
*B, = *(B,;). (2.41b)

The resulting Hamiltonian equations of motion for CHD are
[using (2.22) to define the CHD Poisson bracket with Ham-
iltonian matrix b, in (2.35)]

ap= {H, P} = -4 (Pvi)’ ‘

3,47 ={H,4%} = — E? — (D)5 (vA?),

(2.42a)
(2.42b)

26 J. Math. Phys., Vol. 29, No. 1, January 1988

0 [G. +*(DivE), ;| | 6H/6M,
0 0 S6H /8p
58 (D)8 OH /64 ¢ (2.35)
0 th, *EJ, 8H /5*E ",
ths *E,, %G, 8H /6G,,
r
3, *E} = {H*E}} = Gy’ + *(D,B¥),
—t4, *EI (vA%),  (2.42c)

a,Gﬁ = {H,GB} = — ai([Gﬁ + *(Div E).B ]v.')
— (D} (GV) —*(D,D B"),
—thy *ELE? —t4,G,(vA%).
(2.42d)

Upon using (2.36b), (2.41a), and antisymmetry of B *, the
G equation (2.42d) takes the form
3,Gg = —9i([Gs + *(Div E), |v) - 3,(Ggv').
(2.43)

This becomes simply the equation for gauge charge conser-
vation upon setting

GAUSS: =G + *(DivE) =0, (2.44)

and noting that this relation is preserved by the dynamics of
(2.42b)—(2.42d), since
d,(GAUSS)= — div[ (GAUSS)v] + ad*(v-A) (GAUSS)
= — D¥[(GAUSS)V]. (2.45)
The proof of relation (2.45) is by direct computation, as
follows. Using (2.44) we have
d,(GAUSS),
=0,[Gp + (9,65 —t5,AN*E,]
=3,G5 — 15, (3,A1)*E}, + (D33, *E.,
= —d,[ (GAUSS)zv'] — 9,(Ggv')
+15, *EL (D)L (v-A*) + (D¥)5 (G, V)
—(DH)5 G, *EL(vAN)]
[by (2.42b)-(2.42d)]. (2.46)
Thus, in the shorter notation of (2.7) and (2.11), and using
(2.15), we have
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d,(GAUSS)
= Div*(Gv) — d,[ (GAUSS)v'] — 3, (GV)
+ ad*(v-A)*(DivE),
= —div[ (GAUSS)v]
+ ad*(v-A) (GAUSS) [by (2.37a)], (2.47)

which recovers relation (2.45). Consequently, (2.43) be-
comes

39,Gg = —div(Ggv), (2.48)
upon using the nondynamical constraint (2.44), which may

be regarded as an initial condition by virtue of (2.45).
Finally, we have the momentum equation

M, ={HM} = — M,3,y'— 3,(M)
—p&[ —v/2+U'(p)]. (249)
Substituting (2.40) in the form
M; =pv; — (G,4;), (2.50)

into the momentum equation, (2.49), readily gives the ve-
locity equation,

plaw; +vv, +U’(p) ]
= —03,(G,4,) —3,(Gv'A4,) — (G, AV}),
= (3,G4;) + (G,3.4;) — (D *(GV),4;)
—(Gv'\D,4;)
—(G,(AW) ;) — (Gv'4,;) [by (2.12)],
=(G,0,4; + V'(D,4; — D;4,) + (Aw) ;)
[by (2.36) and (2.48)],
=(G,— E; —v'B;) [by (2.42b)]. (2.51)
Hence we recover precisely the motion equation for the fluid

velocity in CHD. Namely, with (vXB);: = vaij, in vector
form,

3,v + (VW)v= — VU'(p) —p~(G,E + vXB).

This completes the derivation of the CHD equations
(2.42a)-(2.42d) and (2.52) from the extended CHD Ham-
iltonian matrix in (2.35) and the CHD Hamiltonian H in
(2.38). The physical interpretation of the CHD equations
(2.42a)—(2.42d) and (2.52), and their derivation from ki-
netic theory is discussed in Gibbons, Holm, and Kuper-
shmidt.?’

The Yang-Mills “displacement vector” *E has an inter-
esting interpretation in spin-glass theory. Namely, E = 6H /
S5*Eis the disclination flux density, so that *E is the disclina-
tion current density. More discussion of this interpretation is
given in the concluding section.

