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A covariant action principle is formulated for the Vlasov-Maxwell system. Upon subjecting the particle phase space 
and invariant hamiltonian to a Lie t~ansform for interaction with an eikonal wave, we obtain a new action principle for 
the invariant osciUation-center distribution and the self-consistent wave propagation, with a common kernel for the in- 
variant ponderomotive hamfltonian and the linear susceptibility. 

Some years ago, Dewar [1] showed how the con- 
cepts o f oscillation-center and ponderomo tive force 
followed naturally from a canonical transformation 
eliminating the linear nonresonant interaction of  a 
particle with a given wave. Since then, there has been 
an evident need to introduce self.consistency, so that 
the wave propagation is described at the same concep- 
tual level. Previous hamiltonian treatments, such as 
those o f  Dewar [11, o f  Johnston [2],  of  Cary [3],  
and of  Dubin, Krommes, Oberman and Lee [4], have 
been constructive, requiring deep insight, and some° 
times leading to ambiguity. Recently we have discov- 
ered a deductive approach [5,6], by means of  apply- 
ing the standard Lie transform to the phase space and 
hamiltonian of  the Vlasov action principle of  Lewis 
and Symon [7]. Our first results dealt with the prob- 
lem of  Coulomb interaction, either at the gyrokinetic 
level [5] (as posed by Dubin et al. [4]),  or for eikonal 
waves [6].  This work explicated the intimate relation 
[8,9,3] between the linear susceptibility and the pon- 
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deromotive hamiltonian. We have also developed an 
action principle for investigating the ponderomotive 
stabilization of  a mirror-confined plasma [ 10,11 ].  

Motivated by the upsurge o f  interest in relativistic 
plasmas, we have formulated a covarlant treatment, 
which we present here, for the self-consistent non- 
resonant interaction o f  an electromagnetic wave (in 
eikonal form) and an unmagnetized distribution of  
oscillation centers. In subsequent papers, we plan to 
discuss resonance [12],  magnetized plasma [13],  and 
wave-wave interactions. 

Our first step is to self-consistently derive (a) the 
Ignatiev equation [14] : 

(f(z), H(z)} = 0 ,  (1) 

for the invariant Vlasov distribution f(z) in terms of  
the invariant particle hamiltonian H(z), and (b) the 
Maxwell equation FUV,v = 4 ~  u. Here z is a point in 
eight-dimensional phase space (r,p), with r = (r, t), 
p = ( p , - h ) ; H  = [p - eA(r)]2/2m yields the correct 
covariant hamiltonian equation: drU/dr = aH/~p,, 
@ u / d r  = - aH/arU, implying d u . / d r  = (e/hOFv~ uV; 
the Poisson bracket is the canonical covariant expres- 
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sion {a, b} = (aa /a r" )  (ab lap . )  - (aa /apu)  (ablar.);  
and the four-current density is jU(x;f)  = fd8z f (z ) jU(x;  
z), while ]u(x; z)  = euU84(x - r) is the contribution of 
a particle at z. (We omit the obvious species labels and 
sums.) 

Consider the family of  particle world lines in phase 
space, each parameterized by its proper time r. With a 
smooth but arbitrary assignment of  r = 0 on each line, 
we denote the seven-dimensional hypersurface r = 0 as 
the "initial-condition surface". Introducing seven ar- 
bitrary coordinates r /on that surface, we let g(r/)d7r/ 
represent the particle density at r -- 0. The particle or- 
bits z(r,  r/) are thus an eight-component field on the 
eight-dimensional space (r,  r/). 

We now introduce the action functional: 

S[z(r, n), .4(x)l = fd7ng(r~) 

X fdr  [p~(r, n)drU(r, r l ) / d r  - n(p, r; A)] 

- f d 4 x  FuuFUV/161r, (2) 

the sum of  the particle action (in phase-space form) 
and the Maxwell action. Requiring that S be stationary 
with respect to z(r,  ri) yields the hamiltonian equations 
stated above. The invariant Vlasov distribution is de- 
fined as 

action in (2) is thus - fd4x  ~ ,w~  /8n. 
The Lie generator w(z)  is determined [15] by {w, 

/_/(0)} = _ H(I), where H (0) = p2/2m is the zero-order 
hamiltonian, and/./(1) = ~ exp iO(r) + c.c., with 
= - ( e /m)p  .~(r). We find the solution w(z)  = - i e  [p 
• ~(r) /p .k(r)] exp iO(r) + c.c., and proceed to the new 
hamiltonian K = [exp i {w, }] H = p2/2m + ~( z )  to 
second order, with o,I = ½ {w, H (1) } + H (2), where H (2) 
= (e2/m)I.~'(r)l 2 and oscillatory terms are omitted 
(being eliminated by a second Lie transform). Evalua- 
tion of  the relativistically invariant ponderomotive 
hamiltonian x~(z ; A )  yields 

• (z) = (e2/m)IP.  ~ 12/09. k) 2 , (4) 

where IP" ff 12 = pu~'~(r)  p ° ~ ( r ) ,  and the denomina- 
tor is the familiar resonance p .  k = m~(k" v - cot. To 
this order, xp has the interesting gauge-invariant expres- 
sion ~ = mld~'/drl 2 [dO(r)/dr] -2 ,  and reduces, in the 
unperturbed rest frame, to the familiar e 21~'12/m¢o 2. 
We express the dependence of qffz) on ~u(x)  explicit- 
ly: 

• (z; A) = f d4x .'~(x) .t~ u(x; z)~'U(x), (5) 

by (4), the kernel is [remember that k = k ( x ) ]  

~gu(x;  z) = 54(x - r ) ( e E / m ) ( p  • k) -2  

f(z-) = f d 7 r / g ( r / )  fdT" ~8([  _ z(r ,  r/l).  (3) 

To obtain (1), we introduce the intermediate distribu- 
t iong(g ;  r )  = fd7B g(rl)~ 8(g - z(r ,  r/)), and take its 
r-derivative, using the hamiltonian equations. We find 
ag / a r  = - (g, H}. Integration over r then yields (1), 
since g vanishes for finite z and infinite r. 

