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ABSTRACT 
Permeability of most geologic formations varies erratically in space by orders of magnitude 
and is often modeled as a random space field.  It is often computationally expedient to 
determine the mean values of state variables (pressure heads, velocity) by replacing spatially 
varying (random) local conductivities with their effective or apparent counterparts.  We 
explore the concept of apparent parameters for formations with uncertain spatial arrangement 
of geological facies and hydraulic properties within each facies.  Our analysis relies on the 
composite media theory, which employs random domain decomposition to explicitly account 
for the separate effects of material and geometric uncertainty on ensemble moments of head 
and flux.  We present a general expression for the apparent conductivity of such media and 
analyze it in detail for one-dimensional steady flow in a bounded random medium composed 
of two materials of contrasting hydraulic conductivities.  Location of the internal boundary 
between the two materials is random and normally distributed.  The resulting apparent 
conductivity is compared with approximate perturbation solutions. 
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INTRODUCTION AND PROBLEM FORMULATION 
It has long been recognized that deterministic analyses of flow and transport in subsurface 
environment are rendered less than optimal by the lack of detailed site characterization of the 
kind required for most high-resolution numerical simulations.  Uncertainty in hydraulic and 
transport parameters of geologic formations is conveniently accounted for by treating them as 
random fields.  It is often computationally expedient to replace spatially varying (random) 
local conductivity, K(x), with its effective counterpart, Keff , which is defined as a coefficient 
of proportionality between the ensemble mean flux, 〈q(x)〉, and ensemble mean hydraulic 
head gradient, ∇〈h(x)〉.  For mean uniform flows (defined as flows with ∇〈h(x)〉 = const) in 
statistically homogeneous and isotropic infinite domains, effective conductivity Keff is a 
characteristic of the medium only.  It is given by the harmonic, Kh, and geometric, Kg, means 
of K(x) in one and two dimensions, respectively (Dagan, 1989, and references therein).  
However, if flow is not uniform in the mean and/or a flow domain is bounded, Keff depends 
not only on the medium properties, but also on the flow regime (Sánchez-Vila, 1997 and 
references therein).  To make this distinction clear, it is usually referred to as ‘equivalent’ or 
‘apparent’ conductivity, Kapp, rather than ‘effective’.  Much of the existing literature on 
stochastic hydrogeology deals with effective (apparent) properties of mildly heterogeneous 
formations composed of a single material whose heterogeneous properties are treated as 



statistically homogeneous (stationary) random fields with small variances.  One recent 
example of this approach is given by Tartakovsky et al. (2002), who explored the tensorial 
nature of the apparent transmissivity in a rectangular flow domain by localization and 
perturbation expansion of the nonlocal mean flow equations in the variance of log-
transmissivity (conductivity), 2

Yσ .  The requirement that variances, such as 2
Yσ , be small 

(i.e., 12 <<Yσ ) is crucial for closing the moment differential equations or for making Monte 
Carlo simulations manageable.  At the same time, it clearly limits the applicability of these 
analyses.  Several approaches have emerged to deal with highly heterogeneous natural 
formations composed of multiple geological facies (Winter et al., 2002). 
 
The recently proposed method (Winter and Tartakovsky, 2002) of random domain 
decomposition (RDD) provides a general framework for modelling flow and transport in 
heterogeneous composite porous media.  It allows for uncertainty in both spatial arrangement 
of geological facies and hydraulic properties within each facies.  Since perturbation 
expansions are carried out within each facies separately, their accuracy and robustness remain 
high for most geological settings.  The main goal of this study is to use RDD to derive and 
analyze the effective (apparent) conductivity of geologic media composed of several materials 
with uncertain geometries and conductivities. 
 
Let us consider steady-state saturated flow in a flow domain Ω = Ω1 ∪ Ω2, which is composed 
of two disjoint sub-domains, Ω1 and Ω2, separated by a contact surface Γ12 = Ω1 ∩ Ω2.  It is 
described by Darcy’s law, q = – K ∇h, and mass conservation, – ∇ ⋅ q + f = 0, where f is a 
(generally random) forcing term. The (random) hydraulic conductivity field belongs to two 
distinct populations, 
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Then, the flow problem can be rewritten as 
 
∇ ⋅[Ki(x) ∇h] + f(x) = 0 x ∈ Ωi  (2) 
 
subject to the boundary 
 
h(x) = H(x) x ∈ ΓD = 

21 DD Γ∪Γ   (3) 
 
Ki(x) ∇h ⋅ n(x) = Q(x) x ∈ ΓN = 

21 NN Γ∪Γ   (4) 
 
and contact surface conditions 
 
h(x−) = h(x+) x ∈ Γ12 (5) 
 
K(x−) ∇h(x−) ⋅ n(x−) = K(x+) ∇h(x+) ⋅ n(x+) x ∈ Γ12 (6) 
 
Here the superscripts –/+ denote the portions of the domain characterized by conductivities K1 
and K2, respectively, 

iDΓ  and 
iNΓ  (i = 1, 2) are the Dirichlet and Neumann outer boundaries 

of i-th material, ΓD and ΓD are the Dirichlet and Neumann boundaries of domain Ω, and n is 



the unit vector normal to the bounding surfaces. 
 