IIl. MATHEMATICAL DISCUSSION

In this section we explain the general mathematical facts
underlying the various Hamiltonian matrices appearing in
the preceding section. This will supply the proof that the
Jacobi identity is satisfied for all of the Poisson brackets in
the preceding section.

A. General notation

Let K = C~(R"); D= D(R"): Lie algebra of vector
fields on R”; A* = A*(R™): K module of differential £ forms
on R*, X (&) denotes the Lie derivative of £eA* with respect
to XeD; g: a finite-dimensional Lie algebra over R; g*: its
dual; ( , ): a nondegenerate invariant symmetric bilinear
form on g;

(e1,-.-1€pr ): basis in g, satisfying[e,,eg ] =t2ze,,

where %, are the structure constants of g; (e',....e™), the
dual basis in g*; if 0:g - End ¥V is a representation of g, then
o(a) (v) is denoted simply by a.v, for aeg and veV.

B. Lie algebra
We start with the Lie algebra g, (2.27). Its commutator

(2.52) is given by the formula
i
x! X2 [XX2]
fled'  fled X'(fMHed—x*(fHea +ffeld ]
o'eb'  w'eb?| X'(0)eb?—X2w)eb'+flo’ea'bi—fw'edb' ’ G-
g ., & X&) —X*(gh
where X'eD ; f.g'eK ; w'e A"~ ; a'eg; beg*; i = 1,2; and, e.g., for heg and pairing ( , ) between g*and g,
(@b%h):= —(b3[a ,h]).
Claim: The commutator (3.1) defines a Lie algebra.
Proof: This results from the following general fact.
Theorem 3.1: Let ) be a tensor field on R”, i.e., a K and D module, so that
X(fo) =fX(@)+X(f)o, XeD, feK, we. (3.2)
Let o:g— End ¥ be a representation of g. Then the following formula defines a Lie algebra g(Q,0):
x! x? [Xl’le
f1®al f2®a2 Xl(f2)®a2__X2(fl)®al +fl_f2®[al,02]
o' @t 0@V =X‘(a)2)®v2—X2(a)‘)®v‘ +floteal® — flo'edy! (3.3)
g . g X' —-Xx%gh
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where X ‘eD, fland g'eK, o'eQ), d'eg, v'eV, i = 1,2. A straightforward computation reduces the Jacobi identity for (3.3) toa
set of identities of the form (3.2).

C. Generalized two-cocycles on the Lie algebra g,

We now turn to the generalized two-cocycle on the Lie algebra g, responsible for the field-independent terms in the matrix

(2.26a).
Proposition 3.2: The following formula defines a (generalized) two-cocycle v, on g, =g(A""}, ad*):

vi(1,2) =s( f'o? (b%a") — fw),(b',a%)), seR, 3.4)
where (, } is the natural pairing between g* and g; and the notation v, (1,2) is shorthand for
v (X ’ X. 2)
Recall (Kupershmidt,*? Chap. viii) that a bilinear form v on a Lie algebra g’ over X is called a (generalized) two-cocycle if
v(X,Y)~ —v(¥,X), X, Yeq, (3.5)
v({X,Y),Z) +¢c.p.~0, XY Zeg, (3.6)

where “c.p.” stands for “cyclic permutation”; and @ ~ b means (a — b)€Z; Im d,, i.e., (@ — b) is a “divergence.” One checks
directly that v, in (3.4) is indeed a two-cocycle on g;.

D. Poisson bracket

The Poisson bracket associated to the two-cocycle v, on the Lie algebra g, is computed by the standard rules of the general
theory described in Kupershmidt,** Chap. viii (with n-dimensional volume element d "x)

() (2 ot (2) o0 ()

1 Pk 663 6p
oF OH oH 6H
G 5 G, —— —t8 A7 + 850
5G [ k a(apk) ‘}’SGB +( ay k+ S k)(6A£)]
6F SH S6H SF 6H
+ 3 430, + 4 ( ) 15, AT+ 8559, ( )] L) ( ) : .
T, [( ) 5P, +( By L ) 563 + ) P 5P, (3.7)

where dual coordinates on g} are chosen to be
P, dualtod,eD; G,tolge,cKog’ A ,to(d, 1d"x)®e” ptolek.

