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Abstract. We propose a new concept of the effective properties of composites with uncertain spatial arrange-
ments of constitutive materials and within-material properties. Rather than replacing a heterogeneous property with
a constant effective parameter, we seek to preserve the internal macro structure of a composite. This general concept
is used to derive the effective conductivity of composite heterogeneous media that consist of two materials whose
internal geometries and conductivities are uncertain. Our analysis relies on a random domain decomposition to ex-
plicitly account for the separate effects of material and geometric uncertainties on the ensemble moments of pressure
and flux. We present a general expression for the effective (apparent) conductivity of such media and analyze it in
detail for one- and two-dimensional steady flows in bounded random media composed of two materials with highly
contrasting conductivities.

Key words. composite media, random fields, stochastic, moment equations, apparent, equivalent

AMS subject classifications.74Q15, 60H30, 86A05, 86A32

1. Introduction. Effective (upscaled) parameters have proved to be a useful tool for
modeling heterogeneous systems. Such models often require assigning system parameters to
large grid blocks, while experimental data are usually available at a much smaller scale. These
parameters can be obtained through either deterministic approaches, such as homogenization
and inverse modeling, or stochastic averaging — the approach we pursue here. A plethora
of approaches used to obtain effective parameters for composites is reviewed in [3]. These
and other methods seek to replace a heterogeneous system with a homogeneous system that
preserves some global properties. Consider, for example, diffusion in a medium composed of
several heterogeneous materials whose spatial arrangement is uncertain. Standard upscaling
or homogenization techniques substitute the effective diffusion coefficientKeff for the space
varying diffusion coefficientK(x) in a way that preserves a global mass flux induced by a
global gradient of substance. While often useful, such effective parameters fail to predict
important characteristics of the system behavior, e.g., the existence of preferential flow paths
in porous media. Rapid advances in noninvasive data acquisition techniques, such as magnetic
resonance imaging and computerized axial tomography, make it unnecessary to homogenize
a system in ways that ignore the internal composition of a material. What is required instead
is to derive effective parameters that account for uncertainties in both the material properties
and internal boundaries. This paper takes a first step in this direction.

Stochastic approaches to upscaling are grounded in the fact that, in realistic settings,
system parameters are deduced from measurements at selected locations and depth intervals,
where their values depend on the scale and mode of measurement. Often, the measurement
support is uncertain and data are corrupted by experimental and interpretative errors. Es-
timating the parameters at points where measurements are not available entails additional
errors. Treating the system parameters as random fields provides a natural framework for
dealing with these errors and uncertainties. Within this framework a system parameterK(x)
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is characterized by a multivariate probability density function or, equivalently, its joint en-
semble moments. Thus,K(x) varies not only across the real space coordinatesx, but also
in probability space (this variation may be represented by another coordinateξ, which, for
simplicity of notation, is usually suppressed). Whereas spatial moments ofK are obtained
by samplingK(x) in real space (acrossx), its ensemble moments are defined in terms of
samples collected in probability space (acrossξ).

Randomness of system parameters renders partial differential equations (PDEs) govern-
ing the dynamics of system states stochastic. Effective parameters are then defined as co-
efficients in the ensemble averaged stochastic PDEs. Consider, for example, Darcy’s law
q = −K∇h, which postulates a linear relationship between the mass flux (Darcian velocity)
q(x) and the pressure (hydraulic head) gradient∇h(x) in porous media. Apparent conduc-
tivity Kapp(x) is defined as a coefficient of proportionality in the ensemble averaged Darcy’s
law 〈q〉 = −Kapp∇〈h〉. The term “apparent” was introduced in [2] to emphasize that the
effective parameters thus defined are local quantities that depend not only on material’s prop-
erties, but on external forces (e.g., boundary conditions) as well.

Much of the existing literature on effective conductivity is limited to mildly heteroge-
neous media composed of a single material whose log conductivity is treated as a statistically
homogeneous (stationary) random field with small variance (e.g., [1]). One recent example
of this approach [5] explores the tensorial nature of apparent transmissivity for a rectangular
flow domain by the localization and perturbation expansion of the nonlocal mean flow equa-
tions inσ2

Y , the variance ofY = lnK. The requirement thatσ2
Y � 1 is crucial for closing

the moment differential equations. At the same time, it clearly limits the applicability of such
analyses.

