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Abstract

We derive a solution for drawdown and stream depletion for shallow aquifer pene-
tration by a stream and hydraulic aquifer connection with the underlying source bed.
This solution unifies and extends the results obtained by Theis, Glover and Balmer,
Hantush and Jacob, Hantush, and Hunt. We show that both hydraulic stream-aquifer
connection and hydrostratigraphic conditions determine Maximum Stream Depletion
Rate, which is defined as a maximum fraction of the pumping rate supplied by the
stream depletion.

Introduction

Studies of stream depletion or stream depletion rate (SDR) have primarily focused on hy-
draulic connection between a stream and an aquifer for pumping wells in alluvial valleys
(Theis, 1941, Glover and Balmer, 1954, Hantush, 1965, Hunt, 1999, Zlotnik et al., 1999, But-
ler et al., 2001). Solution for more complex hydrostratigraphic conditions (leaky aquifers)
were mentioned by Hantush (1955, 1964), but only recently such conditions received atten-
tion in connection to the Maximum Stream Depletion Rate (MSDR) concept (Zlotnik, 2004).
The MSDR is defined as a maximum fraction of the pumping rate supplied by stream deple-
tion. This characteristic is of paramount importance for water resources managers for water
balance assessment and adjudication of water rights. Zlotnik (2004) showed that this frac-
tion could vary from 0 to 1. However, simplified models based on the Hantush (1955, 1964)
approach assume perfect connection between the stream ant the alluvial aquifer, thereby
providing an upper limit of SDR. In many cases, an overestimating the stream depletion is
undesirable in developing a stream water budget. Therefore, there is need for a model that
takes into account both the stream-aquifer connection and leaky conditions.

Objectives of this article are to present a solution that takes into account shallow aquifer
penetration by a stream and hydraulic aquifer connection with the underlying source bed. We
show quantitatively that both hydraulic stream-aquifer connection and hydrostratigraphic
conditions determine MSDR. At various limits, our solution reduces to the classic Theis,
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Glover and Balmer, Hantush and Jacob, and Hantush solutions, as well as to a more recent
solution by Hunt (1999).

Problem Formulation

Consider a well operating with a constant pumping rate Q in a leaky aquifer at a distance l
from a shallow stream. A schematic cross section of our model and relevant parameters are
shown in Figure 1. Our assumptions for problem formulation are as follows:

• The Dupuit assumptions are valid, and hydraulic head h(x, y, t) is a function of Carte-
sian coordinates x and y and time t,

• Alluvial aquifer is of infinite extent and hydraulic conductivity k and storativity S are
homogeneous and isotropic,

• Relative to the thickness of an unsaturated aquifer, drawdowns are small enough to
warrant the use of linearized flow equations,

• Drawdowns are small enough to provide permanent stream-aquifer hydraulic connec-
tion,

• Streambed cross section has horizontal and vertical dimensions that are small compared
to the aquifer thickness,

• Stream is located along the y axis and is of infinite extent (−∞ < y < ∞),

• Seepage flow rates between stream and aquifer are proportional to the difference in
piezometric head across the streambed,

• Alluvial aquifer is separated from a source bed with constant head with an incompress-
ible aquitard of hydraulic conductivity ka (ka � k) and thickness ma

• The hydrologic system (i.e., the aquifer, stream, and source bed) is in the state of
equilibrium before the commencement of pumping.

Under these assumptions, the flow problem can be described by (Hantush, 1964; Hunt,
1999; Butler et al., 2001; and Zlotnik, 2004)

T

(
∂2h

∂x2
+

∂2h

∂y2

)
= S

∂h

∂t
+ w (1a)

where

w = Qδ(x− l)δ(y)− λ(H − h)δ(x)− ka

ma

(H − h)−R, (1b)

T is transmissivity, H is hydraulic head in the aquifer, stream and source bed at time t = 0,
R is groundwater reacharge, and λ is the streambed characteristic. For streambeds with
small horizontal and vertical dimensions, the latter can be approximated by λ ≈ ksws/ms,
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Figure 1: A schematic representation of a stream-aquifer-aquitard system and major hydro-
logical parameters.

where ks, ws and ms are the hydraulic conductivity, width and thickness of the streambed,
respectively (Hunt et al., 2001).

