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The reproduction number,R, defined as the average number of secondary cases generated by
a primary case, is a crucial quantity for identifying the intensity of interventions required to
control an epidemic. Current estimates of the reproduction number for seasonal influenza
show wide variation and, in particular, uncertainty bounds for R for the pandemic strain
from 1918 to 1919 have been obtained only in a few recent studies and are yet to be fully
clarified. Here, we estimate R using daily case notifications during the autumn wave of the
influenza pandemic (Spanish flu) in the city of San Francisco, California, from 1918 to 1919.
In order to elucidate the effects from adopting different estimation approaches, four different
methods are used: estimation of R using the early exponential-growth rate (Method 1), a
simple susceptible–exposed–infectious–recovered (SEIR) model (Method 2), a more complex
SEIR-type model that accounts for asymptomatic and hospitalized cases (Method 3), and a
stochastic susceptible–infectious–removed (SIR) with Bayesian estimation (Method 4) that
determines the effective reproduction numberRt at a given time t. The first three methods fit
the initial exponential-growth phase of the epidemic, which was explicitly determined by the
goodness-of-fit test. Moreover, Method 3 was also fitted to the whole epidemic curve.
Whereas the values of R obtained using the first three methods based on the initial growth
phase were estimated to be 2.98 (95% confidence interval (CI): 2.73, 3.25), 2.38 (2.16, 2.60)
and 2.20 (1.55, 2.84), the third method with the entire epidemic curve yielded a value of 3.53
(3.45, 3.62). This larger value could be an overestimate since the goodness-of-fit to the initial
exponential phase worsened when we fitted the model to the entire epidemic curve, and
because the model is established as an autonomous system without time-varying
assumptions. These estimates were shown to be robust to parameter uncertainties, but the
theoretical exponential-growth approximation (Method 1) shows wide uncertainty. Method
4 provided a maximum-likelihood effective reproduction number 2.10 (1.21, 2.95) using the
first 17 epidemic days, which is consistent with estimates obtained from the other methods
and an estimate of 2.36 (2.07, 2.65) for the entire autumn wave. We conclude that the
reproduction number for pandemic influenza (Spanish flu) at the city level can be robustly
assessed to lie in the range of 2.0–3.0, in broad agreement with previous estimates using
distinct data.
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1. INTRODUCTION

The present study aims at assessing different
approaches to the estimation of the transmissibility of
the influenza pandemic of 1918–1919. To perform this
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comparison, we estimate epidemiological parameters
for daily case notification (i.e. morbidity) time-series
for the autumn wave of the 1918 influenza pandemic in
the city of San Francisco, California using four different
methods. These approaches include the estimation of
the initial intrinsic growth rate of the epidemic followed
by its substitution into a formula derived from the
linearization of the deterministic epidemic model
(e.g. Anderson & May 1991; Nowak et al. 1997; Lloyd
2001; Lipsitch 2003), trajectory matching (least-square
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fitting) of epidemic models to epidemic curve data
(examples of recent work include Riley et al. 2003;
Chowell et al. 2006) and sequential Bayesian inference
to estimate the effective reproduction number Rt at a
given time t, from a stochastic formulation of a SIR
model (Bettencourt & Ribeiro 2006).

The presence of the highly pathogenic A/(H5N1)
influenza virus in avian populations in several regions of
the world has highlighted the urgent need to prepare for
the next influenza pandemic.While the greatmajority of
transmission events (236 confirmed human cases as of 9
August 2006 (The World Health Organization 2006))
have resulted from direct contact with birds, a limited
number of human-to-human transmission events have
been reported as probable (Ungchusak et al. 2005).
Should this virus become adapted for efficient human-
to-human transmission, an influenza pandemic could
develop with devastating consequences.

Genetic drift in viral populations leads to annual
seasonal epidemics of influenza worldwide (Webster
et al. 1992). Much more rarely, major changes in the
influenza virus antigenic structure (genetic shifts) have
the potential to cause major pandemics, which are
associated with high morbidity and mortality rates
because the population is immunologically naive to the
new pathogen. The 1918 influenza pandemic (Spanish
flu) has been the most devastating among these in
recent history, with a death toll estimated at over
20 million worldwide (Johnson & Mueller 2002). The
1918–1919 pandemic strain probably originated from
an avian virus that adapted its tropism to humans
(Taubenberger et al. 2005), but this conclusion is
currently under debate (Antonovics et al. 2006; Gibbs &
Gibbs 2006).

In the advent of a next influenza pandemic, the
accurate and early estimation of the number of
secondary cases generated by a primary infectious
case (known as the reproduction number) is of high
priority for public health management. The reproduc-
tion number associated with the pandemic provides a
measure of the intensity of interventions required to
achieve control. In the context of a completely
susceptible population, this quantity is referred to as
the basic reproduction number and denoted by R0

(Anderson & May 1991). When a fraction p of the
population is effectively protected from infection, this
quantity is known as the reproduction number Rp (and
often denoted by R) and is related to R0

by RpZð1KpÞR0, assuming a well-mixed population
(Diekmann & Heesterbeek 2000). For the case of
pandemics we can expect RpzR0.