To derive effective parameters that preserve the internal structure of a highly heteroge-
neous composite, we employ the random domain decomposition approach [6, 7]. It enables
us to deal with uncertainty in both the spatial arrangement of composite materials and their
parameters. While the approach we propose is applicable to a wide variety of physical sys-
tems, in this paper we focus on the derivation of the effective conductivity for porous media
composed of two materials. The main results of our study are formulated in Sections 3 and 4,
where we provide a general expression for effective conductivity and analyze it, both analyt-
ically and numerically, for one- and two-dimensional flow configurations.

2. Problem Formulation. Consider steady-state saturated flow in a flow domainΩ =
Ω1 ∪ Ω2, which is composed of two disjoint sub-domainsΩ1 andΩ2, separated by a contact
surfaceΓ12 = Ω1 ∩ Ω2. Flow is described by the combination of Darcy’s law and mass
conservation,

q = −K∇h and −∇ · q + f = 0, (2.1)

wheref is a random source term. Random hydraulic headH and fluxQ are prescribed on
the Dirichlet (ΓD) and Neumann (ΓN ) boundary segments (ΓD ∪ ΓN = ∂Ω), respectively

h(x) = H(x), x ∈ ΓD, (2.2a)

−q(x) · n(x) = Q(x), x ∈ ΓN , (2.2b)

wheren is the unit vector normal to the boundary.
Let the random hydraulic conductivity field belong to two distinct statistically indepen-

dent populations,

K(x) =

{
K1(x), x ∈ Ω1,

K2(x), x ∈ Ω2.
(2.3)
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(Note that one can easily generalize the results obtained below to incorporate correlations
between theK1 andK2 fields by following [7].) Then the flow equation (2.1) can be rewritten
as

∇ ·Ki∇h + f = 0, x ∈ Ωi. (2.4)

The boundary conditions (2.2) are now supplemented by the continuity conditions on the
random interfaceΓ12,

h(x−) = h(x+) (2.5a)

and

K(x−)∇h(x−) · n(x−) = K(x+)∇h(x+) · n(x+). (2.5b)

Here the superscripts− and+ indicate the limits asx → Γ12 from Ω1 andΩ2, respectively.
In this formulation, the randomness ofK(x) stems from two factors: small-scale within

material uncertainty inKi(x) and large-scale uncertainty in the spatial arrangement ofΩi

or, equivalently, in the boundaryΓ12. HencepK(k), the probability density function ofK,
is replaced with the joint probability density functionpK(k, γ) = pK(k|γ)pΓ(γ). While
for highly contrasting compositespK(k) is bimodal with large varianceσ2

K , the conditional
distribution pK(k|γ) — representing the random fluctuations of conductivity within each
materialΩi — is likely to be unimodal with small variancesσ2

Ki
. This is important because

closure approximations associated with the (conditional) stochastic averaging of the flow
equation (2.4) are carried out within each sub-domainΩi separately.

3. Apparent Conductivity. Applying the Reynolds decomposition to represent random
fieldsR = 〈R〉+R′ as the sum of their ensemble means〈R〉 and zero-mean fluctuationsR′

and taking the ensemble mean of (2.4) yields the mean Darcy’s law,

〈q(x)〉 = −〈Ki(x)〉∇〈h(x)〉+ 〈ri(x)〉, x ∈ Ωi, (3.1)

where “residual” flux〈ri〉 = −〈K ′
i∇h′〉 represents the single point cross-covariance between

the fluctuations of head gradient and hydraulic conductivity. The ensemble mean of a random
fieldR is given by

〈R(x)〉 =
∫ ∫

R(k, γ;x)pK(k, γ)dkdγ =
∫
〈R(γ;x)〉ΓpΓ(γ)dγ, (3.2a)

where

〈R(γ;x)〉Γ =
∫
R(k, γ;x)pK(k|γ)dk (3.2b)

is the ensemble mean ofR conditioned on the location of the internal boundaryΓ12.
LetG be a random Green’s function for (2.4) subject to (2.2) and (2.5), but with the fixed

(known) boundaryΓ12. (Realizations ofΓ12 come from its distributionpΓ.) Then conditional
residual flux can be found as a solution of the integral equation [7]

〈ri(γ;x〉Γ =
∫

Ωi

ai(γ;y,x)∇〈h(γ;y)〉Γdy +
∫

Ωi

bi(γ;y,x)〈ri(γ;y)〉Γdy (3.3)

with the kernelsai andbi taking the form of second-rank tensors

ai = 〈K ′
i(x)K ′

i(y)∇y∇T
xG(γ;y,x)〉Γ, bi = 〈K ′

i(x)∇y∇T
xG(γ;y,x)〉Γ. (3.4)
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It follows from (3.1) and (3.3) that the mean Darcy’s flux〈q(x)〉 is nonlocal, i.e., depends on
the mean head gradient∇〈h〉 at points other thanx. Hence the apparent conductivity does
not exist, in general. This finding is in line with numerous previous investigations, e.g., [1]
and references therein.