Flow equation (1) is subject to the initial and boundary conditions

h(x, y, 0) = H, lim
x2+y2→∞

h = H, (2)

respectively.
The stream depletion rate q is defined by (e.g., Hunt, 1999, Eq. 6)

q = − lim
ε→0

∫ ∞

−∞

∫ ε

−ε

wdxdy = λ

∫ ∞

−∞
[H − h(0, y, t)]dy. (3)

In terms of drawdown φ(x, y, t) = H − h(x, y, t) and the dimensionless parameters

φd =
φT

Q
, td =

Tt

Sl2
, xd =

x

l
, B2

d =
maT

kal2
, λd =

λl

T
(4)

equations (1) – (3) can be rewritten as

∇2
dφd =

∂φd

∂td
− δ(xd − 1)δ(yd) + λdφdδ(xd) + B−2

d φd (5)

subject to the initial and boundary conditions

φd(xd, yd, 0) = 0, lim
x2

d+y2
d→∞

φd = 0, (6)

respectively. The stream depletion rate is given by

q

Q
= λd

∫ ∞

−∞
φd(0, yd, td)dyd. (7)
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Note that, analogous to Jenkins (1968), dimensionless time td is scaled with the stream
depletion factor Sl2/T . Dimensionless parameter Bd accounts for the effects of leakage,
such that Bd = ∞ corresponds to a non-leaky aquifer and Bd = 0 to a perfect connection
with a source bed. Dimensionless parameter λd accounts for water exchange between the
stream and the aquifer, such that λd = 0 indicates the absence of a stream and λd = ∞
corresponds to a perfect stream-aquifer connection, i.e., to the full aquifer penetration by
a stream. Dimensional counterparts of Bd and λd were used by Hantush (1964) and Hunt
(1999), respectively.

Drawdown and Stream Depletion Rate

Let Φ(xd, α, p) be the Laplace-Fourier transform of φd defined as

φ̄(xd, yd, p) =

∫ ∞

0

φ(xd, yd, td)e
−ptddtd, Φ(xd, α, p) =

∫ ∞

−∞
φ̄(xd, yd, p)eiαyddyd. (8)

Taking the Laplace-Fourier transform of (5) – (6) yields an ordinary differential equation

d2Φ

dx2
d

− β2Φ = −1

p
δ(xd − 1) + λdΦδ(xd), β2 = α2 + p + B−2

d (9)

subject to the boundary condition

lim
xd→±∞

Φ = 0. (10)

Following Hunt (1999), the solution of (9) – (10) can be written as

Φ = Φ1 − Φ2, −∞ < xd <∞, (11)

where

Φ1 =
1

2βp
e−β|xd−1| (12)

and

Φ2 =
λd

2βp(2β + λd)
e−β(1+|xd|). (13)

Following Hunt (1999, Eq. 25), we note that in the absence of a stream (λ = λd = 0),
our solution must reduce to a well known solution by Hantush and Jacob (1955). Hence
Φ1 in (12) is a Laplace-Fourier image of the Hantush-Jacob solution for an observation well
located at dimensionless distance r2

d = (xd − 1)2 + y2
d,

φd1(xd, yd, td) =
1

4π
W

(
u,

rd

Bd

)
, (14)
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where u = r2
d/(4td) and W is a well function defined by Hantush (1964) as

W (u, x) =

∫ ∞

u

1

y
exp

(
−y − x2

4y

)
dy. (15a)

The relevant properties of the well function W are

W (u,∞) = 0, W (u, 0) = E1(u), W (0, x) = 2K0(x), (15b)

where E1 is the exponential integral, and K0 is the modified Bessel function of the second
kind.

