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Abstract

The dynamics of an ensemble of two-level atoms in a single-mode resonant laser cavity with external pumping and a weak
coherent probe are investigated. Homoclinic orbits connected to the completely inverted atomic state are found analytically
using linear perturbation theory (the Melnikov method) in the near-integrable limit, and are continued in the parameter
space to O(1) parameter values using the bifurcation code AUTO. The breakup of these homoclinic orbits is believed to be

a source of chaos in the system.

1. Introduction

We describe surfaces of homoclinic orbits in the
parameter space of an ensemble of two-level atoms
in a single-mode resonant laser cavity with external
pumping and a weak coherent probe laser. We assume
that the sample of lasing material in the cavity is small
enough that we can neglect all spatial effects. The
time evolution of the complex envelopes of the electric
field £ and the medium polarizability P, as well as
the real-valued population inversion D, is described
by the Maxwell-Bloch equations [1-5],

E=P —¢eak, (1a)

P =(£+e8e“)D - eBP, (1b)

D=—L[(E+e8e“)P* + (£ +ede ) P]
—ey(D—1), (1c)

where the overdot denotes the time derivative. All the
variables and parameters are dimensionless, their di-
mensional counterparts and the physical approxima-
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tions that go into the derivation of these equations are
discussed in Ref. [5] and references therein. The pa-
rameter ga represents the cavity losses, while €8 and
gy are the parallel and perpendicular relaxation rates
for the lasing material in the cavity, &8 is the strength
of the probe laser, and w is the detuning between the
frequencies of the probe light and the radiation in the
resonant cavity, which is tuned to match the atomic
transition frequency.

2. The integrable limit

In the limit as £ goes to zero in Egs. (1), we recover
the integrable Hamiltonian equations of the classical
Jaynes-Cummings model [6]. This integrable limit
corresponds to absence of the probe and neglect of
both cavity losses and relaxation in the medium. The
Jaynes-Cummings equations possess three conserved
quantities: unitarity

H=4P?+ 1D,
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the interaction energy
J=(EP* —E*P) /2,

and the sum of the field energy and the excitation
energy

K=3E*+D.

Eliminating the population inversion D in favor of
the energy K in Egs. (1) with & = 0 yields the ideal
complex Duffing system,

E=P, P=£(K-1LEP. 2)

This system has an important equilibrium at £ =0 =
‘P. This equilibrium corresponds to the absence of any
cavity radiation and material polarizability, with all
of the atoms of the material sample being either in
the ground state, when K < 0, or in the completely
inverted state, when K > 0. (Polarizability vanishes
in these states, because there is no charge separa-
tion to form an atomic dipole moment.) The curve
of completely-inverted-state equilibria at £ = 0 = P,
K > 0 is connected to itself by a parametrized fam-
ily of two-dimensional homoclinic tori, given by the
solutions [7,8],

£ = 2\/1?sech(\/§ 1) e,
P = —2K sech(VK ¢) tanh (VK t) e, (3)

where @ is a time-independent phase angle. This fam-
ily of homoclinic tori is represented implicitly by the
equations,

H-1Kk*=0, J=0. (4)

Each torus describes the locus of states undergone by
the system as the material emits light into the cavity
and reabsorbs it in infinite time. The aim of this paper
is to use this family of homoclinic tori as a framework
in which to analyze the chaotic behavior of Eqs. (1).

3. The cavity without the probe

In the absence of the probe laser, that is when 6 = 0,
Egs. (1) possess a circular symmetry, and therefore
contain a continuous family of real subsystems,

E=P—eal, P=E(K-1LE —eBP,
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Fig. 1. &-P projection of the Lorenz attractor at
(ea, B, ey) = (0.5,0.1,0.05).

K=—eaf? —ey(K - 12— 1), (5)

which are obtained by substituting X for D, writing
E¢'? and Pe'? with real £ and P instead of the usual
complex £ and P, and noticing that ¢ = 0. This con-
tinuous family of real subsystems is precisely the sub-
space of the complex £-P-D phase space in which
J =0.Eqgs. (1) with 8 =0 imply J = —e(a + B)J,
so the J = 0 subspace is attracting, and therefore is
the only submanifold of importance in the long-time
behavior of the system [9].

