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[1] We consider steady state unsaturated flow in bounded, randomly heterogeneous soils under the
influence of random boundary and source terms. Our aim is to predict pressure heads and fluxes
without resorting to Monte Carlo simulation, upscaling, or linearization of the constitutive
relationship between unsaturated hydraulic conductivity and pressure head. We represent this
relationship through Gardner’s exponential model while treating its exponent a as a random
constant and saturated hydraulic conductivity Ks as a spatially correlated random field. We linearize
the steady state unsaturated flow equations by means of the Kirchhoff transformation and integrate
them in probability space to obtain exact integro-differential equations for the conditional mean and
variance-covariance of transformed pressure head and flux. After approximating these equations
recursively to second order in the standard deviation sY of Y = ln Ks, we solve them by finite
elements for superimposed mean uniform and divergent flows in the vertical plane, with and
without conditioning on measured Y values. Comparison with Monte Carlo solutions demonstrates
that whereas our nonlocal solution is nominally restricted to mildly nonuniform media with sY

2 � 1,
it yields remarkably accurate results for strongly nonuniform media with sY

2 at least as large as 2.
This accords well with a previous theoretical analysis, which shows that the solution may remain
asymptotic for values of sY

2 as large as 2. INDEX TERMS: 1866 Hydrology: Soil moisture; 1869
Hydrology: Stochastic processes; 1875 Hydrology: Unsaturated zone; 3210 Mathematical
Geophysics: Modeling; KEYWORDS: unsaturated flow, heterogeneity, randomness, conditioning,
uncertainty

1. Introduction

[2] Saturated hydraulic conductivity and the parameters of

constitutive relations between relative conductivity and pressure

head in unsaturated soils vary spatially in a manner that cannot be

described with certainty. Therefore they are often modeled as

correlated random fields, rendering the corresponding unsaturated

flow equations stochastic. If the (geo)statistical properties of these

fields can be inferred from measurements, the stochastic flow

equations can be solved numerically by conditional Monte Carlo

simulation. The corresponding first moments constitute optimum

unbiased predictors of quantities such as pressure head and flux.

Conditional second moments constitute measures of associated

prediction errors.

[3] The Monte Carlo method is conceptually straightforward

and has the advantage of applying to a very broad range of both

linear and nonlinear flow and transport problems. A major con-

ceptual disadvantage of the Monte Carlo approach is that it

provides no theoretical insight into the nature of the solution.

There additionally is neither a theory to tell whether or not and at

what rate should one expect a particular Monte Carlo solution to

converge to its exact (ensemble) solution, nor are there well-

established computational criteria to reliably terminate the Monte

Carlo process at a given level of accuracy. This is especially true

about second ( joint) moments (not to speak of higher moments or

the probability distribution) of Monte Carlo results. On a more

pragmatic level, the Monte Carlo approach tends to be computa-

tionally intensive by requiring numerous simulations to yield

statistically meaningful samples and a fine computational grid to

resolve high-frequency random fluctuations. Hence there are strong

theoretical and pragmatic reasons to pursue alternative computa-

tional approaches, which are capable of predicting as accurately

and efficiently as possible flow and transport in randomly nonuni-

form media.

[4] We consider a deterministic alternative to conditional Monte

Carlo simulation which allows predicting steady state unsaturated

flow under uncertainty and assess the latter without having to

generate random fields or variables, without upscaling, and without

linearizing the constitutive characteristics of the soil. Neuman et al.

[1999] and Tartakovsky et al. [1999] have shown that such

prediction is possible when soil properties scale according to the

linearly separable model of Vogel et al. [1991]. They have

demonstrated that when the scaling parameter of pressure head is

a random variable independent of location, the steady state

unsaturated flow equations can be linearized by means of the

Kirchhoff transformation for gravity-free flow. Linearization is also

possible in the presence of gravity when hydraulic conductivity

varies exponentially with pressure head according to the exponen-

tial model of Gardner [1958]. By treating the exponent a in
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Gardner’s model as a random constant and the log saturated

hydraulic conductivity Y = ln Ks as a random field, Tartakovsky

et al. [1999] were able to develop exact conditional first- and

second-moment equations for unsaturated flow, which are nonlocal

(integro-differential) and therefore non-Darcian. A survey of the

literature by these authors concerning the spatial variability of a
has revealed that treating it as a random constant, rather than as a

spatially varying random field, may be a minor disadvantage in

comparison to the advantage of preserving nonlinearity in the

constitutive relationship between hydraulic conductivity and pres-

sure head.

[5] Though the conditional moment equations are mathemati-

cally exact, they nevertheless require a closure approximation to

be workable. Tartakovsky et al. [1999] developed recursive

approximations for these equations to second order in the stand-

ard deviations of Y, sY , and zero order in the standard deviations

of b = ln a, sb as well as the forcing terms. They solved them

analytically for the mean Kirchhoff potential, pressure head, and

corresponding variances under one-dimensional vertical infiltra-

tion, without conditioning. Upon comparing these with Monte

Carlo results obtained by solving the stochastic Richards equation

numerically, the authors found that second-order approximations

are generally far superior to zero-order approximations, and the

variance of pressure heads compares much better with Monte

Carlo values than does the variance of Kirchhoff potentials. Both

the analytical pressure head and its variances compared well with

Monte Carlo results for input variances at least as large as 1. This

accorded well with their theoretical analysis, which had shown

that the analytical solution remains asymptotic for input variances

as large as 2.

[6] Tartakovsky et al. [1999] were able to show rigorously

that the concept of effective or equivalent hydraulic conductivity

does not generally apply to statistically averaged, Kirchhoff-

transformed unsaturated flow equations, except when they are

unconditional and flow is driven solely by gravity. In fact, all

quantities that enter into their conditional moment equations are

defined on a unique support scale w, which obviates the need

for upscaling (i.e., eliminates the need for introducing effective

or equivalent hydraulic parameters defined over volumes larger

than w).
[7] The conditional moment equations of Tartakovsky et al.

[1999] are exact, provided forcing terms are known with cer-

tainty. In this study we extend them to account more fully for

uncertain forcing terms. Elsewhere [Lu, 2000], we have approxi-

mated these equations recursively to second order in the standard

deviations sY of Y = ln Ks, sb of b = ln a, and those of forcing

terms (on the assumption that these random variables are mutu-

ally uncorrelated) and formulated a corresponding finite element

algorithm in two dimensions. As we have implemented this

algorithm only to zero order in sb and the forcing terms, we

limit our discussion here to this latter case. The corresponding

recursive conditional moment equations are similar to those of

Tartakovsky et al. [1999]. We discretize them by finite elements

in a way reminiscent of that done by Guadagnini and Neuman

[1999a] for saturated flow. We then implement our algorithm in

the vertical plane under superimposed mean uniform and diver-

gent flows, with and without conditioning on measured Y values.