The Laplace-Fourier transform of (13) is inverted using Hunt’s (1999, Eq. 29) technique,

φd2(xd, yd, td) =
1

4π

∫ ∞

0

e−θW

(
uλ,

rλ

Bd

)
dθ. (16)

where r2
λ = (1 + |xd| + 2θ/λd)

2 + y2
d and uλ = r2

λ/(4td). Hence the dimensionless drawdown
φd = φd1 − φd2, or its dimensional counterpart φ = φ1 − φ2, is given by

φ(x, y, t) =
Q

4πT
W

(
u,

rd

Bd

)
− Q

4πT

∫ ∞

0

e−θW

(
uλ,

rλ

Bd

)
dθ. (17)

The Laplace image of the stream depletion rate in (7) can be obtained from the Laplace-
Fourier transform of the drawdown in (8) as

q

Q
= λd

∫ ∞

−∞
φ(0, yd, td)dyd = λdΦ(0, 0, p). (18)

Substituting (11) into (18) gives a Laplace image of the stream depletion rate

q

Q
=

λd

p(2β0 + λd)
e−β0 , β2

0 = p + B−2
d . (19)

Using an expansion

2λ

(p− 1/B2)(2
√

p + λd))
=

Ba1√
p− 1/B

+
Ba2√

p + 1/B
− 4

λ

a1a2√
p + λd/2

(20)

in (19), where

a1 =
Bd

2/λd + Bd

, a2 =
Bd

2/λd −Bd

, (21)

and taking the inverse Laplace transform of each term separately (Carslaw and Jaeger, 1959;
Appendix V, Eq. 12) gives

q

Q
=

a1

2
e−1/Bderfc

(
1

2
√

td
−
√

td
Bd

)
− a2

2
e1/Bderfc

(
1

2
√

td
+

√
td

Bd

)
+ a1a2e

λd/2+λ2
dtd/4−td/B2

derfc

(
1

2
√

td
+

λd

√
td

2

)
. (22)

Our general solutions for drawdown (17) and stream depletion rate (22) contain a number
of new and previously known solutions as special cases. These are discussed below.
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Analysis of drawdown

The steady-state drawdown φst is obtained from (17) by taking the limit as td → ∞ and
recalling (15b),

φst(x, y) =
Q

2πT
K0

(
rd

Bd

)
− Q

2πT

∫ ∞

0

e−θK0

(
rλ

Bd

)
dθ. (23)

The Theis solution for flow to a pumping well in a non-leaky aquifer without a stream is
obtained from (17) by taking limit as Bd →∞ and λd → 0.

The Theis solution for flow to a pumping well in a non-leaky aquifer with a perfect
stream-aquifer connection is obtained from (17) by taking limit as Bd →∞ and λd →∞.

The Hantush-Jacob solution for flow to a pumping well in a leaky aquifer without a
stream is obtained from (17) by taking the limit as λd → 0 (or rλ →∞) and recalling (15b),

φHJ(x, y, t) =
Q

4πT
W

(
u,

rd

Bd

)
. (24)

The modified Hantush solution for flow to a pumping well near a fully penetrating stream
is obtained from (17) by taking the limit as λd →∞. Since

lim
λd→∞

φd2(xd, yd, td) =
1

4π
W

(
uM ,

rMd

Bd

)
, r2

Md = (1 + |xd|)2 + y2
d, and uM =

r2
Md

4td
, (25)

where rMd is dimensionless distance between an observation point (xd, yd) and a mirrow
image of the pumping well with respect to the stream, the modified Hantush solution is
given by

φMH(x, y, t) =
Q

4πT
W

(
u,

rd

Bd

)
− Q

4πT
W

(
uM ,

rMd

Bd

)
. (26)

The transient Hunt (1999) solution for flow to a pumping well in a single-unit aquifer
near a shallow partially penetrating stream is obtained from (17) by taking the limit as
Bd →∞ and recalling (15b),