Haken [10] shows that the real system (5) trans-
forms into the well-known Lorenz equations under the
change of variables,

e?a?

Y
o

o
t— —r7,

£-2x P
g o

82(12
D (p-2),
a

with new parameters b, o, p defined by

@ _Y 1
= b=—=, p_aﬂsz'

Laser experiments by Arecchi [11] and Weiss et al.
[12,13] based on approximations corresponding to
system (5) have verified the Lorenz attractor descrip-
tion of single-mode laser dynamics in some parame-
ter regimes. In fact, the Lorenz attractor in the phase
space of Egs. (5) is located in a region of the param-
eter space near (ea,&f,ey) = (0.5,0.1,0.05), see
Fig. 1. From this viewpoint, the & = 0 limit of Eqgs.
(5) is a singular limit of the Lorenz equations as the
Rayleigh number p goes to infinity [14-16].
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The & = 0 limit of the real system (5) possesses a
pair of two-dimensional homoclinic surfaces connect-
ing the curve of completely-inverted-state equilibria
to itself. These surfaces are given explicitly by the so-
lutions (3) with 8 = 0 and 6 = 7, or implicitly by the
first equation in (4), which can be written as

Pr—KE + Let=0. (6)

For € > 0, the line £ = 0 = P is still invariant,
and consists of two orbits that contract exponentially
towards the only surviving completely-inverted-state
equilibrium on it at £ = 0 = P, K = 1. This equilib-
rium is a saddle with a two-dimensional stable and a
one-dimensional unstable manifold when 82aﬁ < 1,
and becomes a sink when e2a8 > 1. We seek or-
bits homoclinic to this completely-inverted-state equi-
librium, because they are expected to be a source of
chaos in the laser system.

For small values of € we calculate the parameter
regime in which there exist orbits homoclinic to the
surviving completely-inverted-state equilibrium by us-
ing perturbation theory, that is, by using the Melnikov
method [ 17]. Taking into account the reflection sym-
metry of the system (5) under (£,P) — (=&, -P),
this method implies that a pair of such homoclinic
orbits exists when the Melnikov function, calculated
along their unperturbed counterparts, passes through
a transverse zero in the ea—-gfB-gy parameter space.
This Melnikov function is

M(a,pB,y) = /(n-g)(t)dt,

where 7 is the gradient of the implicit equation (6)
in the £-P-K space, and g is the O(e) part of the
vector field (5). The integral is calculated along the
solutions (3) with 8 = 0 and # = 7, and K = 1. The
final result is M(a, B,y) = %(Sa — B~ 2y) for both
orbits. Therefore, a pair of orbits homoclinic to the
surviving completely-inverted-state equilibrium exists
on a two-dimensional surface in the three-dimensional
sa-gf3-gy parameter space for small € > 0 near the
surface 3o — 8 — 2y = 0. A similar result appears in
Ref. [18].

We continue these homoclinic orbits numerically
in the ea—eB-¢y parameter space by using the code
AUTO [19]. We fix ey and vary ea and 8. Strictly
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Fig. 2. Locus of points in the ea-gB plane where there ex-
ist orbits homoclinic to the completely-inverted-state of the
three-dimensional model at fixed values of ey: (a) gy = 0.01, (b)
ey =0.05, (¢) sy = 0.226.
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Fig. 3. Bifurcation sequence as sa increases for fixed £¢8 = 0.04 and £y = 0.01 in the three-dimensional model. The trajectories are

two-dimensional projections of the true trajectories: (a) ea = 0.01, (b) ga =0.02, (¢) ex =0.05, (d) e =0.1, (e) ea =0.2.
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speaking, we continue periodic orbits of high period
(about 500) that are a good approximation to the
completely-inverted-state homoclinic orbits. The bot-
tom parts of the curves in the ea—&f plane shown in
Fig. 2 on which completely-inverted-state homoclinic
orbits exist are very well approximated by the straight
lines 3a — B — 2y = 0, as predicted by the Melnikov
function, even quite far into the regime of moderate
values of the parameters ea, ¢8, and gy. For higher
O(1) parameter values, the Melnikov theory does not
hold and homoclinic orbits can only be found through
numerical procedures.