We present computational results and assess their accuracy

through comparison with Monte Carlo solutions of Richards’

equation. Whereas our nonlocal solution is nominally restricted to

mildly nonuniform media with sY
2 � 1, we find that it actually

yields remarkably accurate results for strongly nonuniform media

with sY
2 at least as large as 2. This accords well with a theoretical

analysis by Tartakovsky et al. [1999], which shows that the

solution may remain asymptotic for values of sY
2 as large as 2.

2. Statement of Problem

[8] We describe steady state unsaturated flow by means of

Darcy’s law

q xð Þ ¼ �K x;yð Þr y xð Þ þ gx3½ 	 x in � ð1Þ

and the continuity equation

�r 
 q xð Þ þ f xð Þ ¼ 0 x in � ð2Þ

subject to the boundary conditions

y xð Þ ¼ � xð Þ x on �D ð3Þ

�q xð Þ 
 n xð Þ ¼ Q xð Þ x on �N ; ð4Þ

where q is volumetric Darcy flux, K is unsaturated hydraulic

conductivity, y is pressure head, g is 1 for flow with gravity and 0

for gravity-free flow, x3 is the vertical coordinate, f is a random

source term, C is a randomly prescribed pressure head on the

Dirichlet boundary �D, Q is a randomly prescribed flux into the

flow domain � across the Neumann boundary �N, and n is a unit

vector outward normal to the boundary � of �. All quantities in

equations (1), (2), (3), and (4) are defined on a support volume w,
centered about point x, which is small compared to � but large

enough to render the quantities measurable and the equations

locally valid [Neuman and Orr, 1993; Tartakovsky et al., 1999].

This operational definition of w does not generally conform to a

representative elementary volume (REV) in the traditional sense

[Bear, 1972]. We take the random forcing terms f, C, and Q to be

prescribed in a statistically independent manner. Substituting

equation (1) into equation (2) yields the stochastic steady state

Richards’ equation

r 
 K x;yð Þr y xð Þ þ gx3ð Þ½ 	 þ f xð Þ ¼ 0 x in �: ð5Þ

We write the unsaturated hydraulic conductivity as

K x;yð Þ ¼ Ks xð ÞKr x;yð Þ; ð6Þ

where the saturated conductivity Ks is a random field and the

relative conductivity Kr is given by Gardner’s [1958] exponential

model

Kr x;yð Þ ¼ eay xð Þ: ð7Þ

[9] On the basis of considerations presented by Tartakovsky

et al. [1999] we treat a as a space-independent random constant.

This allows us to define the Kirchhoff transformation

� xð Þ ¼
Zy xð Þ

�1

Kr xð Þ dx ¼ 1

a
eay xð Þ; ð8Þ

which transforms equation (5) and the boundary condition

equations (3) and (4), respectively, into

r 
 Ks xð Þ r� xð Þ þ ga� xð Þe3ð Þ½ 	 þ f xð Þ ¼ 0 x in � ð9Þ
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� xð Þ ¼ H xð Þ H xð Þ ¼ 1

a
ea� xð Þ x on �D ð10Þ

n xð Þ 
 Ks xð Þ r� xð Þ þ ga� xð Þe3ð Þ½ 	 ¼ Q xð Þ x on �N ; ð11Þ

where e3 = (0, 0, 1)T is a unit vector and T denotes transpose.

3. Exact Conditional Moment Equations

[10] We express saturated hydraulic conductivity as

Ks xð Þ ¼ Ks xð Þh i þ K 0
s xð Þ K 0

s xð Þ
� �

� 0; ð12Þ

where h i signifies conditional ensemble mean and prime denotes

(generally nonhomogeneous) random fluctuations about this mean.

