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The problem of the spread of contamination by seepage is solved by optimizing the shape of
the channel bed for the objective function — the particle travel time along a streamline with
integral constraints, the flow rate and cross-sectional area of the reservoir. The problem can
be reduced to the solution of Dirichlet’s problem by means of an integral representation of the
required analytic function, series expansion of the kernel of the Cauchy integral and the
determination of the coefficients of the series from the extremum condition.

THE TRAVEL time of a tracer particle along streamlines is an important parameter of the process
of the sprcad of contamination by seepage [1—4]. Isoperimetric estimates of this time are obtained
below by solving shape optimization problems [5, 6]. The objective functional is the travel time
of the tracer along the depression curve, the free surface, and control is effected by the shape of
the reservoir from which secpage of the contaminant occurs, and the integral constraint is the flow
rate and cross-sectional area of the reservoir. The solution technique involves the integral representa-
tion of Dirichlet’s boundary-value problem for an analytic function, series expansion of the kernel
of Cauchy’s integral, and determination of the coefficients of this series from the necessary
conditions of an extremum c¢ither in explicit form, or from the solution of infinite systems of linear
equations [7].

1. STATEMENT OF THE PROBLEM

Consider plane, steady filtration by Darcy’s law from a reservoir BC with a vertical axis of
symmetry, with free surfaces AB and DC (Fig.1a). The ground is assumed to be homogeneous and
isotropic, and to have porosity m and filtration coefficient x. A contaminant has fallen into the
reservoir and starts to enter the ground with the filtration flow. We shall assume that the process
can be described by the “piston-like displacement” model (“neutral tracer” or “coloured liquid”)
[1, 2], that is, the contaminant moves along streamlines with a velocity determined from the solution
of the hydrodynamic problem (for the limits of applicability of this model and a review of models
which allow for dispersion, see [1, 8]).

From a practical point of view, the important questions are: how long does it take for the
contaminant to permeate to a prescribed depth, what kind of time dependence has the concentration
at a prescribed depth (breakthrough curve), and how does the geometry of the reservoir influence
the dynamics of the contaminant? To answer these questions, we will examine the problem of

1 Zh Vychisl, Mat. Mat. Fiz. Vol. 33, No. 11, pp. 1751-1759, 1993.
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FiG. 1.

optimizing the shape BC, interpreting the solutions, obtained in the same way [9-13], as iso-
perimetric inequalities [14-16].

We shall assume the two horizontal levels H, and H, (H, <H,), measured from the water level
in the reservoir, as well as the filtration flow rate Q, are given.

In this model, the flow rate v = Ve (x, y), where ¢ is the potential, satisfying Laplace’s equation
in the flow region G,. The time taken by the particle to move along the streamline ¢ = const,
$ € [0, Q] between points N and M is given by the formula (see [1])

1=m f v~2 (‘p)w=const dq)’ (1)

where ¢, and ¢, are the values of the potential at points N and M, and v is the velocity.

We shall consider the motion of a tracer along the depression contour AB, on which, as we
know [1, 17], two conditions are satisfied: ¢ +xy=0 and { =0. Hence, in the optimization
problem formulated below, the abscissae of points N and M are subject to definition (as is the
whole boundary of the domain G,), while their ordinates are fixed: y, = —H, and y, = —H,.

Problem 1. For prescribed %, m, O, H,, H,, it is required to determine the shape of the curve
BC such that the travel time ¢ of a particle along AB from level y = —H, to y = —H, is an extremum.

2. SHAPE OPTIMIZATION

We will introduce the complex coordinate z = x + iy and complex potential w= ¢ + i, in the
plane of which the domain G, corresponds to the half-strip G, (Fig. 1b). We map G,, conformally
on to the half-plane Im { >0 of the variable { = £ + in (Fig. 1c) by the function
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L = cos (nw/iQ), (2a)
from which it follows, for real { in particular, that
b= (Qfn)arccos E, 1kl <1, ¢=(Q/n)arcchE, 1E1>1, (2b)

the coordinates of the points N and M on the Of axis being equal to a = ch(xwH,;/Q) and B =
ch (»wH,/Q) respectively.
To solve Problem I, we introduce control of the shape of BC in the form

y=yhb®1, 3)

where s (£) is found from (2), and y[{s] is assumed to belong to the Holder class.
For the function z ({) with boundary conditions (3) and y = —@ (£)/x for |€]|= 1, the solution of
Dirichlet’s boundary-value problem has the form (see [11, 17])

2= —iw+ o _}‘ 1—9}?1 dr. (4)

