1. Kármán--Howarth Theorem for the Lagrangian averaged Navier-Stokes alpha model, Holm, DD, (pdf)
  2. The Complex Geometry of Weak Piecewise Smooth Solutions of Integrable Nonlinear PDE's of Shallow Water and Dym Type, Alber, M., Camassa, R., Fedorov, Y., Holm, D., Marsden, J., (pdf)
  3. Stepwise Precession of the Resonant Swinging Spring, Holm, D., Lynch, P., (pdf)
  4. An Integrable Shallow Water Equation with Linear and Nonlinear Dispersion, H. R. Dullin, G. A. Gottwald, D. D. Holm, (pdf)
  5. Variational Principles of Lagrangian Averaged Fluid Dynamics, Holm, D.D., (3-26-2001) (pdf)
  6. Variational Principles of Lagrangian Averaged Fluid Dynamics, Holm, D.D., (3-23-2001) (pdf)
  7. An Optimal Control Formulation for Inviscid Incompressible Ideal Fluid Flow, A. M. Bloch, P. E. Crouch, D. D. Holm, J. E. Marsden, Proceedings of the 39th IEEEE Conference on Decision and Control, (pdf)
  8. The Navier-Stokes-alpha model of fluid turbulence, Foias, C., Holm, D.D., Titi, E.S., Physica D, (pdf)
  9. Navier-Stokes-alpha model: LES equations with nonlinear dispersion, Domaradzki, J.A., Holm, D.D., Special LES volume of ERCOFTAC bulletin, (pdf)
  10. Averaged Lagrangians and the mean dynamical effects of fluctuations in continuum mechanics, Holm, D.D., (pdf)
  11. The complex geometry of weak piecewise smooth solutions of integrable nonlinear PDE's of shallow water and Dym type, Alber, M., Camassa, R., Fedorov, D., Holm, D.D.,Marsden, J., (pdf)
  12. Introduction to HVBK dynamics, Holm, D.D., LECTURE NOTES IN PHYSICS; 2001; v.571, p.114-130 (pdf)
  13. Variational principles, geometry and topology of Lagrangian-averaged fluid dynamics, Holm, D.D., NATO SCIENCE SERIES, SERIES II: MATHEMATICS, PHYSICS AND CHEMISTRY; 2001; v.47, p.271-291
  14. Integrable vs. nonintegrable geodesic soliton behavior, Fringer, OB; Holm, DD, PHYSICA D; APR 1 2001; v.150, no.3-4, p.237-263, (pdf)

Last Updated: January 2004