φHu(x, y, t) =
Q

4πT
E1 (u)− Q

4πT

∫ ∞

0

e−θE1 (uλ) dθ. (27)

which is identical to equations (25) and (29) of Hunt (1999). The steady-state counterpart
of (27) exists for λd > 0 and is given by equation (5) of Kollet et al. (2002),

φHu
st =

Q

4πT
ln

[
(1 + |xd|)2 + y2

d

(1− xd)2 + y2
d

]
+

Q

2πT

∫ ∞

1+|xd|

η

η2 + y2
d

e−λd
η−1−|xd|

2 dη. (28)

Figure 2 illustrates the effect of leakage (Bd = 10 and Bd = 100) on the cone of depression.
Leakage (the smaller Bd, the larger the leackage) reduces the lateral extent of the cone of
depression. For example, the equipotential φd = 0.3 barely reaches the stream for a larger
leakage Bd = 10. This effect can be explained be the presence of a source bed.

Figure 3 compares the time behavior of the normalized local drawdown φd in the obser-
vation well located at (xd, yd) = (0.2, 0.0) for Bd = 10 and Bd = 100. The latter case corre-
sponds to an example presented by Hunt’s (1999) Figure 6. For smaller Bd (i.e., Bd = 10),
drawdown practically reaches the steady state at earlier times, because of the the increased
leakage across the aquitard to the pumped aquifer at earlier times.
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Figure 2: Normalized drawdown φd = φT/Q at dimensionless time td = 100 for λd = 0.1
and (a) Bd = 100 and (b) Bd = 10. The stream is located at xd = 0 and is indicated by the
dashed line.
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Figure 3: Normalized drawdown φd = φT/Q at (xd, yd) = (0.2, 0.0) as a function of di-
mensionless time td = Tt/(Sl2) for two values of the dimensionless leakage parameter, (a)
Bd = 100 and (b) Bd = 10, and several values of the dimensionless streambed characteristics
λd.
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Analysis of stream depletion rate (SDR)

General expression (22) for SDR accounts for both streambed-aquifer water exchange and
leakage across the aquitard. This solution corresponds to the dimensionless streambed con-
ductance λd ≥ 0 and leakage Bd ≤ ∞, and contains several important special cases.

Maximal Stream Depletion Rate (MSDR), defined by Zlotnik (2004) as a maximum frac-
tion of the pumping rate supplied by SDR, corresponds to the steady-state SDR and is
obtained from (22) by taking the limit as td →∞,

qst

Q
= a1e

−1/Bd =
λ

2
√

kaT/ma + λ
exp

(
−l

√
ka

maT

)
. (29)

This equation demonstrates that both leakage from the source bed and the stream contribute
to the MSDR. The leakage causes the MSDR to decrease exponentially with distance from
the well to the stream, while the effect of the stream-aquifer connection (determined by
parameter λ) is independent of this distance. It is important to note that MSDR < 1.

The Hantush (1955, 1964) solution for the SDR induced by a well pumping in a leaky
aquifer near a fully penetrating stream is obtained by taking the limit of (22) as λd →∞,

qH

Q
=

1

2
e−1/Bderfc

(
1

2
√

td
−
√

td
Bd

)
+

1

2
e1/Bderfc

(
1

2
√

td
+

√
td

Bd

)
. (30)

The MSDR is obtained from (30) by taking the limit as td →∞,

MSDRH = e−1/Bd = exp

(
−l

√
ka

maT

)
. (31)

The exponential term indicates again the strong attenuation of the MSDR with increase of
distance between the well and the stream. Other factors that may affect MSDR are alluvial
valley width and availability of other sources of the aquifer recharge (Zlotnik, 2004).

The Theis-Glover-Balmer solution for the SDR induced by a well pumping in a non-leaky
aquifer near a fully penetrating stream is obtained from (22) by taking the limit as both
Bd →∞ and λd →∞,

qTGB

Q
= erfc

(
1

2
√

td

)
. (32)

The comparison of (30) and (32) reveals that the assumption of full penetration overestimates
the magnitude of the MSDR.