Expanding (3) in series in Chebyshev polynomials and taking the limit in (4) as {—E€[-1, 1],
we obtain the equations of the equipotential BC:

X = lux@' - % {2 bzn—thM (E) + bc] » Y= % 2 bypeiUpaey (§), (5a)

T,(t) =cos(narccos£), U, (E)=sin(narccost), n=12,..., » (5b)

Letting {—>&> 1, we obtain the equations of the curve BA from (4):

) -
x= % 2 b B - VE 1), y=—¢ (E)/n (6)
The value of the velocity along a streamline is given in the form

v = (3@/0s)* = (3¢/9L)*[(3x/BE)* + (8y/oE)* ] (N

Substituting d¢/ds from (2), and dx/d& and dy/d€ from (6), for the objective functional (1) we
obtain

E 2+ )
= -%‘-{m——ﬁ; dg:—Q—-“x{”{ [Z@n -1 b, € - VE=D)]'x ®)
X(b§,2~1_)“'d§+t,., 4=m(H,— H)/x,

where the dots above x and y denote differentiation.
Making the replacement of variables £=ch~y and changing to dimensionless time =
t%*/(mQ), we obtain from (8):

»
wH,y

f=nf {z 2n -1 b,,,,,e‘(’”"'”]Z dy + 1y, ©)

wH)

where H; = »H,/Q, H} = »H,/Q, and the quantity ¢} gives the tracer travel time in one-dimensional
flow in the case where BC is the horizontal segment y =0, and the free surfaces AB and CD are
the rays x =0 and x = L respectively.

Since the integral in (9) is positive, it follows at once that Problem 1 has a unique global
minimum ¢* = ¢}, which is reached when all b,,_,= 0. Thus, a solution (a plane horizontal channcl)
has been obtained in the class of arbitrary profiles for one, an extreme, streamline. We will now
find the extremum of the functional of time along an arbifrary streamline, restricting ourselves to
the first term in the expansion (5), corresponding to Coseni channels (see [17]). Restriction to one
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or more terms of the series or a similar restriction to a definite class of optimized shapes in the
physical plane in this way often permits a quite close approximation to the optimum [18, 19].

The parametric equations of a Coseni contour (the channel shown in Fig. 1a is for H* =0.4)
have the form

x* = Y* — H* sin (mp*), y* = —H* cos (np*), —1/2 < ¢* < 1/2, (10)

where x*, y*, ¢*, * are values relative to @, and H* is the dimensionless depth of the channel,
that is, we have taken b, = —H* and b,=0, n=2, 3, . . ., in expansion (5). Note that, for the
profiles described by (19),

z¥ = —iw* — iH* exp (—aw*), (11)

where z* and w* are the dimensionless (that is, relative to half the flow rate g = Q/2) physical
coordinate and complex potential {17].

As the objective functional, we will take the particle travel time along any streamline from a
point on BC 1o the prescribed horizontal H,. Substituting the expression v (¢, §) =|dw/dz| found
from (11) into (1) and letting ¢, = 0, corresponding to the channel floor, we have

(92, 9%, H) = ¢F — (nH**/2)[exp (—2ng3) — 11+ 12)

+2H* cos (np*)lexp (—ng)) — 1], —1/2 < ¢* <1/2.

Problem 11. For prescribed x, m, O, H,, H,, it is required to find the depth H* of a Coseni
channel for which the functional (") reaches an extremum during the motion of a tracer along
an arbitrary streamline y* € [—1/2, 1/2] from the bottom of the reservoir to the level y = —H3.

Notice that in this formulation the level y = —H, is not exponential, and according to (11),
along this line

HY = ¢ + H” exp (=3 /2) cos (). (13)

Substituting H* from (13) into (12), we reduce Problem II to the search for an extremum of the
function ¢*(H*), where the control H* must satisfy the inequality 0 <H*=<2/m. The constraint
H*=2/m is not a consequence of physical considerations or of the optimization technique, but of
the character of the chosen control. Thus, for H > 2/, the conformal mapping z(w) of (11) becomes
non-one-sheeted, and the profile BC becomes selfintersecting [17].

Figure 2 shows graphs of ¢*(H*) for H;=1.0 and $*=0.0, 0.1, 0.2, 0.3, 0.4 (curves I-5
respectively).

It is clear from the graphs that the function ¢*(H") can have either an internal minimum or a
minimum for H* = 2/%, depending on the particular streamline chosen.