As such, hKs (x)i represents a relatively smooth unbiased estimate

of the unknown random function Ks (x), conditioned on measure-

ments at discrete points in space. If the measurements consist of Ks

values, then the conditional spatial statistics of Ks (or, more

commonly, its natural logarithm Y = ln Ks) can be determined (in

principle) by geostatistical methods such as kriging. Likewise, we

write

� xð Þ ¼ � xð Þh i þ �0 xð Þ �0 xð Þh i � 0 ð13Þ

a ¼ ah i þ a0 a0h i � 0: ð14Þ

3.1. Exact Conditional Mean Equations

[11] Substituting equations (12), (13), and (14) into equation

(9), (10), and (11) and taking conditional ensemble mean yield the

following exact conditional mean equations for the Kirchhoff-

transformed variable �,

r 

�
Ks xð Þh ir � xð Þh i � r xð Þ þ g

�
ah i Ks xð Þh i � xð Þh iþ ah iRK� xð Þ

þ Ks xð Þh iRa� xð ÞþRaK� xð Þ
�
e3
�
þ f xð Þh i ¼ 0 x in � ð15Þ

� xð Þh i ¼ H xð Þh i x on �D ð16Þ

n xð Þ

�
Ks xð Þh ir � xð Þh i � r xð Þ þ g

�
ah i Ks xð Þh i � xð Þh iþ ah iRK� xð Þ

þ Ks xð Þh iRa� xð Þ þ RaK� xð Þ
�
e3
�
¼ Q xð Þh i x on �N : ð17Þ

[12] In Appendix A, we develop an exact explicit expression for

the conditional mean flux,

q xð Þh i ¼ � Ks xð Þh i
�
r � xð Þh i þ g Ks xð Þh i

�
ah i � xð Þh i

þ Ra� xð Þ
�
e3
�
þr xð Þ � g

�
ah iRK� xð ÞþRaK� xð Þ

�
e3 ð18Þ

and show that

r xð Þ � � K 0
s xð Þr�0 xð Þ

� �
¼

Z
�

K 0
s xð ÞrxrT

z G z; xð ÞK 0
s zð Þ

� �

 r � zð Þh iþg ah i � zð Þh ie3½ 	d�þ

Z
�

K 0
s xð ÞrxrT

z G z; xÞð i
�


 r zð Þd�þg

Z
�

a0K 0
s xð ÞrxrT

z G z; xð ÞKs zð Þ
� �

� zð Þh ie3d�

�g

Z
�

K 0
s xð ÞrxrT

z G z; xð Þ
� ��

ah iRK� zð Þ þ Ks zð Þh iRa� zð Þ

þ RaK� zð Þ
�
e3d�þ

Z
�D

K 0
s xð ÞH 0 zð ÞrxrT

z G z; xð ÞKs zð Þ
� �


 n zð Þd� ð19Þ

RK� xð Þ � K 0
s xð Þ�0 xð Þ

� �
¼ �

Z
�

K 0
s xð ÞrT

z G z; xð ÞK 0
s zð Þ

� �


�
r � zð Þh iþg ah i � zð Þh ie3

�
d��

Z
�

K 0
s xð ÞrT

z G z; xð Þ
� �


 r zð Þd�� g

Z
�

a0K 0
s xð ÞrT

z G z; xð ÞKs zð Þ
� �

� zð Þh ie3d�

þ g

Z
�

K 0
s xð ÞrT

z G z; xð Þ
� ��

ah iRK� zð Þ þ Ks zð Þh iRa� zð Þ

þ RaK� zð Þ
�
e3d��

Z
�D

K 0
s xð ÞH 0 zð ÞrT

z G z; xð ÞKs zð Þ
� �


 n zð Þd� ð20Þ

Ra� xð Þ � a0�0 xð Þh i ¼ �
Z
�

a0rT
z G z; xð ÞK 0

s zð Þ
� �


 r � zð Þh i þ g ah i � zð Þh ie3½ 	d��
Z
�

a0rT
z G z; xð Þ

� �


 r zð Þd�� g

Z
�

a0 2rT
z G z; xð ÞKs zð Þ

� �
� zð Þh ie3d�

þ g

Z
�

a0rT
z G z; xð Þ

� ��
ah iRK� zð Þ þ Ks zð Þh iRa� zð Þ

þ RaK� zð Þ
�
e3d��

Z
�D

a0H 0 zð ÞrT
z G z; xð ÞKs zð Þ

� �

 n zð Þd� ð21Þ

RaK� xð Þ � a0K 0
s xð Þ�0 xð Þ

� �
¼ �

Z
�

a0K 0
s xð ÞrT

z G z; xð ÞK 0
s zð Þ

� �


 r � zð Þh iþ g ah i � zð Þh ie3½ 	d��
Z
�

a0K 0
s xð ÞrT

z G z; xð Þ
� �


 r zð Þd�� g

Z
�

a02K 0
s xð ÞrT

z G z; xð ÞKs zð Þ
� �

� zð Þh ie3d�

þ g

Z
�

a0K 0
s xð ÞrT

z G z; xð Þ
� ��

ah iRK� zð Þþ Ks zð Þh iRa� zð Þ

þRaK� zð Þ
�
e3d��

Z
�D

a0K 0
s xð ÞH 0 zð ÞrT

z G z; xð ÞKs zð Þ
� �


 n zð Þd �; ð22Þ

where G is an auxiliary random function defined in Appendix A.

[13] We note that equations (18) and (19) of Tartakovsky et al.

[1999] for r, RK� and Ra�, which correspond to our equations (19),

(20), and (21), do not include integrals over �D. Even in the special

case where C on �D in equation (3) is deterministic, its Kirchhoff

transform H is not deterministic unless a is also deterministic. It

follows that equations (18) and (19) of Tartakovsky et al. [1999]

are valid only when both C and a are deterministic.

3.2. Exact Conditional Second Moment Equations

[14] An equation for the conditional covariance function

C�(x,y) = h�0(x)�0(y)i of � can be obtained upon multiplying

equation (A8) in Appendix A by �0(y) and taking conditional

ensemble mean,

rx 
 F x; yð Þ þ f 0 xð Þ�0 yð Þh i ¼ 0 x in �; y in � ð23Þ

C� x; yð Þ ¼ H 0 xð Þ�0 yð Þh i x on �D; y in � ð24Þ

n xð Þ 
 F x; yð Þ ¼ Q0 xð Þ�0 yð Þh i x on �N ; y in � ð25Þ

LU ET AL.: CONDITIONAL MOMENT ANALYSIS 9 - 3



F x; yð Þ ¼ Ks xð Þh irxC� x; yð Þ þ K 0
s xð Þ�0 yð Þr�0 xð Þ

� �
þ K 0

s xð Þ�0 yð Þ
� �

r � xð Þh i þ g
�
ah i Ks xð Þh iC� x; yð Þ

þ ah i K 0
s xð Þ�0 xð Þ�0 yð Þ

� �
þ a0K 0

s xð Þ�0 xð Þ�0 yð Þ
� �

þ Ks xð Þh i a0�0 xð Þ�0 yð Þh i þ Ks xð Þh iRa� yð Þ � xð Þh i

þ a0K 0 xð Þ�0 yð Þh i � xð Þh iþ ah iCK� x; yð Þ � xð Þh i
�
e3; ð26Þ

where CK�(x,y) = hK 0(x)�0(y)i. Expressing �0 in equation (A8) in

terms of y, multiplying by f 0(x) and Q 0(x), respectively, then taking

conditional ensemble mean yields the source and Neumann

boundary moments

f 0 xð Þ�0 yð Þh i ¼
Z
�

f 0 xð Þ f 0 zð Þh i G z; yð Þh id� ð27Þ

Q 0 xð Þ�0 yð Þh i ¼
Z
�N

Q 0 xð ÞQ 0 zð Þh i G z; yð Þh id �: ð28Þ

[15] Expressing �0 in equation (A8) in terms of y, multiplying

by H 0(x), and taking conditional ensemble mean would not lead to

an expression similar to equation (27) or (28). This is so because in

contrast to f and Q, each of which is prescribed in a statistically

independent manner, H depends on a, as does G. Therefore one

cannot separate the moments of H and G as was done in equation

(27) for f and G or in equation (28) for Q and G. It follows that the

moment hH 0(x)�0(y)i cannot be simplified in a compact manner

without approximation. Suffice it to say that hH 0(x)�0(y)i as well
as equations (27) and (28) is generally nonzero, and so equations

(23), (24), (25), and (26) include nonhomogeneous source and

boundary terms. As such, they are more general than the homoge-

neous equations (A7), (A8), and (A9) of Tartakovsky et al. [1999],

which are valid only for deterministic a and forcing terms. The

detailed derivation for hH 0(x)�0(y)i is given by Lu [2000].

[16] Conditional moments of two or three quantities in equation

(26), such as hK 0
s(x)�

0( y)i or hK 0
s(x)�

0( y)r�0(x)i, cannot be

simplified in a compact manner without approximation. Exact

expressions for the conditional covariance tensor of flux are

obtained upon multiplying equation (A10) by q0T (y) and taking

ensemble mean.

4. Recursive Conditional Moment
Approximations

[17] To render the above conditional moment equations work-

able, it is necessary to employ a suitable closure approximation.

Tartakovsky et al. [1999] developed recursive approximations for

these equations to second order in the standard deviation of Y, sY,
and zero order in the standard deviation of b = ln a, sb, as well as
forcing terms. Elsewhere [Lu, 2000], we developed recursive

approximations on the basis of the above conditional moment

equations to second order in both sY and sb, which account fully

for uncertainty in forcing terms while treating Y, b, and forcing

terms as being mutually uncorrelated. In this paper we employ a

two-dimensional finite element algorithm that is second-order

accurate in sY and zero-order accurate in sb and forcing terms.

As the similar recursive approximations have been developed

earlier by Tartakovsky et al. [2000], we do not discuss but merely

summarize them here for completeness.