Chaotic dynamics exist in the neighborhood of this
curve where the homoclinic orbits break, which can
be seen by constructing a Smale horseshoe map (a
standard demonstration for this system is given in Ref.
[17]). When the parameters are close to the curve
of homoclinic values, the chaotic dynamics cannot be
observed due to the presence of spiral sinks. However,
these stable equilibrium points undergo a Hopf bifur-
cation and become unstable as we cross the dashed
line in Fig. 2. Inside this region, either the chaotic
dynamics may be observed as a strange attractor, or
stable limit cycles may be observed (when they ex-
ist). In Fig. 2c we see that the homoclinic orbits ob-
tained by numerical continuation of those found with
the Melnikov method are consistent with the numeri-
cally determined homoclinic orbit found in the Lorenz
equations [20] at the parameter values (ea, 8, ey) =
(0.847,0.085,0.226). The existence of these latter
homoclinic orbits for nearby parameter values has
been shown rigorously in Refs. [21-23] by precise
shooting methods. Note that these parameter values
are not in the linear region of small parameter val-
ues which we were able to predict analytically with
the Melnikov method; however, numerical continua-
tion shows that this is precisely the same homoclinic
orbit as that found with the Melnikov method.

Our study thus yields a fairly complete picture
of the two-dimensional surface in the ea-gf-ey
parameter space on which orbits homoclinic to the
completely-inverted-state equilibrium exist. All pre-
viously observed homoclinic orbits of the same type
lie on this surface [ 18,20-23]. This surface encloses
the smaller surface on which Hopf bifurcations of
equilibria take place, and inside which the Lorenz
attractor may be observed.

Theoretical and experimental bifurcation sequences
have been observed that lead to the occurrence of
the Lorenz attractor [11-14,20]. The sequence ob-
served in Refs. [14,20] takes place on a segment
of the line @« = 108, 3y = 88, which pierces
the two-dimensional surface in the ea-ef-gy pa-
rameter space on which orbits homoclinic to the
completely-inverted-state equilibrium exist at the
point (ea,eB,ey) = (0.847,0.085,0.226). The se-
quence observed in Ref. [12,13] takes place on a
segment of the line ¥ = 0.258, a = 4.58, which lies
entirely inside this surface. We propose another type
of a bifurcation sequence which takes place on any
line £8 = const, gy = const in the ea-gB-gy parame-
ter space, along which ea is increased. In other words,
this sequence leaves the material properties of the las-
ing medium intact, but varies the cavity losses, which
should be easy to achieve experimentally. If we take
gB and ey sufficiently small in such a sequence, we
can claim that the homoclinic orbits that it encounters
are well predicted by the Melnikov method. More-
over, the distance in the parameter space between the
point where these homoclinic orbits occur and the
point where the strange attractor is first observed is
small, which supports the claim that the breakup of
these orbits influences the formation of the attractor.

In Fig. 3, we observe one such bifurcation se-
quence. In particular, this figure shows a sequence
of the £-P projections of phase trajectories for the
Maxwell-Bloch system (5) as the parameter ga in-
creases at constant &8 and ey along a vertical line in
the ea—&f plane. The initial phase point is the same
in each case. For sa small and below the dotted line
in Fig. 2a, Fig. 3a shows that the solution approaches
a spiral-sink equilibrium. As ea increases to match
the homoclinic orbit condition 3a — 8 — 2y = 0, the
solution behavior shows little change, see Fig. 3b.
At higher values of ea the trajectory approaches a
limit cycle, see Fig. 3c. Fig. 3d shows that this limit
cycle persists as ea increases up to the Hopf bifur-
cation value, the dashed curve in Fig. 2a. Finally as
ea increases further, the solution tends to the Lorenz
attractor whose £~ projection is shown in Fig. 3e.

In the full five-dimensional complex £-P-K space,
there is a whole circle of orbits homoclinic to the
surviving completely-inverted-state equilibrium, and
also a whole circle of Lorenz attractors.
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Fig. 4. Locus of points in the sa—gf plane where there exist completely-inverted-state homoclinic orbits of the five-dimensional model at

€6 = 0.1 and fixed values of ey: (a) ey =0.01, (b) ey = 0.05.
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Fig. 5. Two-dimensional projection of the five-dimensional
strange attractor caused by orbits homoclinic to the com-
pletely-inverted-state at (ga, €8, ey, £6) = (0.5,0.1,0.05,0.1).