Assume that both the mean pressure gradient and the residual flux vary slowly in space
[5] within Ωi (i = 1, 2). Then (3.3) can be localized, leading to an approximate expression

〈ri(γ;x〉Γ ≈ Ai(γ;x)∇〈h(γ;y)〉Γ + Bi(γ;x)〈ri(γ;y)〉Γ, (3.5)

where

Ai =
∫

Ωi

ai(γ;y,x)dy and Bi =
∫

Ωi

bi(γ;y,x)dy. (3.6)

Substituting (3.5) into a conditional version of (3.1) yields the conditional mean Darcy’s law

〈q(x)〉Γ = −Kappi
(γ;x)∇〈h(x)〉Γ, x ∈ Ωi. (3.7)

The conditional apparent conductivity tensor in (3.7) is given by

Kappi
= 〈Ki(x)〉ΓI− ki(γ;x), (3.8a)

whereI is the identity tensor and

ki(x) =
[
I−Bi(x)

]−1
Ai(x). (3.8b)

Evaluation of the conditional apparent conductivity requires a closure approximation for
the tensorsai andbi in (3.4). Following [5], we obtain such a closure by using perturba-
tion expansions inσ2

Yi
, the variances of log-hydraulic conductivitiesYi = lnKi (i = 1, 2).

Consider asymptotic expansions

〈K〉Γ = Tgi
(1 + σ2

Yi
/2 + . . .) T = T (0) + T (1) + . . . (3.9)

whereKgi = exp(〈Yi〉) is the geometric mean of the conductivity of theith material and
T stands forh, q, r, and other relevant random fields. The superscript(n) denotes thenth-
order terms, i.e., the terms that are proportionalσ2n

Yi
. It follows from (3.5) and (3.6) that the

first-order (inσ2
Yi

) approximation of the localized conditional residual flux〈ri〉Γ is given by

〈ri〉Γ = A(1)
i ∇〈h〉(0)Γ , where [7]

A(1)
i =

∫
Ωi

a(1)
i (γ;y,x)dy and a(1)

i = σ2
Yi

K2
gi

ρYii
∇y∇T

xG. (3.10)

HereρYii
(x,y) is the two-point correlation function ofY for x,y ∈ Ωi andG = 〈G〉(0)Γ .

In analogy to [5], it then follows from (3.8) that, up to the first order inσ2
Yi

, the conditional

apparent conductivity tensor is given byK[1]
appi

= K(0)
appi

+ K(1)
appi

,

K[1]
appi

(γ;x) = Kgi

(
1 +

σ2
Yi

2

)
I− σ2

Yi
K2

gi

∫
Ωi

ρYii
(y,x)∇y∇T

xG(γ;y,x)dy. (3.11)

The final step in obtaining the apparent conductivity consists of the ensemble averaging of
(3.11) by computing (3.2b).

The perturbation approximation in (3.11) is carried out in terms of the variances within
the materialsσ2

Yi
, which are small in most natural formations. However, if they are not small

enough for (3.11) to remain accurate, one can generalize this expression by means of the
Matheron-Landau conjecture [4].
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FIG. 4.1. Relative errors between the exact and perturbation expressions for the apparent conductivityKapp

as a function of the variance of log conductivityσ2
Y1

= σ2
Y1

= σ2
Y .

4. Computational Examples. To analyze our general expression for the apparent con-
ductivity of composite media in detail, we consider one- and two-dimensional flows in lay-
ered media. The one-dimensional example is amenable to analytical analysis, while the two-
dimensional example relies on numerical evaluation of the Green’s function and quadratures
in (3.11).