4.1. Recursive Conditional Mean Approximations

[18] Recursive equations for h�(x)i are given to zero order in

sY by

r 
 KG xð Þ r � 0ð Þ xð Þ
D E

þ gaG � 0ð Þ xð Þ
D E

e3


 �h i
þ f xð Þh i ¼ 0

x in � ð29Þ

� 0ð Þ xð Þ
D E

¼ 1

aG

eaG � xð Þh i x on �D ð30Þ

n xð Þ 
 KG xð Þ r � 0ð Þ xð Þ
D E

þ gaG � 0ð Þ xð Þ
D E

e3


 �h i
¼ Q xð Þh i

x on �N ð31Þ

and to second order by

r 
 KG xð Þ r � 2ð Þ xð Þ
D E

þ 0:5s2Y xð Þr � 2ð Þ xð Þ
D E
 �

� r 2ð Þ
h

xð Þ

þ gaG KG xð Þ � 2ð Þ xð Þ
D E

þ 0:5s 2
Y xð Þr � 0ð Þ xð Þ

D E
 �


þR
2ð Þ
K� xð Þ

�
e3

i
¼ 0 x in � ð32Þ

� 2ð Þ xð Þ
D E

¼ 0 x on �D ð33Þ

n xð Þ 
 KG xð Þ r � 2ð Þ xð Þ
D E

þ 0:5s 2
Y xð Þr � 2ð Þ xð Þ

D E
 �h
� r 2ð Þ xð Þ

þ gaG KG xð Þ � 2ð Þ xð Þ
D E

þ 0:5s 2
Y xð Þr




� 0ð Þ xð Þ

D E�

þR
2ð Þ
K� xð Þ

�
e3

i
¼ 0 x on �N ; ð34Þ

where the superscript ( ) designates order of approximation in sY,
KG (x) = exp (hY (x)i) is the conditional geometric mean of Y(x), aG

= exp (hbi) is the geometric mean of a, sY
2 (x) = hY 02(x)i is the

conditional variance of Y(x), and

r 2ð Þ xð Þ ¼ KG xð Þ
Z
�

CY x; zð ÞrxrT
z G 0ð Þ z; xð Þ
D E

KG zð Þ


 r � 0ð Þ zð Þ
D E

þ gaG � 0ð Þ zð Þ
D E

e3

h i
d� ð35Þ

R
2ð Þ
K� xð Þ ¼ �KG xð Þ

Z
�

CY x; zð ÞrT
z G 0ð Þ z; xð Þ
D E

KG zð Þ


 r � 0ð Þ zð Þ
D E

þ gaG � 0ð Þ zð Þ
D E

e3

h i
d�: ð36Þ

[19] The first-order approximation h�(1)(x)i � 0 because it is

governed by homogeneous equations. Recursive equations for the

conditional mean flux hq(x)i are given to zero order in sY by

q 0ð Þ xð Þ
D E

¼ �KG xð Þ r � 0ð Þ xð Þ
D E

þ gaG � 0ð Þ xð Þ
D E

e3


 �
ð37Þ

and to second order by

q 2ð Þ xð Þ
D E

¼ �KG xð Þ r � 2ð Þ xð Þ
D E

þ s2Y xð Þ
2

r � 0ð Þ xð Þ
D E�

þgaG


 � 2ð Þ xð Þ
D E

þ s2Y xð Þ
2

� 0ð Þ xð Þ
D E� �

e3

�
þ r 2ð Þ xð Þ

�gaGR
2ð Þ
K� xð Þe3: ð38Þ
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As the first-order term is zero, the total flux containing all terms to

second order is

q 2½ 	 xð Þ ¼ q 0ð Þ xð Þ þ q 2ð Þ xð Þ: ð39Þ

4.2. Recursive Conditional Second Moment Approximations

[20] To second order in sY the covariance function C� is

governed by

rx 
 F x; yð Þ ¼ 0 x in �; y in � ð40Þ

C
2ð Þ
� x; yð Þ ¼ 0 x on �D; y in � ð41Þ

n xð Þ 
 F x; yð Þ ¼ 0 x on �N ; y in �; ð42Þ

where

F x; yð Þ ¼ KG xð ÞrxC
2ð Þ
� x; yð Þ þ C

2ð Þ
K� x; yð Þr � 0ð Þ xð Þ

D E

þ gaG KG xð ÞC 2ð Þ
� x; yð Þ þ C

2ð Þ
K� x; yð Þ � 0ð Þ xð Þ

D E
 �
e3 ð43Þ

and CK�
(2) (x,y) is given by equations (B3) and (B4) in Appendix B.

[21] Recursive approximations for the conditional covariance

tensor of flux, Cqq(x,y) = hq0(x)q0T(y)i, are obtained upon multi-

plying equation (A10) by q0T(y), taking ensemble mean, and

expanding in powers of sY and sb. To second order in sY and zero

order in sb this leads to

C 2ð Þ
qq x; yð Þ ¼ KG xð Þ rxrT

y C
2ð Þ
� x; yð Þ þ rxC

2ð Þ
Y� y; xð Þ

h


 rT
y � 0ð Þ yð Þ
D E

þryC
2ð Þ
Y� x; yð ÞrT

x � 0ð Þ xð Þ
D E

þ CY x; yð Þrx � 0ð Þ xð Þ
D E

rT
y � 0ð Þ yð Þ
D Ei

KG yð Þ

þ gaGKG xð Þ rxC
2ð Þ
� x; yð Þ

h
þrxC

2ð Þ
Y� y; xð Þ


 � 0ð Þ yð Þ
D E

þ C
2ð Þ
Y� x; yð Þrx � 0ð Þ xð Þ

D E

þ CY x; yð Þrx � 0ð Þ xð Þ
D E

� 0ð Þ yð Þ
D Ei

eT3KG yð Þ

þ gaGe3KG xð Þ rT
y C

2ð Þ
� x; yð Þ þ C

2ð Þ
Y� y; xð Þ

h


 rT
y � 0ð Þ yð Þ
D E

þrT
y C

2ð Þ
Y� x; yð Þ � 0ð Þ xð Þ

D E
þ CY x; yð Þ


 � 0ð Þ xð Þ
D E

rT
y � 0ð Þ yð Þ
D Ei

KG yð Þ þ ga2
GKG xð Þ


 C
2ð Þ
� x; yð Þ þ C

2ð Þ
Y� y; xð Þ � 0ð Þ yð Þ

D E
þ C

2ð Þ
Y� x; yð Þ

h


 � 0ð Þ xð Þ
D E

þ CY x; yð Þ � 0ð Þ xð Þ
D E

� 0ð Þ yð Þ
D E

E3KG yð Þ;

ð44Þ

where

C
2ð Þ
Y� x; yð Þ ¼ �

Z
�

CY x; yð ÞrT
z G 0ð Þ z; yð Þ
D E

KG zð Þ


 r � 0ð Þ zð Þ
D E

þ gaG � 0ð Þ zð Þ
D E

e3

h i
d�; ð45Þ

G(0) being a zero-order solution of equations (A5), (A6), and (A7)

and E3 being a 3 � 3 null matrix with a single component equal to

1 at the intersection of the third row and third column.

