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Abstract

We present two large families of Silnikov-type homoclinic orbits in a two-mode model that describes second-harmonic
generation in a passive optical cavity. These families of homoclinic orbits give rise to chaotic dynamics in the model. ©

1997 Published by Elsevier Science B.V.

1. Introduction

A standard model of the dynamics of light in a
second-harmonic generating passive optical cavity
consists of the equations

A= —ik1A; +i4A2A] — eaA;,
: i
Ay = 3
where A; and A, are the slowly modulated amplitudes
of the fundamental color and its second harmonic,
«1 and ex; are the frequency mismatches, ea¢A, and
ga A, are the losses of light in the ring cavity, and £y,
is the external pumping of the second-harmonic mode
[1-4]. In order to derive this model, one must assume
that the crystal in the cavity does not have a cubic
symmetry. Crystals without this symmetry are, for in-
stance, KTP or LiNbO3. Moreover, the crystal must
be short, so that all the spatial effects in it, such as the
modulational instability, can safely be neglected [5].
One must also assume that no modes other than a fun-

A} —e(ina + @) Az + &2, (1

damental frequency of the light and its second har-
monic can be present in the cavity [ 1,4]. Finally, one
must assume that the cavity is of extremely high qual-
ity, so that both the pumping and the losses can be
taken as relatively small and considered as perturba-
tion terms.

The model (1) and its various modifications display
a surprisingly rich array of different types of dynami-
cal behavior. These include bistability, stable periodic
pulsations, and chaos [1-4], which were observed
both numerically and also experimentally. Thus, it
seems appropriate to investigate mathematical proper-
ties of the model (1) that could shed light on these
types of behavior, and the chaotic dynamics in partic-
ular, which we do in this Letter.

We use the results of Refs. [6-8] to compute two
large families of homoclinic orbits that the model (1)
supports. All these orbits are of Silnikov type [9-13],
and bring along with them chaotic dynamics arising
from a Smale horseshoe construction [ 14]. Physically,
these dynamics should manifest themselves by tran-
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sient intermittent flickering of light between the fun-
damental and the second-harmonic colors.

2. The ideal cavity

When £ = 0, we obtain the equations that describe
the ideal cavity without any pumping or losses. They
are

Al = —1x14, +iA2AT,

Ay = 5 A}, (2)
and can be derived via the formulas
. JH,
Aj=-212 j=1,2,
o'?A;f

from the Hamiltonian function

Ho = Lxi|A? — L(AAS + A7 Ay).

An additional conserved quantity in (2) is the intensity
of the light in the cavity,

1=14A2+ 1A%

The canonical transformation

Ay =+/2020 —|a?) e %2, Ay =qe ™

reduces Eqs. (2) into a planar Hamiltonian system for
the complex variable a, and a quadrature for the angle
¢. From this reduced form, we calculate the family of
heteroclinic solutions,

A(t, 1, ¢0)

= +4/2(21 — «}) sech(4/21 — &} t)e™'#/2,
Ax(t,1,¢0)

=[xy +i4/21 — &% tanh(4/21 — k3 1) ]e™ %,

(3)

which connect pairs of equilibria,
Az2(—00,1,¢0) = (k) —iy/21 — k})e™ %, (4)
Az(00,1,¢0) = (xy +iy/2] — ke, (5)

that lie in the plane A; = 0 outside of the circle 2/ =
|A2|? = «?; see Fig. 1. (The details of the calculation

| Al

Fig. 1. Heteroclinic solutions (3) with a fixed value of the angle

Po.

are similar to, but simpler than, those in Ref. [15].)
By varying the parameter / in the formulas (3), (4),
and (5), we conclude that all the heteroclinic solutions
(3) corresponding to a fixed value of the angle ¢g
lie in a plane, and that their endpoints (4) and (5)
all lie on the same straight line tangent to the circle
21 = |Az)? = «?. Furthermore, formulas (4), and (5)
imply that the difference A (/) in the argument of the
variable A, after each heteroclinic excursion (3) is
equal to