Variation of  S with respect to Au(x )  yields the 
Maxwell equation, withjU(x) -- fd7r/g(r/) f d r ( - )  
X 8H(z(rl ,r))lOAu(x ). Use o f ( 3 )  and H then produces 
jU(x) = f d 8 z f ( z )  euUg4(x - r ) ,  as desired. Thus the ac- 
tion principle yields the self-consistent Maxwell and 
Ignatiev equations. 

We now restrict the Maxwell potential to represent 
an eikonal wave: A~(x)  = ~ ( x )  exp iO(x)/e + c.c., 
where ~]" and O are the slowly varying amplitude and 
phase, while the eikonal infinitesimal e will be omitted 
from subsequent formulas. The Maxwell field is thus 
F ~ ( x )  = iffu~(x ) exp iO(x) + c.c., with ~',u = ku"Tv 
- ko.~ u, and ku(x)  = aO(x)/ax ~ = (k,-¢o).  The Maxwell 

X [k2pUp~ + 8Uu(k. p)2 _ (k. p ) (p"k  v +k"pu)  ] .(67 

We now use the property of  the phase-space la- 
grangian action, of  invariance under canonical trans- 
formations [161: 

f dr [pudrU/dr - H(p, r)] 

= far  [pud~U/dr - K( , ,  ~)1 , (7) 

where the overbar (omitted subsequently) denotes 
oscillation-center variables. Thus the action now reads 

s = fdTng(n)fdT ~.d~./dT - pZ/2m - @(z;A)] 

- f d 4 x  ~3'~/87r. (81 

Variation with respect to the oscillation-center orbit 
z(r,  71) yields drU/dr = aK/aPu, @u/dr  = - aK/aru, 
for the covariant ponderomotive effects. Introducing 
the invariant oscillation-center distribution (not to be 
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confused with Fu~): F(z) = fd7~ g(rl)fdr ~ 8(z - ~(r, 
r/)), we obtain, in analogy to the steps leading to (1), 
the corresponding Ignatiev equation: 

(F(z), p2/2m + kO(z;A)} = 0 .  (9) 

In order to vary S with respect to .,~(x) and O(x), we 
first substitute (5) into (8), obtaining (for the terms 
bilinear in A) 

s(2) _-f d4x fiT~;(x)D#v(X; F).~(X), (10) 

where the dielectric matrix DUv is the sum of  the vacu- 
um part 

OvacUv(k(x)) = (kUku - k26~)14~r (11) 

and the susceptibility matrix 

x%(x; F) = - f dSz F(z) ,I%(x; z). 02) 

This relation (12) is the "K-× theorem" [8,9,3],  
which thus is the essential ingredient o f  the action 
functional, coupling F(z) to Aa(x). 

It  is convenient to express the dielectric matrix in 
terms o f  its local eigenvalues and eigenvectors. Since 
S (2) is a scalar and A~'A~ is hermitian, DUv(x ) is her- 
mitian, with real oigenvalues Do(x ) (labeled by or) and 
with orthonormal (complex) eigenvectors 0a(x): eu* 
X ~ = ~a" Thus we express 

D%(x) = ~Do(x)e~(x)ef f*(x  ) , (13) 
Ot 

so that 

S(2) = f d 4 x  Do(x)IAo(X)l 2 , (14) 

where Ao(x ) = eap*(x)~V(x) is the projection of  Z 
on the ot eigenvector of DUv(x ). 

Noting that Do(x ) = Dc,(x , k(x)) [see (1 I) and (6)] ,  
we proceed to vary S(2), first with respect to Aa(x), 
obtaining the eikonal equation for the phase: 

O~(x, k = aO/ax)  -- o ,  (15) 

associated with polarization e o. This yields the covari- 
ant ray equations: 

dr.U/do = - aDJ~ku,  dku/do = i}Da/axU. (16) 

Variation with respect to O(x) (the phase for a given 
polarization) yields the wave-action conservation law 
[17] : OJU(x)/Ox u = 0, where the action density four- 
vector is 

jr(x) = -IAo(x)12 aO~(x, k)lOk u , (17) 

[evaluated at k(x)] .  Since the local eigenvalues Da(x) 
are functionals of  the oscillation-center distribution 
F(z), by (12), we have now obtained a closed self- 
consistent set of  coupled equations for F(z) and the 
wave amplitude and phase. 

In a future paper, we shall investigate the conserva- 
tion laws [ 18] associated with these action principles. 

We have benefited greatly from discussions with 
B.M. Boghosian, R.G. Littlejohn, S.M. Omohundro,  
P.L. Similon and J.S. Wurtele. 
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