4.3. Recursive Approximations for Conditional Moments of
Pressure Head

[22] Once the boundary value problems equations (29), (30),

and (31); (32), (33), and (34); and (40), (41), and (42) have been

solved, one can continue by developing second-order approxima-

tions for the mean conditional pressure head, hy[2](x)i = hy(0)(x)i +
hy(2)(x)i, and covariance, Cy

(2)(x,y). It follows from Appendix C

that

y 0ð Þ xð Þ
D E

¼ 1

aG

ln aG � 0ð Þ xð Þ
D Eh i

ð46Þ

y 2ð Þ xð Þ
D E

¼ 1

aG

� 2ð Þ xð Þ
� �
� 0ð Þ xð Þ
� �� 1

2

C
2ð Þ
� x; xð Þ
� 0ð Þ xð Þ
� �2

" #
ð47Þ

C
2ð Þ
y x; yð Þ ¼ 1

a2
G

C
2ð Þ
� x; yð Þ

� 0ð Þ xð Þ
� �

� 0ð Þ yð Þ
� � : ð48Þ

5. Numerical Implementation

[23] We solve the above recursive conditional moment equa-

tions by a Galerkin finite element scheme on a rectangular vertical

grid with square elements, using bilinear weight functions. Our

numerical scheme is similar in principle to that developed for

Figure 1. Definition of example problem, controlling parameters,
and associated grid.
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saturated flow in a two-dimensional domain by Guadagnini and

Neuman [1999b]. Details of our algorithm corresponding to these

and higher-order recursive approximations are given by Lu [2000].

[24] To illustrate our computational approach, we consider a

statistically homogeneous and isotropic log conductivity field Y

with exponential autocovariance

CY sð Þ ¼ s2Y e
�s=l; ð49Þ

where s is separation distance, sY
2 is the variance of Y, and l is its

autocorrelation scale. We adopt a rectangular grid of 20� 40 square

elements in the vertical plane (Figure 1) having width L1 = 4l,
height L2 = 8l, and elements with sides 0.2l. Boundary conditions

consist of no flow on the left and right sides (x1 = 0 and x1 = 4.0l), a
constant deterministic flux Q = 0.5 (all terms are given in arbitrary

consistent units) at the top boundary (x2 = 8.0l), and zero-pressure

head at the bottom (x2 = 0). A point source of magnitude QS = 1 is

Figure 2. Images of (a) a single unconditional realization of Y(x), (b) unconditional sample mean hY(x)i, and (c)
variance sY

2 (x) based on 3000 Monte Carlo realizations with hY i = 1, sY
2 = 2, and l = 1.

Figure 3. Images of (a) a single conditional realization of Y(x), (b) conditional sample mean hY(x)i, and (c) variance
sY
2 (x) based on 3000 Monte Carlo realizations with hY i = 1, sY

2 = 2, and l = 1.
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placed inside the domain to render the flow locally divergent. The

saturated hydraulic conductivity field is made statistically non-

homogeneous through conditioning at three points, two above and

one below the source.

[25] To solve the original stochastic flow equations by numer-

ical Monte Carlo simulation, we took Y to be multivariate Gaussian

(this is not required for our conditional moment solution, which is

free of distributional assumptions). We started by generating 3000

unconditional random Y realizations on our grid using a Gaussian

sequential simulator, GCOSIM [Gómez-Hernández, 1991], with

hY i = 1, sY
2 = 2, and l = 1. For purposes of flow analysis by

conditional Monte Carlo simulation we assigned to each element a

constant Y value corresponding to the point value generated at its

center by GCOSIM. This is justified considering that our grid

includes a minimum of five such cells per unit autocorrelation

scale. Figure 2 shows images of a single unconditional realization,

unconditional sample mean hY(x)i, and variance sY
2 (x) obtained

from these simulations. The sample mean and variance are quite

close to their theoretical counterparts, ranging from 0.93 to 1.07

and from 1.85 to 2.12, respectively. The unconditional autocovar-

iance CY obtained from Monte Carlo simulations compares favor-

ably with that given theoretically by equation (49).

[26] We selected one of the above unconditional realizations of

Y and took its values at the conditioning points to represent exact

Figure 4. Variation of conditional (a) mean pressure head, (b) mean longitudinal flux, (c) variance of pressure head,
and (d) variance of longitudinal flux at two points with number of Monte Carlo (NMC) simulations for sY

2 = 2.

Figure 5. Contours and profiles of conditional mean pressure head obtained by Monte Carlo (MC) and zero- and
second-order recursive solutions for sY

2 = 2.
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‘‘measurements.’’ We then generated number of Monte Carlo

simulations (NMC) = 3000 corresponding conditional realizations

of Y by the same method. Figure 3 shows images of a single

conditional realization, conditional sample mean hY(x)i, and condi-
tional variance sY

2 (x) obtained from these simulations.

[27] We solved equations (1), (2), (3), and (4) for each uncondi-

tional and conditional realization of Y by standard finite elements

using ln a = �1. We did so by using standard Galerkin finite

elements with bilinear interpolation. Both the grid and the method

of solution are fully compatible with the finite element method-

ology that we use to solve the corresponding nonlocal moment

equations. To insure similar compatibility between conditional

moments in the Monte Carlo and nonlocal flow solutions, we

employed in the latter conditional moments of Y(x) that had been

estimated from corresponding sample realizations (in practical

applications one would normally infer these moments geostatisti-

cally from measurements by methods such as kriging). We then

calculated corresponding sample mean pressure head and flux at

each node as well as sample variance and covariance of pressure

head and flux across the grid, based on all 3000 conditional Monte

Carlo solutions of equations (1), (2), (3), and (4). This completed

our conditional Monte Carlo simulation.

[28] All quantities which enter into our conditional moment

equations are generally much smoother than their random (and

Figure 6. Contours and profiles of conditional variance of pressure head obtained by MC and second-order
recursive solutions for sY

2 = 2.

Figure 7. Contours and profiles of conditional mean longitudinal (vertical) flux obtained by MC and zero- and
second-order recursive solutions for sY

2 = 2.
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therefore at best partially known) counterparts. This allows solving

them numerically on a computational grid that is defined a

posteriori, based on the degree of smoothness one expects the

moment functions to exhibit, rather than a priori on the basis of

more or less ad hoc criteria, as is common when one uses

upscaling. The degree of smoothness exhibited by the moment

functions is controlled, to a large extent, by the distribution of

conditioning points in space. In most cases, such points are sparse

enough to insure that the conditional mean functions fluctuate at

lower spatial frequencies than do their random counterparts. Hence

the grid required to resolve the former is generally coarser than that

required to resolve the latter. In this paper we nevertheless employ

a fine grid to allow comparing our conditional mean flow results

directly with numerical Monte Carlo solutions of the original

stochastic Richards’ equation.