Parameter estimations of the epidemiology of
influenza have been of great concern to modellers for
sometime (Longini et al. 1982, 1984; Cauchemez et al.
2004). The evaluation of potential intervention
strategies using detailed mathematical frameworks
has become an important tool towards mitigating
future outbreaks in different parts of the world
(Flahault et al. 1988; Longini & Halloran 2005; Longini
et al. 2005; Ferguson et al. 2006), but evaluation of
these actions suffers at present from uncertainty
resulting from the scarcity of empirical estimates
obtained from past pandemics. In addition, to date,
J. R. Soc. Interface
only a small number of estimates exist for the
reproduction number of the pandemic strain that
circulated during 1918–1919 (Mills et al. 2004; Gani
et al. 2005; Chowell et al. 2006; Bettencourt & Ribeiro
2006), and these were achieved via different dynamical
models and estimation procedures, as well as over
distinct datasets, organized at different levels of
temporal and regional aggregation. As a consequence,
there is still insufficient information to fully clarify
the transmission dynamics of the great 1918–1919
pandemic. In addition, previously suggested values of
R for seasonal influenza varied widely with some
studies assuming RZ4K16 (Dushoff et al. 2004) and
RZ20 (Gog et al. 2003), while others argue that it
should only be slightly above unity (Gani et al. 2005).
Different methods and assumptions as well as the
absence of critical analyses regarding the robustness
and validity of these estimates have contributed to this
large uncertainty, which has lead to substantial
confusion, even among specialists (Koopman 2004).
This situation is owing, at least to a large extent, to
the limited amount and type of available data, so that
few estimates from incidence time-series have been
performed to date. Indeed, the sources of information
for the 1918 pandemic influenza completely differed
from one study to the next. Moreover, since the
available epidemiological information is not sufficient
to validate a detailed (e.g. agent-based) model for the
transmission of pandemic influenza, estimation and
analysis procedures must rely on simpler methods
within broader model assumptions (Arino et al. 2006).
Here, we explore several of these methods and
associated parameter estimation procedures to help
settle the uncertainty bounds on R for San Francisco
in 1918–1919.
2. MATERIALS AND METHODS

2.1. Historical background

The 1918 influenza pandemic known as the ‘Spanish flu’
was caused by the influenza virus A (H1N1). In San
Francisco, California (United States), 28 310 cases
including 1908 deaths were reported during the autumn
wave (September–November) comprising 63 epidemic
days, giving a case fatality of 6.7%. The city of San
Francisco, California is located on the tip of the San
Francisco Peninsula and covers an area of 121 km2. In
1918, the city of San Francisco had an approximate
population of 550 000 (Crosby 2003), which is about
74% of today’s population. As judged from an analysis
of the records of the San Francisco hospital (Hrenoff
1941), the 1918 pandemic affected all ages, sexes and
races. Clinical symptoms included severe headache,
prostration, muscle and joint pain, rapidly rising fever
and chills, and general malaise. Other less charac-
teristic manifestations of influenza included epistaxis,
sore throat, cough, rhinitis, laryngitis, gastro-enteric
upsets and leucopenia (Hrenoff 1941). When followed
by pneumonia, influenza was potentially more lethal
(Vaughn 1921). Generally, influenza spreads very
quickly owing to the short incubation period and,
consequently, the short serial interval (the sum of
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the mean latent period and the mean duration of
infectiousness) of about 3–6 days (Khakpour et al. 1969;
Kilbourne 1977).

Control measures implemented during the pandemic
included education campaigns on prevention, isolation,
face mask use and prohibition of public events, but
there is no quantitative evidence on their effectiveness
(Hrenoff 1941). For instance, mask use as a preventive
measure was much criticized owing to the lack of
general adoption (Capps 1918). The effectiveness of
these campaigns was publicly debated at the time as,
for example, 78% of the nurses at the San Francisco
Hospital contracted influenza, although this facility
was considered to have one of the best isolation services
in this city. Consequently, public announcements were
run in local newspapers calling for volunteers to help in
overburdened hospitals (Hrenoff 1941), which may
have increased transmission opportunities. Neither an
influenza vaccine nor antiviral medications were
available at the time.
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Figure 1. Daily number of influenza notifications in San
Francisco, California during the 1918–1919 influenza pan-
demic (Department of Hygiene 1922).
2.2. Data sources

Daily epidemic data for the autumn influenza wave
(September–November) in the city of San Francisco,
California were obtained from public records as
reported to the city health department (Department
of Hygiene 1922; figure 1). Since the health depart-
ment was aware of the rapidly spreading pandemic
influenza in the United States before the autumn wave
started in San Francisco, epidemic data were critically
inspected and are believed to have been recorded
rather precisely (Hrenoff 1941). Nevertheless, levels of
underreporting (or overreporting once the epidemic
was well publicized) are unknown quantitatively. We
adopted the date of the first reported (index) case—
23 September, 1918—as the starting date of the
epidemic. See electronic supplementary material for
the original data.