4.1. One-Dimensional Flow.Consider the one-dimensional version of (2.4) withf ≡
0, which is defined on the intervalx ∈ Ω = (0, 1). The boundary conditions are

K
dh

dx
= −Q for x = 0 (4.1a)

and

h(x) = 0 for x = 1. (4.1b)

The flow domainΩ is composed of two materialsΩ1 = [0, β] andΩ2 = [β, 1] joined at the
pointx = β. The continuity conditions (2.5) at the interfacex = β become

h(β−) = h(β+) for K1(β−)
dh(x = β−)

dx
= K2(β+)

dh(x = β+)
dx

. (4.2)

The sub-domainsΩ1 andΩ2 are characterized by random conductivity fieldsK1 andK2,
respectively. These fields are assumed to be log-normal, statistically homogeneous, and mu-
tually uncorrelated. The fieldsYi = lnKi are described by their geometric meansKgi

=
exp(〈Yi〉), variancesσ2

Yi
, and correlation functionsρYi(y, x). The contact pointβ is assumed

to have a truncated Gaussian distribution with mean〈β〉 and varianceσ2
β , so that its probabil-

ity density function has the form

p(β) =
1
W

exp

[
−1

2

(
β − 〈β〉

σβ

)2
]

, (4.3a)
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FIG. 4.2. Apparent conductivityKapp for the one-dimensional random composite with uncertain internal
geometryβ and conductivitiesK1 andK2.

where

W(〈β〉, σβ) =
∫ 1

0

exp

[
−1

2

(
β − 〈β〉

σβ

)2
]

dβ. (4.3b)

4.1.1. First-order approximation. It is easy to verify that the conditional mean Green’s
functionG(β; y, x) is given by

G(y, x ≤ β) =


x−y
Kg1

H(y − x) + β−x
Kg1

+ 1−β
Kg2

, 0 < y ≤ β,

1−y
Kg2

, β < y < 1
(4.4a)

and

G(y, x > β) =


1−x
Kg2

, 0 < y ≤ β,

x−y
Kg2

H(y − x) + 1−x
Kg2

, β < y < 1.
(4.4b)

whereH(z) is the Heaviside function. Substituting (4.4) into the one-dimensional version of
(3.11) yields, for an arbitraryρYi

(y, x),

K [1]
app(β;x) = Kg1

(
1−

σ2
Y1

2

)
H(β − x) + Kg2

(
1−

σ2
Y2

2

)
H(x− β). (4.5)

To ascertain the accuracy of the perturbation approximation of the conditional apparent
conductivity, we derive in the next section the corresponding exact expression.

4.1.2. Exact solution. Integrating the flow equation once and taking the conditional
mean yields

d〈h〉
dx

= −Q

[
H(β − x)

Kh1

+
H(x− β)

Kh2

]
(4.6)
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FIG. 4.3. A relative impact of the two sources of uncertainty on apparent conductivityKapp: uncertain
geometryβ and uncertain conductivitiesK1 andK2.

whereKhi = Kgi exp(−σ2
Yi

/2) is the harmonic mean ofKi (i = 1, 2). Hence, the condi-
tional apparent conductivity is given by

K−1
app(β;x) =

H(β − x)
Kh1

+
H(x− β)

Kh2

. (4.7)

Comparing (4.5) and (4.7), while recalling the definition of the harmonic mean, shows that
(4.5) is indeed the first-order approximation of the exact expression (4.7). Since the approx-
imation (4.5) is analogous to the expansionexp(−σ) ≈ 1 − σ, it remains valid as long as
σ2

Yi
< 2.
It is important to contrast our expression for the (conditional) apparent conductivity with

the traditional apparent conductivity that effectively homogenizes the medium. One can eas-
ily verify that the latter is given by the weighted sum of the harmonic means ofK1 andK2,

K−1
hom =

β

Kh1

+
1− β

Kh2

. (4.8)

Of course, the traditional definition of apparent conductivity is constant in space.
The final step in obtaining the apparent conductivity is to average the conditional appar-

ent conductivity (4.7) in the probability space ofβ. Forβ whose probability density function
is given by (4.3), the apparent conductivity takes the form

K−1
app(x) =

erf(u)− erf(u0)
erf(u1)− erf(u0)

[
1

Kh2

− 1
Kh1

]
+

1
Kh1

, (4.9)

where

u =
x− 〈β〉√

2 σβ

, u0 = − 〈β〉√
2 σβ

, u1 =
1− 〈β〉√

2 σβ

. (4.10)
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FIG. 4.4.Two-dimensional flow domain.