6. Results and Discussions

[29] We focus on computational results obtained by the two

methods and their comparative analysis. We start by examining the

rate at which the Monte Carlo (MC) solution converges to a stable

solution. We then compare Monte Carlo and zero- as well as

Figure 8. Contours and profiles of conditional mean transverse (horizontal) flux obtained by MC and zero- and
second-order recursive solutions for sY

2 = 2.

Figure 9. Contours and profiles of conditional variance of longitudinal flux obtained by MC and second-order
recursive solutions for sY

2 = 2.
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second-order recursive finite element results for the conditional

case, followed by a similar comparison for the unconditional case.

6.1. Conditional Simulations

[30] Figure 4 illustrates how conditional mean pressure head,

conditional mean longitudinal (vertical) flux, conditional variance

of mean pressure head, and conditional variance of longitudinal flux

vary with the number NMC of Monte Carlo simulations at two

points (x1 = 2, x2 = 2 and x1 = 2, x2 = 6) in the grid depicted in

Figure 1. Whereas the conditional mean pressure head, conditional

mean longitudinal flux, and conditional variance of pressure head

require only of the order of NMC = 2000 to stabilize at these two

points, the conditional variance of longitudinal flux requires at least

NMC = 3000. In this paper we do not require that the MC moments

stabilize fully, only that they stabilize partially and be comparable to

those we compute directly by our recursive finite element algo-

rithm. We achieve this by working with a sample of NMC = 3000

realizations and adopting the corresponding sample statistics of Y,

rather than its ensemble statistics, as input into our recursive finite

element model.

6.1.1. Mean conditional pressure head. [31] Figure 5a

compares conditional mean contours of pressure head y obtained

by MC simulation (solid line) and zero-order (dash-dotted line) and

second-order (dashed line) recursive finite element solutions on the

Figure 10. Contours and profiles of conditional variance of transverse flux obtained by MC and second-order
recursive solutions for sY

2 = 2.

Figure 11. Contours and profiles of one-point conditional cross-covariance between transverse and longitudinal
fluxes obtained by MC and second-order recursive solutions for sY

2 = 2.
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grid and under the conditions depicted in Figure 1. Figure 5b

shows the same along a vertical profile passing through one of the

conditioning points, and Figure 5c shows the same along a similar

profile passing through the point source. The second-order mean

pressure head virtually coincides with Monte Carlo results, with a

maximum difference of 0.8% and average difference of 0.3%

between the two sets of results across the grid. The zero-order

solution deviates from the Monte Carlo results by as much as

10.5% near the upper prescribed flux boundary but only 3.2% on

average across the grid.

6.1.2. Conditional variance of pressure head. [32] Figure

6a compares contours of conditional pressure head variance as

obtained by MC and second-order finite elements. Figures 6b and

6c show how this variance varies along profiles indicated on

Figure 6a. Although our second-order results represent only the

lowest possible order of approximating second moments, the

corres-ponding variance of pressure head is close to the Monte

Carlo results, even though the underlying Y field is quite strongly

heterogeneous with unconditional variance as large as sY
2 = 2. With

the exception of a peak at the source (Figure 6c), the variance of y

Figure 12. Contours and profiles of unconditional mean pressure
head obtained by MC and zero- and second-order recursive
solutions for sY

2 = 2.

Figure 13. Contours and profiles of unconditional variance of
pressure head obtained by MC and second-order recursive
solutions for sY

2 = 2.

Figure 14. Contours and profiles of unconditional mean long-
itudinal (vertical) flux obtained by MC and zero- and second-order
recursive solutions for sY

2 = 2.

Figure 15. Contours and profiles of unconditional mean
transverse (horizontal) flux obtained by MC and zero- and
second-order recursive solutions for sY

2 = 2.
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is zero at the bottom Dirichlet boundary and increases with vertical

distance above this boundary.

6.1.3. Conditional mean flux. [33] Figure 7 compares

conditional mean flux in the longitudinal (vertical) x2 direction

as obtained by Monte Carlo simulation and zero-order and second-

order conditional moment solutions. Both the zero- and second-

order solutions compare favorably with Monte Carlo results, the

latter being slightly better than the former. The mean longitudinal

flux field is strongly influenced by conditioning points and the

point source, which render it distinctly nonuniform. To help

explain the resulting longitudinal flux pattern, we refer the

reader to a contour map of conditional mean log saturated

conductivities hY i in Figure 3b. This map shows that the upper

right conditioning point corresponds to a local drop in hY i.
Therefore the contours in Figure 7a show a reduction in the

magnitude of mean longitudinal flux toward this point. At

the other two conditioning points, hY i exhibits a peak. Therefore

the magnitude of mean longitudinal flux increases toward each of

these two conditioning points. Near the point source, closely

spaced contours of mean longitudinal flux reflect a very rapid

change in its magnitude along the vertical.

[34] Figure 8 compares conditional mean flux in the trans-

verse (horizontal) x1 direction as obtained by Monte Carlo

simulation and zero-order and second-order conditional moment

solutions. Again, both the zero- and second-order solutions

compare favorably with Monte Carlo results, the latter being

slightly better than the former. The mean transverse flux field is

strongly influenced by conditioning points and the point source,

which render it markedly nonuniform. Owing to a pronounced

peak in hY i at the lower conditioning point, mean transverse flux

converges toward it on the upstream side and away from it on

the downstream side. Symmetry is broken by the point source,

which causes the mean transverse flux to exhibit a steep

horizontal gradient in its vicinity.

6.1.4. Conditional variance-covariance tensor of
flux. [35] Figure 9 compares the conditional variance of longi-

tudinal flux C
2ð Þ
q2q2 x; xð Þ, as obtained by Monte Carlo simulation,

and the second-order conditional moment approach. Figures 10

and 11 do the same for the conditional variance of transverse flux

C
2ð Þ
q1q1 x; xð Þ and one-point cross-covariance between longitudinal

and transverse flux C
2ð Þ
q1q2 x; xð Þ ¼ C

2ð Þ
q2q1 x; xð Þ; respectively. There

is excellent agreement between the two solutions in all three cases.

[36] As seen in Figure 9, the conditional variance of longi-

tudinal flux generally increases from zero at the upper prescribed

Figure 16. Contours and profiles of unconditional variance of
longitudinal flux obtained by MC and second-order recursive
solutions for sY

2 = 2.

Figure 17. Contours and profiles of unconditional variance of
transverse flux obtained by MC and second-order recursive
solutions for sY

2 = 2.

Figure 18. Contours and profiles of one-point unconditional
cross-covariance between transverse and longitudinal fluxes
obtained by MC and second-order recursive solutions for sY

2 = 2.
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flux boundary toward the bottom prescribed pressure head

boundary. The conditional variance of transverse flux is zero at

the bottom boundary and the vertical no-flow boundaries, increas-

ing systematically toward the center of the domain (Figure 10).

Both the longitudinal and transverse variances are relatively large at

the lower and upper left conditioning points (at which hY i is large)
and the point source (at which mean longitudinal and transverse

flux gradients are large). Both variances are relatively small at the

upper right conditioning point (at which hY i is small). The condi-

tional cross-covariance between longitudinal and transverse fluxes

does not show any systematic trend across the domain (Figure 11).

