Worst-Case Scenarios and Epidemics

G. Chowell and C. Castillo-Chavez

Center for Nonlinear Studies
Los Alamos National Laboratory
Los Alamos, NM 87545
&
Biological Statistics and Computational Biology
Cornell University

Ithaca, NY 14853

March 18, 2003

Abstract

Contingency plans and policies associated with the deliberate release of biological
agents must be developed in the absence of data. Hence, the identification of landscapes

that facilitate “worst” epidemics (worst-case scenarios) is essential. Common sense suggest



that “worst” epidemics are most likely to occur in populations where individuals mix
randomly (proportionate mixing). Here, SIR (susceptible-infective-recovered) epidemics
that result from the introduction of single or multiple sources are studied on various
topologies including small-world and scale-free networks. A simple algorithm is used
to compute the average growth rate during the initial exponential growth phase of the
epidemic. This rate is used to estimate the severity of a single outbreak. In small-
world networks, the average rate of epidemic growth is measured on the full spectrum
of the disorder parameter p € [0,1]. Simulations show that the average rate of growth
increases in a nonlinear fashion as the disorder in the network increases. Not surprisingly,
the average rate of growth is higher when the initial infective source is placed in the
most connected node (pressure point) than when it is randomly placed. The average
rate of initial growth is also a non-decreasing function of the (small) number of initial
infectious sources. Simulation results support the view that, worst-case epidemics, in
small-world networks, occur when the outbreak begins at a few places and when p =
1 (random mixing). Simulation results also show that worst-case epidemics, on scale-
free networks, are primarily driven by the network hierarchy, that is, sources placed on
the most connected nodes have the biggest effect. Finally, simulations suggest that a
significantly higher average rate of epidemic growth is observed in scale-free than in small-
world networks. Hence, scale-free topologies may provide the “best” landscapes for the

theoretical study of worst-case epidemics.



1 Introduction

The potential deliberate release of biological agents such as small-pox, influenza, or foot and
mouth disease (FMD) is a source of continuous concern. It is believed that “worst” epidemics
(single outbreaks) are most likely to occur in populations where individuals mix randomly
(proportionate mixing). Therefore, the definition and indentification of landscapes or topolo-
gies that support worst-case scenarios is critical. Here, SIR (susceptible-infective-recovered)
epidemics that result from the introduction of single or multiple infectious sources are studied
on various topologies including small-world and scale-free networks.

Most of the models studied in classical mathematical epidemiology fall in the class of com-
partmental models because the population under consideration is divided into classes or com-
partments defined by epidemiological status [2]. The simplest version assumes that individuals
mix uniformly (homogeneous mizing) within each compartment. The study of the transmission
dynamics of communicable diseases in human populations via mathematical (compartmental)
models can be traced back to the work of Kermack and Mackendrick (1927). Their simple SIR
(Susceptible-Infective-Removed) epidemic model (Figure 1) was not only capable of generat-
ing realistic single-epidemic outbreaks but also provided important theoretical epidemiological

insights.

Figure 1: Simple SIR epidemic model.



The Kermack and Mackendrick (K-M) model in essence captures the theoretical underpin-
nings associated with the framework that it is currently used to define (and model) worst-case
epidemic outbreaks. The K-M model is given by the following system of nonlinear differential

equations

where S(t) denotes susceptible individuals at time ¢; I(¢) infected (assumed infectious) individ-
uals at time ¢; R(t) recovered (assumed permanently immune) individuals at time ¢; A(N) the
transmission rate when the total population is N(N = S + I + R); and +y the recovery rate. In
the case of a fatal disease, N = S + I as R(t) would denote those removed by death and 7 the

per-capita death rate.

The Kermack and Mackendrick threshold theorem establishes (quantitatively) the conditions
required for successful disease invasion. This threshold theorem says that a disease will invade

whenever its basic reproductive number

R, is interpreted as the number of secondary infectious individuals generated by a “typical”
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infectious individual when introduced into a fully susceptible population ([4, 5]). An alternative
interpretation is that, in a randomly mixing population, a disease will invade if there are enough

susceptibles, that is, if

Typically, it has been assumed that either A(N) = 22 or A(N) = f, and, consequently, the

interpretation of R, depends on the definition of A\(N) ([1, 2, 4]).

Figure 2: Fully-mixed transmission network.