To derive an expression for the apparent conductivity Kapp of such media, we localize the 
mean fluxes, along the lines of Tartakovsky et al. (2002).  The resulting approximations are 
then solved for the special case of one-dimensional flow in a bounded domain.  An exact 
solution of the mean flow equation is derived for the same flow regime and the nature of Kapp 
for the composite formation is discussed. 
 

LOCALIZATION OF MEAN FLUXES 
The mean Darcy’s law, 
 
〈q(x)〉 = – 〈Ki(x)〉 ∇〈h(x)〉 + ri(x) x ∈ Ωi  (7) 
 
is derived by applying the Reynolds decomposition to represent random fields ℜ′+〈ℜ〉=ℜ  
as the sum of their ensemble means 〈ℜ〉  and zero-mean fluctuations ′ ℜ  and then averaging 
over the ensemble of realizations.  In (7) 〈Ki(x)〉 denotes the (ensemble) mean hydraulic 
conductivity of the material i, and ri = – 〈K′i ∇h′〉 is the residual flux, representing the cross-
covariance between hydraulic head gradient and conductivity fluctuations. The latter can be 
found as the solution of an integral equation 
 
ri(x) = ∫∫

ΩΩ
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where ai and bi are symmetric positive-semidefinite and non-symmetric dyadic.  It follows 
from (7) and (8) that the mean Darcy’s flux 〈q(x)〉 is nonlocal, i.e., depends on the mean head 
gradient ∇〈h〉 at points other than x.  Hence the effective (apparent) conductivity generally 
does not exist. 
 
If both the mean head gradient and the residual flux vary slowly in space, then (8) can be 
localized, leading to an approximate expression 
 
ri(x) ≈ Ai(x) ∇〈h(x)〉 + Bi(x) ri(x)  (9) 
 
where 
 
Ai(x) = ∫

Ω i

di yxy ),(a ;  Bi(x) = ∫
Ω i

di yxy ),(b  (10) 

 
This gives an approximate (localized) form of the mean Darcy’s law 
 
〈q(x)〉 ≈ – Kappi

(x) ∇〈h(x)〉 x ∈ Ωi  (11) 
 
The spatially varying apparent conductivity tensor is given by 
 
Kappi

(x) = 〈Ki(x)〉 I + ki(x);  ki(x) = [I – Bi(x)]-1 Ai(x) (12) 
 
where I is the identity tensor.  Evaluation of the apparent conductivity in general requires 
some closure approximation of (9).  One of the most popular approaches is to use perturbation 



expansion in 2
Yσ , variance of log-hydraulic conductivity, Y = ln K.  The first order (in 2

Yσ ) 
approximation of the apparent hydraulic conductivity tensor is 
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where Kgi(x) and 2
iYσ  are geometric mean and variance of local conductivities in the i-th 

material, ρYii(y, x) is log-hydraulic conductivity correlation function between the points y and 
x within Ωi, and Gi is the deterministic Green’s function for the Laplace equation in Ω subject 
to the appropriate homogeneous boundary conditions.  It is important to note that (13) 
represents the conditional apparent conductivity, since it corresponds to a realization of the 
random sub-domains Ωi.  The final step in obtaining the apparent conductivity consists of the 
ensemble averaging over the contact surface Γ12. 
 
The perturbation approximation in (13) is carried out in terms of the variances within the 
materials, 2

iYσ , which are small in most natural formations.  However, if they are not small 
enough for (13) to remain accurate, one can generalize this expression by means of the 
Landau-Matheron conjecture (e.g., Paleologos et al., 1996). 
 

COMPUTATIONAL EXAMPLE: ONE-DIMENSIONAL FLOW 
To analize our general expression for the apparent conductivity of composite media in detail, 
we consider one-dimensional flow in a bounded domain.  In this particular situation, the mean 
flow equation is also amenable to an exact solution, from which we derive an exact 
expression of the apparent conductivity, to contrast with the first-order approximation (13).  
This makes it possible to ascertain the accuracy of our general perturbation approximation. 
 