The cross-covariance is zero at the point source and peaks at the

lower conditioning point. Its spatial pattern is reminiscent of that

exhibited in Figure 7 by the conditional mean transverse flux.

6.2. Unconditional Simulations

[37] We now examine briefly the effect of eliminating the

conditioning points in the previous example. All other aspects of

the problem remain the same as in the conditional case.

6.2.1. Mean unconditional pressure head. [38] Figure 12

compares unconditional mean pressure head y, obtained by

Monte Carlo (MC) simulation, and zero- and second-order

recursive finite element solutions on the grid and under the

conditions depicted in Figure 1 but without the inclusion of

conditioning points. Because of the absence of such points, the

mean pressure head now varies more uniformly across the domain

than it did in the conditional case depicted in Figure 5. The

second-order mean pressure head is still very close to the Monte

Carlo results but slightly less so than in the conditional case.

Though contours of the zero-order unconditional mean pressure

head deviate considerably from those representing Monte Carlo

results, the two solutions are seen in longitudinal (vertical) profile

to be quite close. The contour map exaggerates the difference

between these two solutions because of the relatively flat outline

of the profile.

6.2.2. Unconditional variance of pressure head. [39] Figure

13 compares the unconditional variance of pressure head as

obtained by Monte Carlo and second-order finite elements. A

comparison with Figure 6 shows that conditioning reduces the

variance of pressure head and improves the quality of the

second-order solution by bringing it closer to the Monte Carlo

results.

6.2.3. Unconditional mean flux. [40] Figures 14 and 15

compare unconditional mean longitudinal and transverse fluxes,

respectively, as obtained by Monte Carlo simulation and zero-order

and second-order conditional moment solutions. Both the zero- and

second-order solutions compare favorably with Monte Carlo

results, the latter being slightly better than the former. Both the

longitudinal and transverse flow patterns are vastly different from

their conditional counterparts in Figures 7 and 8.

6.2.4. Unconditional variance-covariance tensor of
flux. [41] Figures 16, 17, and 18 compare second-order and

Monte Carlo solutions for the unconditional variance of long-

itudinal and transverse fluxes. Here the quality of the second-

order solutions is as good as it was in the conditional case,

depicted in Figures 9, 10, and 11. The patterns, however, are often

quite different owing to the absence of conditioning points. A

comparison of Figures 9 and 10 and Figures 16 and 17 reveals

that conditioning may locally increase the variance of both

longitudinal and transverse flux, as happens most evidently at

the lower conditioning point (at which conditional mean log

conductivity exhibits a pronounced peak). Upon comparing

Figures 11 and 18, one notes that conditioning has brought about

an increase in the one-point cross-covariance between transverse

and longitudinal fluxes.

7. Conclusions

[42] This paper leads to the following major conclusions.

1. It is possible to render optimum unbiased predictions of

steady state unsaturated flow in bounded, randomly heterogeneous

soils under the influence of uncertain boundary and source terms,

deterministically without upscaling or linearizing the constitutive

relation between hydraulic conductivity and pressure head. It is

likewise possible to quantify the uncertainty of such predictions.

The approach works when this relation is represented by Gardner’s

[1958] exponential model, in which the exponent a is a random

constant and saturated hydraulic conductivity Ks is a spatially

correlated random field. The approach is based on recursive

approximations of exact integro-differential equations for the

conditional mean and variance-covariance of Kirchhoff-trans-

formed pressure head and flux.

2. The above recursive approximations are amenable to

discretization by means of finite elements. We have done so for

two-dimensional unsaturated flow to second order in the standard

deviation of Y = ln Ks and zero order in the standard deviations of

b = ln a as well as forcing terms. Our algorithm is similar in

principle to that developed for two-dimensional saturated flow by

Guadagnini and Neuman [1999b].

3. Our computational results are nominally restricted to mildly

heterogeneous media with sY
2 � 1. Nevertheless, when we

compare our moment solution for two-dimensional superimposed

mean uniform and convergent flows with conditional and

unconditional Monte Carlo finite element simulations, we find

that the former is remarkably accurate (more so in the conditional

than in the unconditional case) for strongly heterogeneous soils

with sY
2 as large as 2. This accords well with a theoretical analysis

by Tartakovsky et al. [1999], which shows that the solution may

remain asymptotic for sY
2 values as large as 2. We have not tested

the performance of our conditional moment algorithm for sY
2

values larger than 2 but note that Guadagnini and Neuman [1999b]

had obtained very good results with a similar algorithm under

saturated flow for sY
2 as large as 4. Whether the same would hold

true in our unsaturated case is presently unclear.

4. Our recursive finite element algorithm shares with Zhang and

Winter [1998], Zhang et al. [1998], and Zhang [1999] the reliance

on conditional moment approximations for unsaturated flow.

However, it differs from their approach by obviating the need to

introduce perturbation approximations for the soil constitutive

relations and has been shown by us to work well under the adverse

conditions of a strongly heterogeneous soil with a point source.

Another advantage of our approach is that once the auxiliary

functions have been determined for a given set of conditioning

points and boundary types, one can use them to solve a large

number of related stochastic flow problems subject to different

boundary terms and an unlimited range of source terms. Computing

the auxiliary functions simultaneously on parallel processors could

potentially enhance the computational efficiency of our algorithm.

5. Our computational results demonstrate that conditioning

improves the quality of the recursive finite element solution and

reduces the prediction variance of pressure head. Whereas

conditioning may impact markedly the predicted flux pattern, it

does not necessarily reduce the variance of predicted flux and may

locally cause this variance to increase. The effect of a point source

is to significantly alter the predicted flux pattern and increase the

prediction variance of both pressure head and flux.
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6. Although our second-order finite element results are superior

to zero-order results in all cases, the zero-order approximations of

flux tend to be highly accurate in both the conditional and

unconditional cases. However, second-order approximations are

always required for the assessment of uncertainty in predicted

pressure head and flux.