Nold [6] introduced the concept of proportionate mizing as a way of modeling a simple form
of heterogenous mixing. She divided the population into K groups each with population size
N;i(t) = Si(t) + Li(t) + Ri(t), (i =1,...,K.) and modeled an SIR epidemic that considered
interactions of various intensities among individuals. In order to describe her framework we
introduce the mixing matrix P(t) = (P,;(t)) where P;;(t) denotes the proportion of contacts of
individuals in group ¢ with individuals in group j given that i-individual had a contact with
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a member of the population at time t. Nold’s proportionate mixing corresponds to the case

where Pj; is independent of 7, that is,

Py=P =i (1)

J Ef:l CN,’ (2)

where C) denotes the average activity level (contact rate) of individuals in group [ = 1, ..., k.

Other forms of mixing can be found in [4, 7, 8, 9] and references therein.

A slightly modified version of Nold’s generalization of the Kermack-Mackendrick model (as-

sumes that \; = %, j=1,...,K) is given by

Si = =Si(t) i Pt
I = Si(t) Zleﬁjpj]{f—jj—%fi,

Examples of mathematical studies for compartmental models of this type can be found in
[1, 2, 4], and [6]. Extensions of these models to (local) populations interconnected via mi-
grating individuals (metapopulation models) have been carried out in some situations (see [9]
and references therein). In the K-M model and Nold’s models, individuals mix at random (see

Figure 2), an uncommon and extreme situation. Recent analyses of worst-case scenarios, for



the deliberate release of biological agents (smallpox in particular), have been carried out under
the assumption that random mixing supports the worst epidemic outbreaks [14]. The focus of
this paper (as suggested to us by Ed Kaplan) consists on the preliminary examination of the
validity of this assumption.

The identification of worst-case scenarios would require an approach that considers “all” mea-
sures of mixing ([6]). The study of the meaning of worst-case scenarios using “mean” field
models like the K-M or Nold’s model is problematic (mixing assumes a predetermined number
of groups or types). Hence, we look at this question in the context of simple individual-based
models where mixing is embedded in a preselected (fixed) topology. This approach also has its
limitations as the nodes (individuals) of the network have no dynamics. However, we feel that
this approach is useful if the goal is to study the “strength” of a single epidemic outbreak, that

is, in the study of situations where transient disease dynamics are critical.

2 Individual-based models

Population structures are often represented by networks (graphs) composed of nodes (individu-
als) and edges (representing predefined relationships between nodes). Examples include family
trees, traffic networks that describe street intersections by nodes and traffic direction by arrows
(edges), and airline traffic networks. Graphs (networks) can be represented by the adjacency
matrix 7" where T(i, 7) = 1 implies that vertex ¢ is connected to j. If the network is undirected
(edges have no direction) then T is symmetric, that is, T = T (transpose of T). An adjacency

list, a compilation of the vertices of a graph and the vertices adjacent to such a vertex, is also



used to represent graphs. The analysis of network models can be traced back to the work of
Erdés and Rényi in the 1960’s. These researchers introduced the following simple algorithm for
the construction of random networks ([16]): start with a fixed number of disconnected nodes N
and connect each pair of nodes independently by an edge with probability p,,. Hence, pgr =0
corresponds to the case where no node is connected to any of the other N — 1 nodes while
P = 1 corresponds to the case where every node is connected to all other nodes in the net-
work (complete graph). The total number of edges when p,, = 1is (]; ); the average number of
(v-1)

edges is il 5 Per . and, the average degree of a node (number of edges incident from a node)

is z = (N — 1)p,, ~ Np,, (for large N).

Erdés and Rény [16] showed that for large systems (large N) the probability that a node has

k

k edges follows the Poisson distribution P(k) = W, (k =0,1,...,N). Furthermore,
they showed that there is a critical value of z (z.) such that whenever z > z., a connected
component (a subset of vertices in the graph each of which is reachable from the others by some
path through the network) forms. Such component is often referred as the spanning cluster
[38]. The Erdés and Rényi random graph provides a null-model for the “comparative” study
of the disease transmission on other network topologies. The case pgr = 1 (totally connected
network) is naturally believed to be the generator of the landscape most conducive to disease
spread and, in some sense, “corresponds” to Nold’s version of the K-M model. Hence, here

we address, via simulations, whether or not in populations modeled by comparable graphs to

those of Erdés and Rényi model support the worst possible epidemics. It is not clear, however,



whether or not, diseases spread at a faster rate in highly-clustered networks, that is, in networks
where there is a higher probability that neighbors of a particular node are also neighbors of each
other. The importance of this possibility comes in part, from the fact that Watts and Strogatz
(1998) [19] showed that networks with high degree of aggregations (clustering), a characteristic
absent in random networks (see Erdés and Rényi, [16]), are not uncommon. In order to explain

our simulations of epidemics in various network setups, we need to describe their construction.