The total notified case fatality proportion (CFP) of
the 1918 autumn pandemic wave in the city of San
Francisco was 6.7% (Department of Hygiene 1922). The
mortality from influenza in the San Francisco hospital
(26%) was much greater than for the city as a whole
owing to the large number of patients who were brought
to the hospital in the final stages of disease progression,
often with pneumonia as a complication (Hrenoff 1941).
2.3. Estimation of the reproduction number
(i) Method 1: estimating R from the intrinsic growth
rate. The reproduction number is typically estimated
from the early epidemic phase, during which the
epidemic runs its free course in the absence of
interventions and effects of susceptible depletion are
small. To this end, it is common to assume an initial
exponential-growth phase, which is characteristic of
most human infectious diseases (Anderson & May
1991). Thus, one of the most common approaches to
computing the reproduction number consists of esti-
mating first the initial exponential-growth rate (r) for
the cumulative number of cases by fitting a straight line
b0Crt to the ‘best’ length of its exponential phase
J. R. Soc. Interface
(in logarithmic scale), which can be determined by the
c2 goodness-of-fit test statistic (Favier et al. 2006). The
reproduction number is then computed by substituting
the estimate for r into an expression derived from the
linearization of the susceptible–exposed–infectious–re-
moved (SEIR) deterministic epidemic model (Lipsitch
2003) and is given by

RZ 1CVr C f ð1Kf ÞðVrÞ2 CO½ðVrÞ3�; ð2:1Þ

where V is the mean serial interval; and f is the ratio of
the mean infectious period to the mean serial interval.
(ii) Method 2: estimating R from a simple susceptible–
exposed–infectious–removed model. We use an epidemic
model of SEIR-type that classifies individuals as
susceptible (S), exposed (E), infectious (I), recovered
(R) and dead (D) (Anderson & May 1991). Susceptible
individuals in contact with the virus enter the exposed
class at the rate bI(t)/N, where b is the transmission
rate; I(t) is the number of infectious individuals at
time t; and N(t)ZS(t)CE(t)CI(t)CR(t) is the total
population at time t. The entire population is assumed
to be susceptible at the beginning of the epidemic.
Latent individuals (E) progress to the infectious class at
the rate k (1/k is the mean latent period). We assume
homogeneous mixing between individuals and, there-
fore, the fraction I(t)/N(t) is the probability of a
random contact with an infectious individual in a popu-
lation of size N(t). Since we assume that the time-scale
of the epidemic is much faster than characteristic times
for demographic processes (natural birth and death),
these effect are not included in the model. Infectious
individuals either recover or die from influenza at the
mean rates g and d, respectively. Recovered individuals
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are assumed protected for the duration of the outbreak.
The mortality rate is given by dZg[CFP/(1KCFP)],
where CFP is the mean case fatality proportion. The
transmission process can be modelled using the
following system of nonlinear differential equations:

_SðtÞZKbSðtÞI ðtÞ=NðtÞ;
_EðtÞZ bSðtÞI ðtÞ=NðtÞKkEðtÞ;
_I ðtÞZ kEðtÞKðgCdÞI ðtÞ;
_RðtÞZgI ðtÞ;
_DðtÞZ dI ðtÞ;
_CðtÞZ kEðtÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2:2Þ

where the dot denotes time derivatives, and C(t) is the
cumulative number of case notifications.

We use least-square fitting to look for the model
trajectory that best matches the epidemic time series.
Specifically, we fit the cumulative number of cases
given by equation C(t) to the cumulative number of
case notifications. We implemented a least-square
fitting procedure in MATLAB (The Mathworks Inc.)
using the built-in routine lsqcurvefit in the
optimization toolbox. The latent period was fixed to
1/kZ1.9 days and the recovery period was set to
4.1 days, as in previous studies (Mills et al. 2004). We
then estimate the transmission rate b and the initial
number of exposed and infectious individuals, assuming
E(0)ZI(0). The basic reproduction number is given by
the product of the mean transmission rate and the mean
infectious period, R0Zb=ðgCdÞ.
(iii) Method 3: estimatingR using a complex susceptible–
exposed–infectious–removed model. We apply this
method to estimate the reproduction numbers from two
different sets of data: (i) exponential-growth phase (i.e. as
in Methods 1 and 2); and (ii) model fit to the entire
epidemic curve.