Appendix A

[43] Substituting equations (12), (13), and (14) into equations

(8), (9), and (10) and subtracting the corresponding conditional

mean equations (15), (16), and (17) yield the following implicit

equations for �0(x):

r 
 F xð Þ þ f 0 xð Þ ¼ 0 x in � ðA1Þ

�0 xð Þ ¼ H 0 xð Þ x on �D ðA2Þ

n xð Þ 
 F xð Þ ¼ Q 0 xð Þ x on �N ðA3Þ

F xð Þ ¼ Ks xð Þr�0 xð Þ þ K 0
s xð Þr � xð Þh i þ r xð Þ

þ g
�
aKs xð Þ�0 xð Þ þ a0Ks xð Þ � xð Þh i þ ah iK 0

s xð Þ � xð Þh i

� ah iRK� xð Þ � Ks xð Þh iRa� xð Þ � RaK� xð Þ
�
e3: ðA4Þ

[44] To obtain an explicit expression for �0(x), we introduce an

auxiliary random function G(y,x) that satisfies

ry 
 Ks yð ÞryG y; xð Þ
� �

� gaeT3Ks yð ÞryG y; xð Þ

þ d x� yð Þ ¼ 0 y in �; x in � ðA5Þ

G y; xð Þ ¼ 0 y on �D; x in � ðA6Þ

ryG y; xð Þ 
 n yð Þ ¼ 0 y on �N ; x in �; ðA7Þ

where d is the Dirac delta. Unlike the symmetric Green’s function

presented by Guadagnini and Neuman [1999a] for saturated flow,

here G is nonsymmetric. Rewriting equations (A1), (A2), (A3), and

(A4) in terms of y, multiplying by G, integrating with respect to y

over �, and applying Green’s first identity yields the desired

expression

�0 xð Þ ¼ �
Z
�

rT
y G y; xð Þ K 0

s yð Þr � yð Þh i þ r yð Þ
�

þ g
�
a0Ks yð Þ � yð Þh i þ ah iK 0

s yð Þ � yð Þh i� ah iRK� yð Þ

� Ks yð Þh iRK� yð Þ � RaK� yð Þ
�
e3	d�þ

Z
�

f 0 yð ÞG y; xð Þd�

þ
Z
�N

G y; xð ÞQ0 yð Þd��
Z
�D

H 0 yð ÞKs yð ÞryG y; xð Þ 
 n yð Þd�:

ðA8Þ

[45] Introducing equations (6) and (7) into equation (1) gives

q xð Þ ¼ �Ks xð Þ r� xð Þ þ ga� xð Þe3½ 	: ðA9Þ

Writing q(x) = hq(x)i + q0(x), substituting equations (12), (13), and

(14) into (A9) and taking conditional ensemble mean leads to

equation (18). Subtracting equation (18) from equation (A9) and

using equations (12), (13), and (14) yields

q0 xð Þ ¼ � Ks xð Þh i


r�0 xð Þ þ g

�
ah i�0 xð Þ þ a0� xð Þ

�
e3

�
� K 0

s xð Þ r� xð Þþ ga� xð Þe3ð Þ�r xð Þ þ g
�
ah iRK� xð Þ

þ Ks xð Þh iRa� xð Þ þ RaK� xð Þ
�
e3: ðA10Þ

Appendix B

[46] Expressing equation (A8) in terms of y, multiplying by

Y 0(x), and taking conditional ensemble mean gives

Y 0 xð Þ�0 yð Þh i ¼ �
Z
�

Y 0 xð ÞrT
z G z; yð ÞK 0

s zð Þ
� �

r � zð Þh i½ þg ah i


 � zð Þh ie3	d��
Z
�

Y 0 xð ÞrT
z G z; yð Þ

� �
r zð Þd�

� g

Z
�

a0Y 0 xð ÞrT
z G z; yð ÞKs zð Þ

� �
� zð Þh ie3 d�

þ g

Z
�

Y 0 xð ÞrT
z G z; yð Þ

� ��
ah iRK� zð Þ

þ Ks zð Þh iRa� zð ÞþRaK� zð Þ
�
e3 d�

�
Z
�D

Y 0 xð ÞH 0 zð ÞrT
z G z; yð ÞKs zð Þ

� �
n zð Þd �; ðB1Þ

where

r zð Þ ¼ � K 0
s zð Þr�0 zð Þ

� �
RK� zð Þ ¼ K 0

s zð Þ�0 zð Þ
� �

Ra� zð Þ ¼ a0�0 zð Þh i RaK� zð Þ ¼ a0K 0 zð Þ�0 zð Þh i: ðB2Þ

[47] Expanding equation (B1) to second order in sY yields

C
2ð Þ
Y� x; yð Þ ¼ �

Z
�

CY x; zð ÞrT
z G 0ð Þ z; yð Þ
D E

KG zð Þ


 r � 0ð Þ zð Þ
D E

þ gaG � 0ð Þ zð Þ
D E

e3

h i
d� ðB3Þ

from whence

K0
s xð Þ�0 yð Þ

� � 2ð Þ¼ KG xð Þ Y 0 xð Þ�0 yð Þh i 2ð Þ
: ðB4Þ

Appendix C

[48] Rewriting equation (8) as

ay xð Þ ¼ ln a � xð Þ½ 	 ðC1Þ

and expanding yields

a y xð Þh i þ y0 xð Þ½ 	 ¼ ln aG � 0ð Þ xð Þ
D Eh i

þ �0 xð Þ
� 0ð Þ xð Þ
� �

þ
� 2ð Þ xð Þ
� �
� 0ð Þ xð Þ
� �� 1

2

�02 xð Þ
D E
� 0ð Þ xð Þ
� �2 þ ::: : ðC2Þ

[49] The conditional mean of equation (C2) is

ah i y xð Þh i ¼ ln aG � 0ð Þ xð Þ
D Eh i

þ
� 2ð Þ xð Þ
� �
� 0ð Þ xð Þ
� �� 1

2

�02 xð Þ
D E
� 0ð Þ xð Þ
� �2 þ ::: : ðC3Þ
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Equating terms of same order on the two sides of equation (C3)

yields, up to second order in sY ,

y 0ð Þ xð Þ
D E

¼ 1

aG

ln aG � 0ð Þ xð Þ
D Eh i

ðC4Þ

y 2ð Þ xð Þ
D E

¼ 1

aG

� 2ð Þ xð Þ
� �
� 0ð Þ xð Þ
� �� 1

2

C
2ð Þ
� x; xð Þ
� 0ð Þ xð Þ
� �2

#
:

"
ðC5Þ

Taking the product of equation (C1) with the same expression

written in terms of y gives

a2y xð Þy yð Þ ¼ ln a � xð Þ½ 	 ln a � yð Þ½ 	 : ðC6Þ

Expanding equation (C6) and taking conditional mean yield

ah i2 y xð Þh i y yð Þh i þ ah i2Cy x; yð Þ

¼ ln aG � 0ð Þ xð Þ
D Eh i

ln aG � 0ð Þ yð Þ
D Eh i

þ �0 xð Þ�0 yð Þh i
� 0ð Þ xð Þ
� �

� 0ð Þ yð Þ
� �

þ ln aG � 0ð Þ xð Þ
D Eh i � 2ð Þ yð Þ

� �
� 0ð Þ yð Þ
� �� 1

2

�02 yð Þ
� �
� 0ð Þ yð Þ
� �2

" #

þ ln aG � 0ð Þ yð Þ
D Eh i � 2ð Þ xð Þ

� �
� 0ð Þ xð Þ
� �� 1

2

�02 xð Þ
� �
� 0ð Þ xð Þ
� �2

" #
þ ::: : ðC7Þ

Equating terms of same order on the two sides of equation (C7)

and substituting equations (C4) and (C5) into the result lead

directly to equation (48).
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