4. The cavity with the probe

When the weak laser probe is included in system
(1), new variables E = £e7¢! P = Pe~ivt g =
%|<€' 2+ D may be used to transform this system into
the autonomous form

E=—iwE+ P — eaFE, (7a)
P=—iwP + (E+¢8) (K — }|E|*) —eBP,  (7b)
K =—1e8(P+ P*) — salE

—ey(K — HEP? - 1). (7¢)

For small enough values of &, Eqs. (7) have a spiral-
saddle completely-inverted-state equilibrium near E =

0 = P, K =1, with a three-dimensional stable and a
two-dimensional unstable manifold. Since the circular
symmetry in these equations is broken, we expect to
see at most one orbit homoclinic to this equilibrium
at any given parameter values. We confirm this by
calculating two Melnikov functions,

Mj(a,ﬁ,y>=/(nj-g)(z)dt, j=1.2,

where n; and n; are the gradients of the implicit equa-
tions (4) in the E-P-K space, and g is the O(e)
part of the vector field (7). The integrals are calcu-
lated along the orbits (3) transformed into the rotating
frame, again with K = 1. The results are

M (a,B,y) =3Ba— B —2y)

+ 276w (w? — 2) sech(17w) sin,
My(a,B,y) = —27dw” sech(L7w) sin 6.

These functions have simultaneous simple zeros at 8 =
0 and € = 7, when 3a — B — 2y = 0. Therefore, two
families of homoclinic orbits exist on two surfaces
that are O(&?) apart from each other and exist near
the hyperplane 3a — 8 — 2y =0 in the ea-gf3-ey-£d
parameter space for small enough values of &.

We again continue these hypersurfaces into larger
parameter values by using the code AUTO. We fix
gy and &6 (and let @ = 1), and continue in ex and
&f. This continuation confirms that there are two dif-
ferent families of homoclinic orbits, one for 8 = 0
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Fig. 6. Bifurcation sequence as ea increases for fixed ¢8 = 0.04, ey = 0.01, and &6 = 0.1 in the five-dimensional model. The trajectories
are two-dimensional projections of the true trajectories: (a) e = 0.01, (b) ea =0.02, (¢) ea =0.05, (d) ea =0.1, (&) ea =0.2.
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and one for # = 7, which exist along ea—g8 curves
that are tangent near ¢ = 0. As shown in Fig. 4, the
ea—gf3 curves along which orbits homoclinic to the
completely-inverted-state equilibrium exist are again
well approximated by the equation 3aa — 8 — 2y =0
implied by the Melnikov method, even well into the
region of moderate values of ea, £8, and ¢y. From
Fig. 4, it is seen that the parameter region where ho-
moclinic orbits exist with the probe is similar to that
without the probe when gy and &8 are of the same or-
der of magnitude. As the probe strength is increased
and &8 becomes much larger than gy we see that the
similarity between the probe and no-probe case only
holds for small values of e and £8.

The homoclinic orbits found in these continuations
are Silnikov saddle-focus connections [24-27], and
they induce chaotic dynamics by the Smale horseshoe
mechanism for parameter values in the vicinity of the
curves in Fig. 4. A two-dimensional projection of the
five-dimensional chaotic attractor is shown in Fig. 5.
A bifurcation sequence obtained by fixing the material
relaxation parameters £ and gy and the probe strength
€6, and increasing the cavity losses sa is shown in
Fig. 6.

5. Conclusion

We have determined the shape and position of the
surfaces in the parameter space of the Maxwell-Bloch
equations with and without the probe on which or-
bits homoclinic to the completely-inverted-state equi-
librium exist. These surfaces contain all previously
known cases of the same type of homoclinic orbits ob-
served in the phase space of the equations without the
probe. These homoclinic orbits are believed to provide
much of the structure under which strange attractors
develop [14,20], hence their existence is of great in-
terest in the study of chaos. It may be possible to de-
velop experimental methods to observe them, perhaps
by designing methods for controlling chaos [28-33]
that mimic the AUTO code. These methods would pro-
vide a better confirmation of the validity of the math-
ematical model than do conventional methods such as
power spectra or Lyapunov exponents, because they
would identify the homoclinic orbits directly, instead
of by inference from their effects.
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