Our complex SEIR model was developed originally
for studying the transmissibility and the effect of
hypothetical interventions for the 1918 influenza
pandemic in Geneva, Switzerland (Chowell et al.
2006). In this model, individuals are classified as
susceptible (S), exposed (E), clinically ill and infectious
(I ), asymptomatic and partially infectious (A), diag-
nosed and reported (J ), recovered (R) and dead (D).
The birth and natural death rates are assumed to have a
common rate m (60-year life expectancy as in Chowell
et al. 2006). The entire population is assumed susceptible
at the beginning of the pandemic wave. Susceptible
individuals in contactwith the virus progress to the latent
class at the rate b(I(t)CJ(t)CqA(t)/N(t)), where b is the
transmission rate, and 0!q!1 is a reduction factor in the
transmissibility of the asymptomatic class (A). Since
there is no evidence for the effectiveness of interventions,
and a high burden was placed upon the sanitary and
medical sectors, diagnosed/hospitalized individuals (J )
are assumed equally infectious. Although it is difficult
to explicitly evaluate the difference in infectiousness
between the general community and hospital, we
J. R. Soc. Interface
roughly made this assumption as 78% of the nurses of
the San Francisco Hospital contracted influenza
(Hrenoff 1941). A more rigorous assumption requires
either statistical analysis of more detailed time-series
data (Cooper & Lipsitch 2004) or an epidemiological
comparison of specific groups by contact frequency
(Nishiura et al. 2005). The total population size at time
t is given by N(t)ZS(t)CE(t)CI(t)CA(t)CJ(t)CR(t).
We assumed homogeneous mixing of the population
and, therefore, the fraction (I(t)CJ(t)CqA(t))/N(t) is
the probability of a random contact with an infectious
individual. A proportion 0!r!1 of latent individuals
progress to the clinically infectious class (I ) at the rate
k, while the remaining (1Kr) progress to the asympto-
matic partially infectious class (A) at the same rate k
(fixed to 1 per 1.9 days Mills et al. 2004). Asymptomatic
cases progress to the recovered class at the rate g1.
Clinically infectious individuals (class I ) are diagnosed
(reported) at the rate a or recover without being
diagnosed (e.g. mild infections, hospital refusals) at
the rate g1. Diagnosed individuals recover at the rate
g2Z1/(1/g1K1/a) or die at rate d. The mortality rates
were adjusted according to the CFP, such that
dZ[CFP/(1KCFP)](mCg2).

The transmission process can be modelled using the
following system of nonlinear differential equations:

_SðtÞZmNðtÞKbSðtÞðI ðtÞCJðtÞCqAðtÞÞ=N ðtÞKmSðtÞ;
_EðtÞZbSðtÞðI ðtÞCJðtÞCqAðtÞÞ=N ðtÞKðkCmÞEðtÞ;
_AðtÞZkð1KrÞEKðg1CmÞAðtÞ;
_I ðtÞZkrEðtÞKðaCg1CmÞI ðtÞ;
_JðtÞZaI ðtÞKðg2CdCmÞJðtÞ;
_RðtÞZg1ðAðtÞCI ðtÞÞCg2JðtÞKmRðtÞ;
_DðtÞZdJðtÞ;
_CðtÞZaI ðtÞ:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð2:3Þ
The cumulative number of influenza notifications, our
observed epidemic data, is given by C(t). Seven model
parameters (b, g1, a, q, r, E(0) and I(0)) are estimated
from the epidemic curve using least-square fitting (as in
Method 2). The reproduction number for model (2.3) is
given by (Chowell et al. 2006)

RZ
bk

kCm
r

1

g1CaCm
C

a

ðg1CaCmÞðg2CdCmÞ

� ��

Cð1KrÞ q

g1Cm

� ��
; ð2:4Þ

and the clinical reporting proportion is given by

OZ
a

aCg1 Cm
: ð2:5Þ

(iv) Method 4: estimating Rt using Bayesian inference
of stochastic SIR.As a final method, we use a stochastic
version of a standard SIR model. This method
estimates the effective reproduction number, Rt,
defined as the actual average number of secondary
cases per primary case at time t (for tO0) (Haydon et al.
2003; Wallinga & Teunis 2004; Nishiura et al. 2006) and
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Figure 2. The course of the outbreak can be visualized in an
epidemic time-delay diagram of new cases DC at consecutive
times (black dots). For data that are not too stochastic, this
provides a very simple method to estimate R, via the tangent
at the origin (dashed lines) of the initial growth trajectory
(grey arrows). Jumps in case numbers (indicated for 22–23
Oct) lead to greater uncertainty in the estimation of the
reproduction number.
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is typically less than R0. Precise estimates of Rt are of
importance for outbreak evaluation and management;
Rt shows time-dependent variation with the decline in
susceptible individuals (intrinsic factors) and with the
implementation of control measures (extrinsic factors).
It may also increase over time owing to changes in
population structure or pathogen evolution.

Such formulation, as we show briefly below (see also
Bettencourt & Ribeiro 2006), takes into account the
probabilistic nature of contagion processes and allows
direct estimation of the probability distribution of the
effective reproduction number Rt, from real-time data,
without the need for parameter search and optimi-
zation as in Methods 1–3. In this sense, the four
methods address the problem of modelling and esti-
mation in complementary ways. To see this, consider a
standard SIR model (a version of an SEIR model can be
formulated, but is more complex), such that on average

_SðtÞZKbSðtÞ I ðtÞ
NðtÞ ;

_I ðtÞZ bSðtÞ I ðtÞ
NðtÞKgI ðtÞ;

ð2:6Þ

and R and D classes receive progressed infections in the
same manner as the simple SEIR described above and
were thus omitted here for simplicity. The stochastic
version of the model is formulated as usual by taking
the rates on the right-hand side of the population
equations to determine the mean change l over the time
t of the several population classes, which is in practice
extracted from a probability distribution P[l] with
average l. In the estimation procedure described below,
P is taken to be a Poisson distribution, which is the
maximal entropy distribution for a discrete process for
which only the average is known. If information is also
available about the statistics of fluctuations, a more
general distribution, such as a Negative Binomial, can
be employed instead.