2
A(I) = 2arctan Y2 =41 (6)

Ki

3. The pure second harmonic mode

The pure second harmonic mode in the plane A; = 0
is invariant even for the full system (1). Its dynamics
are governed by the equation

Ay = —&(iky + a) Ay + €y3, (7N

which is obtained from Egs. (1) in this plane. There
is a single equilibrium in this plane at the point

_r - (8)

A1=0, A= —,
! 2 a+ 1Kk,
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which is, restricted to the A; = 0 plane, a spiral sink
if a > 0 and k; # 0. Dynamics in this plane evolve
on a slow, O(1/g) time scale.

4. The n-pulse Melnikov function

For system (1), a homoclinic orbit with n pulses
consists of two pieces. The first piece of such a ho-
moclinic orbit is close to a string of n consecutive
heteroclinic orbits (A, A2) (¢, 1, g — jA(T)), with
j=0,...,n— 1. Here, the phase difference A(/) is
given by Eq. (6). These heteroclinic orbits are called
pulses. The string begins with the unstable manifold
of the equilibrium point (8), that is, the heteroclinic
orbit (A1, A2) (t,1, ¢p) given by formula (3) with

Ax(—00,1, o) = (k) —iy/2I — K%)e'i‘i"’

Y2

T a+iky ©)
This equation fixes the parameters I and ¢y in all
n pulses of the string. The last heteroclinic orbit in
the string lands back in plane A; = 0O at the point
Aa(00,I,do — (n—1)A(T)). The second piece of a
homoclinic orbit with n pulses is close to the trajec-
tory of the system (7) that connects the landing point
As(00, 1, o — (n — 1)A(I)) of the last pulse back
to the equilibrium (8).

A homoclinic orbit with n pulses as described in
the previous paragraph only exists if two further con-
ditions are satisfied.. First, its second piece, or rather
the corresponding trajectory of the system (7) that
connects the point Az(oco,l,¢p — (n — 1)A(D))
to the equilibrium (8), must avoid the circle 27 =
|A2|> = «? and its interior. This is because, oth-
erwise, the mathematical arguments [6-8] used
to establish the existence of such homoclinic or-
bits cease to be valid. Second, we must choose
the parameters «, ¥z, k1 and «; so that the n-
pulse Melnikov function M, (I, ), to be described
next, vanishes along the string of heteroclinic or-
bits (A1, A2) (1,1, ¢h0),. .., (A1, A2) (1,1, o — (n—
DAD)).

The n-pulse Melnikov function [8] is the sum of
the ordinary Melnikov functions calculated along each
of the heteroclinic pulses (3). Here, the ordinary Mel-
nikov function [16,17] is

M(1, o) = /(VHO'g)

X (Al(t115¢0)’A2(ta19¢0))dt:

with

(29 8 0

“ \9A;’ 9AY 9Ay 0A% )’
and g the O(g) part of the vector field (1). (See
also the exposition in Ref. [18], and the references

to original works cited there.) An easy calculation,
similar to that in Ref. [15], shows that for our model

M1, o) =y2Im[A(—00,1,¢pg) — Az(00, 1, ¢p) |

+2ak14/21 — K%,

where Im denotes the imaginary part of a complex
number, so that the n-pulse Melnikov function is given
by the expression

My(I,¢0) = y2Im[A2(—00, 1, ¢bp)
— Az(00,f, g — (n—1)A(1))]

+2n(1KH/2I—K%. (10)

5. Homoclinic orbits with n-pulses in the shape of
a regular n-gon

We consider homoclinic orbits whose shape is
nearly that of a regular n-gon or a regular star with
n vertices. By Eqgs. (4) and (5), adjacent vertices of
such an n-gon or star lie on straight lines tangent to
the circle |Az|* = «?. Therefore, / = I must be cho-
sen so that the angle difference A(J) from Eq. (6)
satisfies the equation

V-
K1

2
=sign(xl)$ + 26,
(11)

where n > 2 and m are relatively prime integers with
m < n/2, and 8 is a small number.