030 1 1 [ 1 ! 1
0 o1 a20 a3o 040 aso as0 H*
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One isoperimetric constraint has been used in Problems I and II: the filtrational flow rate, the
extremal of Problem I being a degenerate profile, a channel with zero “living” cross-sectional area
and, therefore, a zero hydraulic flow rate. We will add to the formulation of Problem I a different
isoperimetric constraint, the cross-sectional area of the reservoir S.

Problem 111. For prescribed %, m, O, H, H, and S, it is required to determine the shape of the
curve BC such that the particle travel time ¢ along AB from level y = —H, to level y= —H, is an
extremum.

For the flow model under consideration here, the expression for S has the form

by,
S*:‘%z(zn—l)bz—l”'%zﬁ,Where S* = x28/Q. (14)

We introduce the Lagrange functional L* =1¢* + uS*, where p is a Lagrange multiplier, to be
determined. Substituting into the necessary condition for an extremum

aL* or | pos* _

= =0, k=1,2,..., 0, 15
by~ b, * b, ” 1
the expressions obtained from (14):
08¥ /by, = =1 (2k — 1) by, + 2/ [n (2k — D1
and from (8):
»
61* nH,
= "2k =1) [ 3 (2n—1b, exp [-2(n+ k- Dyldy =
2k~1 »
H,

~Untk—i) _ - Anrk-l)
i

=-21(2k - 1) 3, (2n — 1) b,,_, — TCETES

where a, =a +Va?~1, B, =P +VBZ—1, we obtain an infinite system of linear algebraic equa-
tions for the coefficients b,, _,:

by = E Coutzn-ibrasy + Auoyy k=1,2,..., o, (16)

where €yp 12,1 = —(2n=1)[B7?"** Va2tV (k+n—1)]"" and ay_, =2[w(2k—1)]72,
which can be solved by the technique described in [7]. The situation is complicated in this case
by the fact that the coefficients of the system contain the constant ., determined from the prescribed
constraint of Problem III. We know [7] that the existence and uniqueness of the solution of systems
of the form (16) follow from the condition that it should be regular:

zlcm!<l, c=1,2,..., o, amn
To prove (17), we note that (2k —1)/(2n — 1+ 2k—1)=1 for (16). Then for (16)

B‘-‘m ta=1) _ a,‘"“"“"

Siel =23 | ; |

or, since a; = f3,,

2 - - - - — - — -
lewl < 707 [3. @) B Brah) — @) K o ')].
Thus, condition (17) is satisfied if
el >2{ o (o, = DT = (B B - DI (18)

It is easy to show that the right-hand side of (18) reaches its maximum at k= 1. Hence, the
system of inequalities (18) holds if
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Il >2{ [ (e = DI = [B, B — DI} 19

Thus, if condition (19) holds, system (16) has a unique solution, which is found below by two
methods: by the reduction method, and by an iterational method [7].

The first step in the reduction method is to choose an initial value of the Lagrange multiplier
p®), satisfying (19), and the number of equations n=AN. Then the solutions b{;._, of the finite
system found by Gauss’s method are substituted into (14). If it is not satisfied to the prescribed
accuracy &,, p? is found by solving Eq. (14). The iterations are continued until b{)_; and p‘?
satisfy (16) and (14). The number of cquations and unknowns is then increased (n =N + 1), and
the process is repeated until the condition |b¥1V — BN, |<e, n=1, 2, . . ., is satisfied.

As a first approximation of the iterational method, we chose b$}.; = 0. Then
B ,=2[nk—1)17 b, =8), — (1/p®) 2 cu~|.1n~:b§:;}~|' (20)

Substituting (20) into (14) we have

po = w2 Y4 S @k =1 (T cunatil) (550 @1)

2 -
S(,:E;Z(?.k——l) 3.

A similar iterational procedure to that described in the reduction method is then followed. Note
that (21) gives the well-known condition for Problem I to be solvable: $* <S§,.

Graphs of +* against $* are shown in Fig. 3.

Unfortunately we have not succeeded in obtaining a sufficient condition for an extremum of
Problem IIl.

] 1 ] 1 1
a 207 002 003 004 005 S*

Fi1G. 3.

CONCLUSION

A unique explicit global extremum in the class of arbitrary curves, extrema in a one-parameter
class of curves and curves satisfying a necessary condition have been constructed for three kinds
of isoperimetric problem with the travel time along unspecified streamlines as the criterion. The
technique described for finding the extremum of the functional of particle travel time in a flow
can be extended to other models of both profile and plane filtration. It is not difficult to show
that the problem of estimating the effective breakthrough time for the ground flow to the sub-
terranean contour of a concrete dam [17] can be solved in the same way.
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