Epidemiological reports are given usually, not in
terms of infectious individuals but rather as a tally of
cases, which at the time of reporting may have
progressed. Thus, it is advantageous to write our
estimation procedure in terms of the change in the
cumulative number of casesC(t). New cases at time t are
given in terms of the increase in cumulative case
numbers as DC(t)ZC(t)KC(tKt), where t denotes
the time-interval between successive reports and may
vary over time. In our dataset, tZ1 day. Note that
C(t)ZI(t)CR(t)CD(t) and, consequently, equation
(2.6) implies _CðtÞZbSðtÞðI ðtÞ=NðtÞÞ. It follows from
this relation and from integrating the dynamical
equation for I(t) in (2.6) that the relation between the
average change in case numbers between two consecu-
tive periods is

DCðtCtÞZ bðRtÞDCðtÞ; bðRtÞZ exp tgðRtK1Þ½ �;
ð2:7Þ

where we used DCðtÞZt _CðtÞ and I ðtCtÞZI ðtÞexp
g
Ð tCt
t Sðt 0Þ=NðRK1Þ

� �
xI ðtÞbðRtÞ, and RZb=g for

the SIR model. The approximate equality here assumes
that S(t)/N(t) remains approximately constant over the
period t, but may vary across successive periods. Given
J. R. Soc. Interface
that tZ1 day and that the susceptible population is
much larger than the number of infected per day,
especially in the beginning of the outbreak, this is
usually an excellent approximation. Note that these
relations imply in turn that RtZRSðtÞ=NðtÞ%R.

Now, recall that relation (2.7) holds only on the
average. However, if fluctuations are small compared
with the mean, then the effective reproduction number
can be estimated directly from a new case time-delay
diagram (i.e. a plot of DC(tCt) versus DC(t)), without
any more complex estimation, as shown in figure 2.
Specifically, relation (2.7) implies that bðRÞ is the slope
of the tangent at the origin in this case time-delay
diagram trajectory (grey line in figure 2). This
trajectory eventually crosses the line with slope unity
as susceptibles are depleted and Rt becomes less than
one. Such plots also help to provide an intuition about
the magnitude of case fluctuations, and identify time
periods when cases may have jumped, signalling
changes in the population structure, effects of control
interventions, pathogen characteristics or, more
probably, artefacts in the reporting. We will return to
these points in §4.

In general, the probabilistic formulation of the model
implies that, givenRt (and other parameters such as g)
andDC(t), we can predict the distribution of future case
numbers as

P DCðtCtÞ)DCðtÞjRt½ �ZP½l�; lZ bðRtÞDCðtÞ:
ð2:8Þ

The probabilistic formulation for future cases is
equivalent, via Bayes’ theorem, to the estimation of
the probability distribution for Rt, viz.

P RtjDCðtCtÞ)DCðtÞ½ �

Z
P DCðtCtÞ)DCðtÞjRt½ �P½Rt�

P DCðtCtÞ)DCðtÞ½ � ; ð2:9Þ



Table 1. Estimates of the reproduction number for the autumn wave of the Spanish flu pandemic in San Francisco, California.
n.a., not applicable. The number of data points is smaller than the number of parameters being estimated (seven parameters for
the complex SEIR model). Note that the stochastic SIR method provides the effective reproduction number at time t, while the
other methods estimate the reproduction number by fitting the models to a specified number of epidemic days of data. The
number of degrees of freedom (d.f.) is different by method. Initial growth rate, simple SEIR and complex SEIR estimate 1, 2 and 7
parameters, respectively. d.f. was determined by the difference between the observed number of epidemic days, n, and the
number of parameters to be estimated (e.g. for the complex SEIR, d.f. at 17 days was nK7Z10).

initial growth rate simple SEIR complex SEIR stochastic SIR

epidemic days R R 95% CI R R 95% CI R R 95% CI Rt Rt 95% CI
5 5.78 (3.80, 8.15) 3.72 (2.01, 5.44) n.a. n.a. 1.96 (0.83, 3.09)
17 2.98 (2.73, 3.25) 2.38 (2.16, 2.60) 2.20 (1.55, 2.84) 2.10 (1.21, 2.95)
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where P½Rt� is the prior, which reflects any a priori
knowledge of the distribution of Rt (or can be given by
a uniform distribution otherwise); and the denominator
is a normalization factor. Thus, knowledge of two or
more new case reports, and the adoption of a
probabilistic contagion model, results, via Bayes’
theorem, in the estimation of the probability distri-
bution function forRt, as the posterior. This estimation
scheme is then iterated, whereby the probability
distribution for Rt from previous reports, the posterior
at time t, is used as the prior for new cases, at tCt.
From these successive distributions, maximum-
likelihood (the value corresponding to the probability
maximum) estimates or averages are read out, as well
as bounds corresponding to desired levels of confidence.
Since successive case reports improve the estimation in
this iterative Bayesian scheme by reducing uncertainty
and simultaneously Rt tends to decrease owing to
depletion of susceptibles, we associate the maximum of
Rt with the best estimator for R (figure 6).