Egs. (9), (10), and (11) imply that if we choose
the parameters «j, k2, and 8, we can compute a and
2 so that there exists an n-pulse, Silnikov type or-
bit [9-13] homoclinic to the equilibrium point (8),

A(]) =2arctan
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Fig. 2. A homoclinic orbit in the shape of a hexagon.

whose sequence of pulses encircles the origin m times
before easing into a spiral of size 281, which lies close
to the plane A; = 0, and slowly winds back into the
equilibrium (8); see Fig. 2. Specifically, a and y, are
given by the expressions

8+ 08,

-Slgn(Kl)W

K1K2
r2= cos(2mm/n) +0(9).
The first of these equations shows that we must choose
the detunings «; and «; to have the same sign in order
for these homoclinic orbits to exist in the physical
regime a > 0.

Besides the just-described n-pulse homoclinic or-
bits in which all pulses follow one another in one
group or bump, we can also find homoclinic orbits of
a similar shape in which several bumps, each consist-
ing of n-consecutive pulses, follow one another, be-
ing interspersed with slow, spiral-like segments that
lie close to the plane A; = 0. The only restriction on
these slow segments is that no part of any of them
may lie inside the circle 21 = |A,|?> = |x|>. We can
form a k-bump homoclinic orbit, with each bump con-
taining n pulses, as follows [7]. Its first bump em-
anates from the equilibrium (8). All its other bumps
arise from essentially the same zero of the n-pulse
Melnikov function as the first bump. In particular,
they take off from the plane A; = O near a curve
Az(—o00,1,¢0(1)), whose existence easily follows
from the simple zero of the Melnikov function at 7 =
I and ¢ = ¢y, s0 that ¢o(I) = ¢hy. Every k-bump
homoclinic orbit can be assigned a symbol sequence,

Fig. 3. A two-bump homoclinic orbit in the shape of a hexagon.

o1 N17202N2 .. . TR 1041 N 1740, in which o; =
= denotes the sign of the real part of the A; coordinate
of the jth bump, 7; = + indicates whether the value of
I at the takeoff of the jthbumpis I > I or I < I, and
N; denotes the number of times the slow segment that
connects the jth and (j + 1)st pulse winds around the
point (8). Each such homoclinic orbit is of Silnikov
type; see Fig. 3.

6. Multi-bump homoclinic orbits with an even
number of pulses in each bump

We now consider the limit in which the ratio be-
tween the detuning «; and the distance V2T of the
equilibrium point (8) from the origin is very small.
In this case, the corresponding phase difference A(7)
from Eq. (6) is close to 7 for I close to I = I. We de-
fine v(I) = x,/v/21, and ¥ = v(I), and consider the
case v({),7? < 1. Re-computing the 2m-pulse Mel-
nikov function M2, (I, ¢o) along a string of 2m con-
secutive pulses emerging from the equilibrium (8),
Taylor-expanding in the small parameter 7, and set-
ting My, (1, o) = 0 now yields the formula

a = mryp + O(5%). (12)

For this particular value of a, a Silnikov-type homo-
clinic orbit [9-13] with 2m pulses connects the equi-
librium point (8) to itself. The pulses of this homo-
clinic orbit jump between an O(%)-sized neighbor-
hood of the point (8) and an O(#)-sized neighbor-
hood of its antipodal point, until this orbit finally spi-
rals into the point (8). Note that we must again have
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x2v > 0, that is k142 > 0, in order that @ > 0, which
is the physical regime.