E. Spin-glass Hamiltonian matrix
The Hamiltonian matrix b = b(g,,v,) associated to the Poisson bracket (3.7) via the standard rule

5F SH
{H,F}~ .8_11,_ n 6uj
is given by
P, G A% p
P, | P3, + 3.P, G,9, 3,45 —A48,  pé,
G.| 46, t7,G, —t8 A} +88s9, O |. (3.8)
AT 450, + A5 15,A7+ 850, 0 0
P aip 0 0 0

This is b, in (2.26a) when s = 1.

F. Origin of the generalized two-cocycie

Since the two-cocycle (3.4) plays a cruqial role in what follows, we explain its origin and unique features. Let Q be an
additional tensor field on R", and let &: - £} be a homomorphism of D modules, i.e.,

F X (@) = X (), XeD, we. (3.9)
(For example, 0 = A%, @ = A* *!, & = d.) Then ¢ induces a natural Lie algebra homomorphism
#:4(Q,0) - g(L,0). (3.10)

Therefore, from 1% one obtains a Hamiltonian (i.e., canonical) map ¢: C; (Q,0) - C; (,0) on C;, the ring of functions on the
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dual to the Lie algebras g(£2,0) and g(£,0) [see Chap. viii (3.42) in Kupershmidt*?). In particular, take
Q=A""1, Q=A" &= —d, V=g* o=ad*

and denote by 7° coordinates on g¥ = g(A",ad*)* dualtod "x ® e®. Then by formula viii (3.42) in Kupershmidt,? the map ¢*
can be written in the form

P,=P; G,=G,; Ai=n; p=p; (3.11)

and ¢* is a Hamiltonian map between the cocycles Poisson bracket (3.7) |, _, and the Poisson bracket on g¥ = a(A™ad*)*,

{#F =~ [a [65—;_[(Pka,.+akpi>(5ﬂ)+aﬁa(5”)~,,e o po, (2]

SF SH S5H , OH 6F SH , 8H\ , 6F SH
G, +t%,G, —+1t89 (“ —1t8 ) —3, ( )l
5G, [ k (6Pk) " 8Gg 56, T feT 51,6 + o= \ % sp, o7 5G,, + 5\ 3p,
(3.12)

Now, as a K module, g, = 6(A”, ad*), has inside it two submodules: K ® gand A" ® g*, which are mutually dual as D modules,
i.e.,

(X(B),a) + (b,X(a))~0, acK®g, beA"eg*. (3.13)
This means that we may have a symplectic two-cocycle v, on g,
v,(1,2) = —s(f P (b%a') — ' (b',a*)), seR, veA" (3.14)

And indeed, v, is a two-cocycle on g,, as one verifies by a direct computation. [ A verification is required since, for non-Abelian
g, K ® g acts nontrivially on A" ® g*; otherwise (3.13) would have guaranteed that (3.14) is a two-cocycle.] Now, since the
map ¢* in (3.11) is constant coefficient, it transforms two-cocycles on g, into two-cocycles on g,; in particular, v, is trans-
formed into v,. From this discussion, one concludes thatif 2 ® ¥ # A" ~! @ g*, then one cannot have a two-cocycle on a(Q,0)
similar to v,, since a symplectic two-cocycle of the type v, exists only on g(A”", ad*). This observation saves us from a futile
search for new two-cocycles in the extended YMCF case, when *E variables (dual to A’ @ g) come into the picture.

G. Lie algebra g,
The Lie algebra g, = g(A" '@ A', ad* @ ad) (*E is included), has commutator (cf. Theorem 3.1)
Xl XZ [Xlx2]
flea! flead X' ea:—X*(fY) ea' +ff*e [a',d?]
0'®b! 0*2b?|= X(0®)eb?—X* o' )@bl—i—f’a)zeal.bz—fza)l‘saz.bl , (3.15)
uled ped | X'(wHeda —X*(u')ed' +futela,d’] —fu'e [d’a']
g' s g X' —-X%gH

where X ‘eD, f' g'eK, w'eA" !, u'eA’; a'd'eg; b'eg*; i = 1,2.