This class of method becomes particularly useful for
estimation ofRt when the data are very stochastic, such
as for emerging infectious diseases, and for sequential
estimation in real time, as data stream in. As a
disadvantage, it does not estimateR directly but rather
its effective valueRt resulting from the convolution ofR
with the population fraction of susceptibles, which
varies over time. Other applications of this method to
time-series for H5N1 avian influenza in humans, and to
other seasonal and pandemic datasets, are given by
Bettencourt & Ribeiro (2006).
2.4. Quantifying parameter uncertainty

Confidence intervals forR estimates were constructed for
Methods 2 and 3 by generating sets of realizations of the
best-fit curve C(t) using parametric bootstrap (Efron &
Tibshirani 1986). Each realization of the cumulative
number of case notifications Ci(t) (iZ1, 2,.,m) is
generated as follows: for each observation C(t) for tZ2,
3,., n days generate a new observation C 0

i ðtÞ for tR2
(C 0

i ð1ÞZCð1Þ) that is sampled from a Poisson distri-
bution with mean C(t)KC(tK1) (the daily increment in
C(t) from day tK1 to day t). The corresponding
realization of the cumulative number of influenza
notifications is given by CiðtÞZ

Pt
jZ1 C

0
i ðtÞ, where tZ1,

2, 3,., n. The reproduction number was then estimated
from each of 1000 simulated epidemic curves. The
distribution of estimated reproduction numbers can be
J. R. Soc. Interface
used to construct 95% CIs. For Method 3, fitting a
complexmodel (with seven parameters in this case) comes
at the cost of increased potential variation for these
estimates. Difficulties with the fitting procedure occur if
the model cannot be uniquely determined from the data
leading to unbounded variances for the estimated
parameters. This simulation study allowed us to explore
the identifiability of model parameters. Lack of identifia-
bility can be recognized when large perturbations in the
model parameters generate small changes in the model
output (Pillonetto et al. 2003). Our results indicate that
our parameter estimates are stable to perturbations
around the model output.

For the case of Method 4, uncertainty bounds for
the effective reproduction number Rt are obtained
directly from the probabilistic nature of the model for
future cases, which is transformed, given a case time
series, via Bayes’ theorem, into the probability
distribution of Rt. Average and maximum-likelihood
values for Rt are extracted from such distributions, as
well as bounds on Rt at 95% confidence intervals. In
the results shown in figure 6 and table 1, we started
the estimation at the initial time, with a Gaussian
prior for Rt with average hRtiZ2 and variance
hR2

t iZ1, which is fairly unbiased in the expected
range for R and is characterized by a 95% CI of [0, 4].
As indicated above, the distribution for Rt at
subsequent times uses the posterior at the previous
time as prior, thus incorporating the time-series up to
that time in the estimation.
3. RESULTS

We estimated the reproduction number for the autumn
wave of the Spanish flu pandemic in San Francisco,
California from daily case reports using four different
methods. While Methods 2 (simple SEIR) and 3
(complex SEIR) suggested a 17-day duration as the
best length of the initial exponential-growth phase
(figure 3), Method 1 (a pure exponential-growth
approximation) indicated a 5-day duration as the best
length of exponential growth based on the goodness-
of-fit. The estimates of the reproduction number
obtained from the four methods were found to be
consistent with each other (in the range Rz2–3, with
overlapping CIs) when using an initial epidemic phase
comprising 17 days (table 1 and figures 4–6). Although
we also explored the goodness-of-fit statistic for the
remaining epidemic days, there were no other clear
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candidates for the cut-off (e.g. there was no interval
which suggests a second minimum of the goodness-of-fit
statistic). However, Method 1 (with a 5-day exponential
phase) yielded an estimate of the reproduction number
significantly larger than those obtained from the other
methods (table 1), and associated with very large
uncertainty. Method 4 estimated the effective reproduc-
tion number to be 2.10 (95% CI: 1.21, 2.95) by using the
first 17 epidemic days and 2.36 (2.07, 2.65) including the
entire fall wave (maximum effective Rt in figure 6).

While the simple SEIR model was unable to
describe the entire epidemic course, the complex
SEIR fitted reasonably well the entire pandemic
curve (63 epidemic days) with a clinical reporting
percentage of 55.5% (95% CI: 52.1–58.8) and a
reproduction number RZ3:53 (95% CI: 3.45–3.62),
which is higher than that obtained using 17 epidemic
days (2.20 (95% CI: 1.55–2.84)). However, a closer look
at the complex SEIR model fit to the entire pandemic
wave reveals a systematic deviation from case numbers
for the initial epidemic phase (figure 7). This effect is
owing to features of the data, which show in later periods
two1-day large increments incasenumbers,which lead to
larger estimate of R, as also suggested by Method 4.
Accommodating these features together with the initial
growth phase, in a model with fixed parameters in time,
leads to the higher expected value of the reproduction
number. Nevertheless, we note that the CI for the
estimate in this period obtained via Method 4 overlap
with the estimate obtained for the early period, primarily
owing to the larger uncertainty associated with the R
estimate obtained at day 17 (table 1). These points are
further discussed in §4.
4. DISCUSSION