By the same token, the first-order approximation of the apparent conductivity is obtained
by averaging (4.5). Relative errors between the two solutions are shown in Fig. 4.1. These
errors are uniform in space and, as expected, increase exponentially with the variance of log
conductivitiesσ2

Y1
= σ2

Y2
= σ2

Y .
Figure 4.2 shows the spatial variation of the apparent conductivityKapp(x) in (4.9) for

〈Y1〉 = 3.5, 〈Y2〉 = 7.0, σ2
Y1

= σ2
Y2

= 1, 〈β〉 = 0.25 and several values ofσβ . Also shown
in this figure is the constantKapp corresponding to the homogeneous model (4.8). As can
be seen from Fig. 4.2, and follows directly from (4.9), the apparent conductivityKapp(x) is
given by the harmonic meansKh1 or Kh2 , whenx is deep withing the sub-domainsΩ1 or Ω2,
respectively. The width of a transitional zone between these two harmonic means increases
with uncertainty inβ, i.e., withσβ . If β is known with certainty (σβ = 0), Kapp(x) becomes
a step function, and (4.9) reduces to (4.7).

Figure 4.3 elucidates a relative impact of the two sources of uncertainty (randomness)
on apparent conductivityKapp. The full model (solid line) corresponds to the randomβ
(〈β〉 = 0.5 andσβ = 0.1) and random log conductivities (〈Y1〉 = 3.5, 〈Y2〉 = 7.0, and
σ2

Y1
= σ2

Y2
= σ2

Y = 0.5). The simplified models assume that eitherYi, i = 1, 2, (broken
line), or β (dotted line) are deterministic, i.e., that eitherσ2

Y = 0 or σβ = 0 respectively.
One can see that, in general, both sources of uncertainty have to be accounted for in deriving
expressions for apparent conductivity.

4.2. Two-Dimensional Flow. Consider flow in a square domain composed of two ma-
terials separated by an uncertain boundary (Figure 4.4). The materials are characterized by
log conductivitiesYi = lnKi, which are treated as statistically homogeneous Gaussian ran-
dom fields with means〈Y1〉 = 3.5 and〈Y2〉 = 7.0, variancesσ2

Y1
= σ2

Y2
= 1 and two-point

exponential correlation functionsρYi
of unit correlation lengths,λY1 = λY2 = 1. A random

location of the internal boundary between the two materialsx1 = β is taken to be Gaussian
with mean〈β〉 = L/2 and varianceσ2

β , whereL is the square’s size.
The Dirichlet boundary conditions are prescribed on the vertical boundaries,h(0, y) =
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FIG. 4.5. A horizontal cross-sectionx2 = L/2 of the apparent conductivityKapp for the two-dimensional
random composite with uncertain internal boundaryx1 = β and conductivitiesK1 andK2.

Ha andh(L, y) = Hb, while the remaining two boundaries (y = 0, L) are assumed to be
impermeable. In the reported simulations, we setHa = 1.6, Hb = 1.0, andL = 12.

The apparent conductivityKapp in (3.11) is obtained by evaluating numerically (i) the
conditional mean Green’s functions for each realization ofβ, (ii) the quadratures in (3.11),
and (iii) the weighted averages of the conditional apparent conductivities, whose weights are
determined from the distribution ofβ. Figure 4.5 shows a horizontal cross-sectionx2 =
L/2 of Kapp for several values ofσβ . The apparent conductivity of the two-dimensional
composite exhibits the same general behavior as its one-dimensional counterpart.

5. Conclusions.We derived a general expression for the apparent conductivity of ma-
terials composed of multiple materials, whose internal geometries and conductivities are un-
certain. This study leads to the following major conclusions:

1. Apparent properties of composite materials should preserve their internal structure
whenever possible. This is crucial for probabilistic analyses of the critical behavior
of physical systems, such as the existence of preferential flow paths in natural porous
media.

2. For steady-state flow in bounded heterogeneous composite media, we used perturba-
tion expansions in the variances of log conductivities to derive a general expression
for the apparent conductivity. Since the conductivity of each material is more uni-
form than that of a composite as a whole, this expression is more accurate and robust
than its homogeneous counterpart.

3. The general perturbation expression for apparent conductivity is analyzed in detail
for one- and two-dimensional steady flow in the bounded porous medium composed
of two materials. Both log conductivities and the internal boundaries between mate-
rials are assumed to be Gaussian. Away from the internal boundaries, the apparent
conductivity is given by the harmonic means of the corresponding conductivities of
each material. Within a transitional zone around the boundary, the apparent conduc-
tivity varies smoothly between these harmonic means. The width of the transitional
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zone increases with the degree of uncertainty about the internal boundary.
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