FIRST-ORDER SOLUTION 
We consider the one-dimensional version of (2) in the absence of sources 
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subject to the boundary conditions: 
 

Q
dx

xdhxK −=
)()( ; x = 0; h(x) = 0;  x = 1 (15) 

 
The porous medium is composed of two materials with randomly varying hydraulic 
conductivities K1(x) and K2(x).  The random internal boundary is at x = β, so that Ω1 = (0, β) 
and Ω2 = (β, 1), 
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and  

h(β−) = h(β+) 
dx
xdhK
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We treat hydraulic conductivities K1 and K2 as two uncorrelated, lognormal, statistically 
homogeneous random fields.  Each is characterized by the corresponding geometric mean Kgi 
= exp(〈Yi〉) (where Yi = ln Ki, i = 1, 2), variance 2

iYσ  and correlation function ρ(y, x).  The 
Green’s function, G(y, x), is now 
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and 
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where H(z) is the Heaviside function.  On this basis, the first-order approximation of 
medium’s conditional apparent conductivity is 
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Note that the conditional apparent conductivity (19) is independent of the conductivity 
correlation function ρ(y, x).  
 
EXACT SOLUTION 
The exact solution of the mean flow equation is obtained by integrating (14) once while 
considering (15) 
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Taking conditional mean yields  
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where Khi = Kgi exp(- 2

iYσ /2), i = 1, 2, are the harmonic means of Ki(x). It then follows that the 
expression for apparent conductivity, conditional on the location, β, of the point of contact 
between the two materials, is 
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where the symbol | implies conditioning.  Recalling the definition of the harmonic mean 
shows that (19) is indeed the first-order approximation of the exact expression (22).   
 
It is important to contrast our expression for the (conditional) apparent conductivity with the 
apparent conductivity obtained via a homogeneous approximation.  This approximation seeks 
to replace the composite medium with a homogeneous medium, whose conductivity (as one 
can readily verify) is given by the weighted sum of the sub-domains’ harmonic means: 
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The final step is to average the conditional apparent conductivity (22), or its first-order 
approximation (19), in the probability space of β. Let β be a truncated Gaussian variable with 
mean 〈β〉 and standard deviation σβ, so that its probability density function is 
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It is also shown in Figure 1 for several values 〈β〉 and σβ. 
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Figure 1. Probability density function for the internal boundary, β, with 〈β〉 = 0.25 (a), and = 
0.50 (b) and various degrees of uncertainty, σβ. 
 
Then the apparent conductivity of the random composite medium is given 
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where 
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If β is deterministic, i.e., σβ = 0, (25) reduces to (22), as it should.  Figures 2 and 3 
demonstrate the spatial distributions of Kapp(x) for 〈Y1〉 = 3.5, 〈Y2〉 = 7.0, 2

1Yσ = 2
2Yσ  = 1, and 

the values of 〈β〉 and σβ corresponding to Figures 1(a) and 1(b), respectively.  These are 
contrasted with the homogeneous approximation of Kapp given by (23).  
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Figure 2. Spatial distribution of Kapp(x) for the internal structure of materials of Figure 1(a). 
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Figure 3. Spatial distribution of Kapp(x) for the internal structure of materials of Figure 1(b). 
 
A simple analysis of the analytical expression for the apparent conductivity (25), as well as 
Figures 2 and 3, demonstrate that Kapp(x) = Kh1 when x is deep within material 1 and Kapp(x) =  
Kh2 when x is deep within material 2.  Width of the transitional zone between the two 
harmonic means increases with the geometric uncertainty, i.e., with σβ.  If the geometry is 
deterministic (σβ = 0), Kapp(x) becomes a step function. 
 

CONCLUSIONS 



We presented an expression for apparent (effective) hydraulic conductivity of porous media 
composed of different materials (geologic facies) whose internal geometries and 
conductivities are uncertain.  Our work leads to the following major conclusions: 

1. Apparent conductivity of the composite porous media should preserve their internal 
structure whenever possible.  This is crucial for probabilistic analyses of preferential 
flow paths.  

2. For steady-state flow in bounded heterogeneous composite media, we derived a 
general expression for the apparent conductivity by means of the perturbation 
expansion in variances of materials’ log-conductivities.  Since conductivity of each 
material is more uniform than that of the composite as a whole, this expression is more 
accurate and robust than its homogeneous counterpart. 

3. The general perturbation expression for apparent conductivity is analyzed in detail for 
one-dimensional steady flow in the bounded porous medium composed of two 
materials.  Both materials’ log-conductivities and the internal boundary between 
materials are assumed to be Gaussian.  Apparent conductivity is given by the 
harmonic means of the corresponding conductivities of each material for points away 
from the internal boundary, and varies smoothly from one harmonic mean to the other 
in the transitional zone around the boundary.  Width of the transitional zone increases 
with the degree of uncertainty about the internal boundary.   
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