We now compute the curves along which 2n-pulse
strings of unperturbed heteroclinic orbits take off from
and land on the Aj-plane for general n. We will use
these strings as building blocks in constructing or-
bits homoclinic to the point (8) with many bumps,
each bump consisting of an even, possibly different,
number of pulses. In particular, again re-computing
the 2n-pulse Melnikov function My,(1, ¢ ), Taylor-
expanding in v ([), setting M2,(1, ¢) = 0, assuming
v(I) =5+ @), and using formula (12), we com-
pute that the takeoff and landing curves in the plane
Ay = 0 for the persisting 2n-pulse strings of hetero-
clinic orbits (3) lie at

AZ(—OO’I! ¢0(1))
= —sign(yak2) [iV2I + V2I(m — 2n) ]
+ O(7%), (13)

Ax(00, I, (1) — (n—1)A(1))
= — sign(y2x2) [iV2ZI + V2T (m + 2n) ]
+ O(#?). (14)

In the rest of this discussion, we only consider homo-
clinic orbits in the case when y;x2 < 0, because the
case when y,«; > 0 yields almost identical results. We
construct a homoclinic orbit that connects the equilib-
rium (8) at A, = Ay(—o0, 1, ) = \/2_f(i - mv) +
O(52) to itself as follows. The first bump of this orbit
stays near a string of 2m pulses emanating from this
equilibrium, and returns to the A, plane near the point
Ay = V2I(i + 3mp) + O(5?). After that, the homo-
clinic orbit continues near this plane along a tight spi-
ral that stays O(#2) close to the circle |A; — V2IG-
mp)| = 4mv for N) revolutions around the equilib-
rium point (8), and then takes off again along the
first pulse of the second bump. For general j, the jth
bump takes off near the intersection point of the circle
|A;—V2I(i—mp)| = R;_, 7 and the line (13), where
n = n; is the number of its pulses, and lands near the
intersection point of the circle |A; — V2I(i+3mp) | =
R;_17 and the line (14) with n = n;. The piece of the
spiral that follows this bump lies O(#?) close to the
circle [A; — \/Z_i(i — mp)| = R;p, where

Al

A,

Fig. 4. A homoclinic orbit with two bumps, the first containing
two pulses and the second four.

e )]

=2

and makes N; revolutions around the origin. Moreover,
we must have

R, =1 1/2
nj<m+%l—=m+2[m(m+zm)] .
=2

If, as in the previous section, we let ¢; = & denote
the sign of the real part of the A; coordinate of the
Jjth bump, and 7; = £ indicate whether the value of /
at the takeoff of the jth bump is / > T or I < I, we
can conclude that we can form a homoclinic orbit con-
necting the equilibrium point (8) to itself in the way
just described for every sequence of symbols and inte-
gers a'lmN17'20'2n2N2 v Tp—=10k—1Ng—1 Nk—lTkO'knk;
see Fig. 4.

7. Conclusion

We have exhibited two large families of Silnikov-
type homoclinic orbits [9-13] that are present in the
model (1). Even though we have assumed that only
the second-harmonic mode in the cavity is pumped in
this model, it is easy to see that the calculations and
results would be nearly identical if the fundamental
mode was also pumped by a term of the form ey;.
We should also remark that all the homoclinic orbits
discussed in the previous two sections exist in the limit
of small &. Thus, we expect that for any finite value of
&, we should only be able to obtain a finite number of
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such homoclinic orbits. However, this number should
increase with decreasing &.

Well-known arguments [12] show that the homo-
clinic orbits that we have found imply the presence of
a Smale horseshoe return map [ 14], and thus chaotic
dynamics. The orbits generated by the Smale horse-
shoe map are all unstable, and thus only exhibit tran-
sient chaos. However, the presence of homoclinic or-
bits in the phase space of the model (1) is also one
likely mechanism responsible for the occurrence of a
strange attractor seen numerically at O(1) values of .
In particular, a period-doubling route to such an at-
tractor was computed in Ref. [4], and it is not incon-
ceivable that a Silnikov mechanism could be respon-
sible for this route. (In this respect, see the exposi-
tion and references to the orginal works in Ref. [18].)
The strange attractor has also been observed experi-
mentally [ 19]. A numerical investigation of a possible
connection between the homoclinic orbits described
in this Letter and the strange attractor, in particular, a
continuation of these homoclinic orbits to O(1) val-
ues of £ where this attractor exists, is in progress and
will be presented elsewhere.
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