We used four distinct approaches to model the
progression of pandemic influenza in the city of San
Francisco, California, in 1918–1919, measured by daily
J. R. Soc. Interface
case reports, and estimate the corresponding reproduc-
tion number. The first three methods were used to
obtain R estimates by fitting the model solutions to an
early exponential-growth phase. The complex SEIR
(Method 3) and stochastic SIR (Method 4) models were
also used to obtain an estimate of the reproduction
number from the entire epidemic curve. The fourth
method assumes an underlying probabilistic epidemic
model (while the former three are purely deterministic)
and estimates the effective reproduction numberRt via
a Bayesian data assimilation scheme of the case time-
series. This approach leads to the estimation of the
probability distribution of Rt, which is successively
improved (in the sense of uncertainty reduction) as
each new report streams in, potentially in real time.
Nevertheless, the omission of a short latency period into
the SIR framework could potentially slightly under-
estimate the reproduction number (Wearing et al.
2005). The four methods presented here provided
estimates in the range RZ2–3 that are in good
agreement with each other for data from the initial
epidemic phase, which was explicitly determined by
using the goodness-of-fit test statistic (Favier et al.
2006). There are several important messages arising
from our analysis.

First, the mean R estimate derived from the initial
intrinsic growth rate (Method 1) using the first
17 epidemic days was found to be slightly higher
(i.e. approx. RZ3:0) than mean estimates derived
from all other methods (RZ2:4 and 2.2 from the simple
and the complex SEIR, respectively, and RZ2:1 from
the stochastic SIR method). This discrepancy may be
partly attributable to the assumption incorporating the
depletion of susceptible individuals in Methods 2–4,
which decreases the estimate of R. Indeed, the good-
ness-of-fit obtained using equation (2.1) with two fitting
parameters was always worse than that obtained from
Methods 2 (two fitting parameters) and 3 (seven fitting
parameters). R estimates obtained using 17 epidemic
days appeared to be robust to parameter uncertainties
(figures 4 and 5) and to slightly different assumptions
and initial conditions (e.g. estimation of three par-
ameters: b, E(0) and I(0); details not shown). However,
when we took 5 days as the length of the exponential
phase (as predicted by Method 1), our R estimates
differed substantially from one another. This may
imply that 17 days was a more appropriate cut-off
point for the exponential phase, although it was not
possible to explicitly identify a unique length of the
initial epidemic phase from either of these two
possibilities. Since assuming a simple exponential-
growth phase at the initial epidemic phase (Method 1)
relies on a theoretical approximation, it is difficult for
this simple method to always be excellent (Heffernan
et al. 2005). Moreover, a weakness of the assumption on
the exponential growth of cases was criticized during
the epidemic of severe acute respiratory syndrome
(SARS) (Razum et al. 2003). The clinical features of
influenza further complicate the interpretation of case
notifications owing to potential substantial under-
reporting and large numbers of asymptomatic infec-
tions (Cauchemez et al. 2006; Glass et al. in press). As a
general recommendation, our study suggests that
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Method 1, assuming the theoretical exponential-growth
approximation, should be used only with careful
consideration of the data and firm understanding of
the underlying assumptions.

Second, we found some qualitative differences
associated with the intrinsic and extrinsic dynamics in
the simple and the complex SEIR models (Methods 2
and 3). While theR estimates from the initial epidemic
phase were similar for the two models, the simple SEIR
model was unable to describe the course of the entire
autumn pandemic wave (using theR estimate based on
the exponential-growth fit). This inability may be
attributable to both (i) intrinsic dynamical factors
linked to the epidemiology of influenza (e.g. asympto-
matic infection, mortality rate), and (ii) its extrinsic
dynamics which are the result of human intervention
(e.g. diagnostic rate, isolation of infectious individuals
in hospital settings and behaviour changes among
susceptible individuals to avoid potential contacts).
On the other hand, the complex SEIR model, even
using the obtained R estimate from the exponential
phase, reasonably realized the observed shape and scale
of the entire epidemic curve. This might be also
problematic from a modelling perspective, in particu-
lar, for a model based on an autonomous system (i.e. the
system without time-varying assumptions). Time-
varying extrinsic dynamics, which cannot be discarded
during the Spanish flu, were not explicitly incorporated
into the complex SEIR model. For instance, implicit
time-varying parameters were the base of several
J. R. Soc. Interface
models for SARS (Chowell et al. 2003; Massad et al.
2005; Hsieh & Cheng 2006). Moreover, it should be
remembered that the intrinsic parameters are likely to
vary during the course of an epidemic (e.g. the serial
interval was shortened with time during the SARS
epidemic (Lipsitch 2003)). Systematic consideration of
the processes that may lead to time-varying parameters
remains an open question in studies of pandemic
influenza, which we reserve for future research.

Third, estimates of R obtained from the complex
SEIR model were found to be sensitive to the number of
epidemic days adopted in the estimation. Specifically,
the complex SEIR model when fitted to the entire
pandemic wave (as in Chowell et al. 2006) using the
Spanish flu pandemic in Geneva) yielded a higher R
than that obtained when the same model was fitted to
the exponential phase only. This difference in the R
estimates can be explained by examining the residual
plot obtained from the fit of the complex SEIR model to
the entire epidemic curve. Specifically, the goodness-
of-fit of the model to the initial exponential phase
worsened compared with the goodness-of-fit obtained
when the same model was fitted to the initial
exponential phase only (figure 7).