The Hunt (1999) transient solution for the SDR induced by a pumping well in a non-
leaky aquifer near a shallow partially penetrating stream is obtained by taking the limit of
(22) as Bd →∞, i.e., by assuming an impermeable aquitard,

QHu

Q
= erfc

(
1

2
√

td

)
− eλd/2+λ2

dtd/4erfc

(
1

2
√

td
+

λd

√
td

2

)
. (33)
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Figure 4: Normalized stream depletion rate q/Q as a function of dimensionless time td =
Tt/(Sl2) for two values of the dimensionless leakage parameter, (a) Bd = ∞ and (b) Bd = 10,
and several values of the dimensionless streambed characteristics λd.
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Both the Theis-Glover-Balmer and Hunt solutions for the SDR indicate that in non-leaky
aquifers the pumping rate is fully supplied by the stream depletion after extended pumping
time. Hence, the MSDR eventually reaches 1 (Zlotnik, 2004).

Figure 4 illustrates the combined influence of partial stream penetration and aquifer
leakage on both the SDR and MSDR. First, a family of Hunt (1999) curves for the SDR in a
non-leaky aquifer with a partially penetrating stream is plotted in Figure 4a as a function of
dimensionless time td. It is given by (33) and includes the Theis-Glover-Balmer solution for
a case of perfect stream-aquifer connection (λd = ∞). While Hunt’s SDR (33) is obtained
from (22) by taking the limit as Bd → ∞, it is within 9% of the SDR given by (22) at
Bd = 100, and practically attains this limit at Bd = 500. By the same token, the Theis-
Glover-Balmer SDR (32) is obtained from (22) with Bd → ∞ (or Bd = 500) and λd → ∞
(λd = 10). Needless to say, MSRD = 1 for all these curves.

Figure 4b shows a family of curves for the SDR in a leaky aquifer with Bd = 10. The
comparison of Figures 4a and 4b reveals that the larger Bd, the longer it takes for the
stream depletion to reach steady state. Leakage across the aquitard causes the MSDR to
decay exponentially with the distance between the well and the stream and prevents it
from reaching 1. The leakage also leads to an earlier stabilization of the MSDR after the
commensment of pumping. The time it takes for each SDR curve to reach the corresponding
MSDR may differ, and sensitivity analysis to the stream-aquifer-aquitard parameters would
be appropriate (Christensen, 2001).

Conclusions

We obtained transient solutions for drawdown and stream depletion rate (SDR), which allow
one to elucidate the combined effect of streambed leakage, stream penetration, and aquifer
leakage. To analyze the SDR, we used a concept of the Maximal Stream Depletion Rate
(MSDR), which is defined as a maximum fraction of the pumping rate supplied by stream
depletion. Stream depletion rate reaches the MSDR after the hydrologic system arrives at
a new equilibrium after the start of pumping. Stream depletion may only partially support
groundwater withdrawal from a pumping well in leaky aquifers. The balance of groundwater
withdrawals that is not supported by the stream depletion can be supplied from other sources.

In general, the MSDR can be assessed only with full consideration of hydrogeological con-
ditions that include the hydrostratigraphy, hydraulic properties of the aquifer and streambed,
geometry of recharge and discharge zones, and location of pumping well. The obtained solu-
tions may be used for assessment of MSDR and will complement numerical techniques that
are applied for detailed evaluation of stream-aquifer water budgets.

For this purpose, parameters of the aquifer, well, streambed, and aquitard must be
available a priori. If this is not a case, solutions can be used for designing the aquifer testing
programs similar to these by Sophocleous et al. (1988), Hunt et al. (2001), Nyholm et al.
(2003), and Kollet and Zlotnik (2003). The pre-testing designs can be significantly enhanced
by a sensitivity analysis of the on-site conditions (Christensen, 2000).
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