H. Remarks

(a) g, contains g, as a subalgebra, and g, itself is a semidirect product of g, and A' ® g. Hence, there is a two-cocycle #, on
a3, which coincides with v, on g, and vanishes when one of its arguments belongs to A’ ® g:

v.(1,2) = s(f'o?, (b%a') — fw);(b',a*)), seR. (3.16)
(b) There is also a new symplectic two-cocycle on g,
v3(1,2) = ¢, (@' A6 ,@*) — * Ap'(b%a")), c,eR. (3.17)

(c) The new Poisson bracket associated to the two-cocycle ¥, + v; on g, equals

.. . OF 5F ., SH
{H,F}, = {H,F}, +fd x[ (*E%3, — 8, *E}8%) + 56, thg *EX + T, claﬂsf] (5—‘5_5)

6H 0H oH

(3, *E', — *Efao")(—)+ﬂ spi O _ o808 2

5"‘E' [ k 6P, ad ‘SGB é 5Aﬁ

where {H,F} is the Poisson bracket corresponding to b, in (3.8), and *E § is dual to dx* ® ¢, in both the metric, and the Lie-
algebraic senses. For ¢, = 1, the Hamiltonian matrix associated to (3.18) is given in (2.33).

n (3.18)

I. Lie algebra g,

Let g, = g(A" "2, ad*). This is the Lie algebra with the commutator (3.3) for @’eA” 2 and v'eg*, i = 1,2. The corre-
sponding Hamiltonian matrix is given by formula (2.28), provided one lets By be the coordinate dual to
(3,49, 1d"x) @ e®eA" 2@ g*.
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V. CONCLUSIONS

We have considered the analogy between spin glasses and Yang—-Mills fluids (CHD) within the Hamiltonian framework.
Our results complete this analogy, according to the following “dictionary.”

Yang-Mills fluid

spin glass
p,  defect inertial-mass density P>
v, fluid velocity v,
K, hydrodynamic momentum density of defects M,
B;, disclination density B,
F,, disclination current density *E,

Along the way, we have noticed an interesting phenom-
‘enon in YM~-MHD and CHD, namely, the existence of two
different Poisson brackets for the non-Abelian case and a
one-parameter family of Poisson brackets for the Abelian
case, in the A representation for CHD, see Eq. (2.33).

Physically, our conclusion is that the analogy between
spin-glass theory and Yang-Mills charged fluids is very
close, on the level of the Hamiltonian formalism. Specifical-
ly, the Hamiltonian matrices are identical for the Volovik—
Dotsenko spin-glass theory and Yang—Mills MHD. In addi-
tion, the Hamiltonian matrix (2.33) in the Yang-Mills
charged-fluid representation provides a potentially interest-
ing extension of the Volovik~Dotsenko spin-glass theory, by
providing a dynamical equation for the disclination current
density *E, which is the spin-glass analog of the Yang—Mills
electric displacement vector.

Our basic mathematical observations are these: the
highly nonlinear candidate (2.20) for the Poisson bracket in
Volovik and Dotsenko,?* when transformed to appropriate
(natural) variables, becomes of affine type and is thus asso-
ciated to a certain Lie algebra, called g,, and a two-cocycle,
called v,, on g,. It turns out that g, is a subalgebra of another
Lie algebra, g,, which closely resembles the chromohydro-
dynamics Lie algebra g,. The Lie algebra g, is, in turn, an-
other subalgebra of g;. Moreover, the two-cocycle v, on g, is
arestriction on g, C g, of a certain two-cocycle ¥, on g,. Fur-
thermore, there is another, canonical, two-cocycle v; on g,,
whose restriction on g, vanishes and whose restriction on g,
produces precisely the canonical *E-A structure in CHD.

Roughly speaking, the absence of a dynamical equation
for *E in Volovik and Dotsenko®* is of the same nature as the
absence of displacement current. The dynamical equation
for *E is present only in the full electromagnetic or Yang-
Mills field equations, or in an extended theory of spin-glass
dynamics accounting for time dependence of the disclination
current density, Fy,. In that case, the present theory would
provide the dynamics by using Poisson bracket (2.33), in
conjunction with an appropriate choice for the Hamiltonian.
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mass density of fluid carrying gauge charge

fluid velocity

total momentum density, including YM field momentum
Yang-Mills magnetic field

Yang-Mills electric displacement vector
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