Fourth, the type of data employed in this study is
likely to become available when the next pandemic
arrives. Thus, it is worth pointing out the lessons
learned from these data analyses. First, we note that
the data of the pandemic in San Francisco used here
are based on the daily case notification, which is
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different from other modelling studies of pandemic
influenza (Mills et al. 2004; Gani et al. 2005), where
data were aggregated over longer time periods (e.g. a
week). Daily reporting data are characterized by
J. R. Soc. Interface
smaller numbers and are thus generally more sensi-
tive, in relative terms, to changes in reporting rates
and population behaviour. For instance, a dramatic
increase in incidence from 1143 to 2058 occurred from
22 to 23 October, which has a direct effect on the
uncertainty of the reproduction number estimates.
This jump in incidence may have resulted from
reaction to official announcements before and during
the preceding weekend, possibly leading to an increase
in the reporting rate in the beginning of the week,
which most probably coincided with peak of the
growth of cases. In fact, during 22–23 October, alarm
may have influenced population behaviour (On 18
October, the Board of Health declared the situation
as ‘grave’ leading to closures of public places
including schools and churches) (Crosby 2003). More-
over, on 22 October, a full-page ad appeared in the
Chronicle in which the Mayor, Board of Health, Red
Cross, Postal Department, Chamber of Commerce,
Labour Council and other organizations proclaimed,
‘wear a mask and save your life!’ ‘A gauze mask is
ninety nine percent proof against influenza’ (Crosby
2003). This jump in incidence over 1 day is a major
source of uncertainty in estimating R, which can be
readily visualized from a time-delay diagram of new
cases at consecutive days (figure 2). To illustrate this
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point quantitatively, consider that Method 4 provides
a maximum-likelihood estimator for Rt, given any
two consecutive case reports, as

Rt Z 1C
1

tg
ln

DCðtCtÞ
DCðtÞ

� �
; ð4:1Þ

which between 22 and 23 of October gives a mean
effective reproduction number of 3.41. In estimating
R from cumulative data, or indeed via a Bayesian
method without a narrow prior, the effect of this jump
in case reports leads to a substantial increase in the
estimates, explaining why fits to the entire curve, via
Methods 3 and 4, result in larger values for the
reproduction number.

Fifth, an important challenge in epidemic modelling
lies in the realistic representation of features of disease
spread. One of the most important features of the
transmission dynamics of influenza might be asympto-
matic infection and underreporting. (Thus, the
complex SEIR model originally assumed an elaborate
structure to comply with these characteristics.)
However, when dealing with data characterized by
random missing observations, statistical approaches
with an explicit assumption of missing data may
more accurately estimate the parameters of interest
(Cauchemez et al. 2006; Glass et al. in press). Thus, a
combination of deterministic models and statistical
methods is desirable to model real-time noisy data and
should be required in future studies. Further, it should
be noted that the interpretation of the estimates of the
reproduction number using classical epidemic models
that assume homogeneous mixing is probably one of the
most delicate tasks. For example, it is worth noting
that even Method 4 required a random-mixing assump-
tion. Whereas this might be a disadvantage of this
method, compared with the use of the serial interval
distribution (Wallinga & Teunis 2004) which assumed
independence of transmission events, the serial interval
distribution of pandemic influenza is unavailable today.
(Instead, Method 4 yields an explicit distribution of Rt
J. R. Soc. Interface
by using Bayesian estimation.) Recent studies have
explored the role of heterogeneous contact networks
(Meyers et al. 2006), and some researchers suggest that
an appropriate estimate of the reproduction number is
not feasible without explicit information about the
structure of contacts (Breban et al. 2005). However,
modellers have so far not succeeded in estimating the
transmission potential of droplet infections with expli-
cit contact structures, because the contact is obviously
very difficult to measure and quantify. In particular,
when we deal with the issue of Spanish influenza, the
estimation must be performed based on very limited
information, which was originally collected without
consideration for their utility for quantitative
estimation.

In conclusion, we produced estimates of the repro-
duction number for pandemic influenza using four
different methods and analysed their advantages and
disadvantages, given daily reporting data for the city of
San Francisco. The exponential-growth assumption
(Method 1) may be reasonable and simple, but we have
to keep in mind that the assumption tends to be
statistically flawed. Whereas further methodological
improvements and empirical information are needed to
further clarify the reproduction number for Spanish
influenza, our analysis indicates that its reproduction
number, aggregated at the level of San Francisco, lies in
the range of 2.0–3.0. While our estimates are broadly
consistent with previous values derived by fitting
epidemic models to mortality and morbidity time-series
data of the 1918 flu pandemic (Mills et al. 2004; Gani
et al. 2005; Chowell et al. 2006), values of the
reproduction number for seasonal influenza derived
from indirect estimates are, in some cases, one order of
magnitude higher (Gog et al. 2003; Dushoff et al. 2004).
Our estimates of the reproduction number for pandemic
influenza strongly suggest a tighter range of uncer-
tainty than has previously been assumed, as well as
targets for public health interventions in the case of
future similar pandemics that, while very challenging,
may not be impossible to tackle.
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