a) ; ; ;} b)

/
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—

Figure 3: The Erdés and Rényi random graph with N = 16. a) pgr = 0.25 b) pgr = 0.5

Watts and Strogatz (1998) [19] algorithm for the construction of networks is as follows:
one-dimensional ring lattice of N nodes connected to its 2K nearest neighbors (K is known
as the coordination number) and periodic boundary conditions are preselected. The algorithm
goes through each of the edges in turn and, independently with probability p,, ., “rewires” it
to a randomly selected node. That is, the WS algorithm shifts one end of the edge to a new
randomly chosen node from the whole lattice (except that no two nodes can have more than
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Figure 4: Small-world networks with N =16, K =1,a) p=0.1b) p=0.3

one edge running between them, and no node can be connected by an edge to itself (see Figure
13). Watts and Strogatz [19] classified networks by their level of randomness, as measured by
their own disorder parameter p, . (from “regular” p . = 0 to completely random, p,, = 1).
Whenever each node in a network is just connected to its nearest two neighbors one on its
right and on the other on its left, the network is regular [19]. A completely random network
has p,, ¢ = 1, that is, all nodes are randomly connected to each other. Watts and Strogatz
showed that the introduction of a small number of random connections (p ~ 0.01) significantly
reduces the average distance between any two nodes (characteristic path length), a property that
facilitates disease spread. In fact, Watts and Strogatz showed that such average distance grows
like O(log(N)) and not as O(N). Networks constructed via the WS algorithm also support high
levels of clustering. The small-world effect (short average distance between nodes and high levels
of clustering) has been detected in networks that include a network of actors in Hollywood, the
power generator network in the western US, and the neural network of C.elegans [19]. This
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Figure 5: Connectivity distributions P(k) of the small-world network model with three different

disorder parameters p = 0.1, p = 0.3, and p = 1 with networks of size 10* and K = 3.

“small-world effect” had already been documented by the psychologist Stanley Milgram using
data from the letter-passing experiments that he conducted in the 1960s [17]. Newman and
Watts [31] studied a slight variation of the Watts-Strogatz model. They added shortcut edges
with probability ¢ per edge in the underlying ring latice instead of ‘rewring’ the existing edges.
The Newman and Watts model turned out to be easier to analyze since the network cannot
become disconnected after rewiring. Figure 6 shows a small-world network with N =16, K =1
and ¢ = 0.1. The degree or connectivity distribution of the small-world network model depends
on the disorder parameter p. That is, p = 0, implies that the connectivity distribution is given
by the delta function §(k — 2K) where K is the coordination number in the network. As
p approaches 1, the connectivity distribution converges to that obtained from the Erdés and

Rényi model. Figure 5 shows the degree distribution for a small-world model as a function of
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Figure 6: Small-world networks with N =16, K =1,a) ¢ =0.1 b) ¢ =0.3

the disorder parameter p, when N = 10* and K = 3. “Unfortunately,” small world networks
do not exhaust all possibilities. The bell-shaped node degree distributions observed in the
Erdos-Rényi, Watts-Strogtaz, and Newman-Watts models are in contrast with the power-law
degree distributions observed in a number of biological [52], social [20, 21, 24, 32, 33, 47, 51|,
and technological [20, 21, 53, 55] networks (see Figure 7). [Power-law degree distributions (also

known as Pareto distributions) are given by the parametric family:

P(k) = Ck™

where 7 is typically between 2 and 3 (infinite variance) and C is a normalization constant (makes
P(k) a probability density function)]. Networks that fit well power-law degree distributions
have a small number of highly connected nodes, that is, most nodes have a small number of
connections. Barabdsi and Albert (1999) dubbed this type of structures scale-free networks.

The number of sexual partners in the 1996 Swedish survey of sexual behavior [47] fits a power-
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Figure 7: The power-law distributions observed in a,b) Scientific collaboration networks (The
Los Alamos e-Print Archive) [56] ¢) The World-Wide-Web (nd.edu domain) [57] and d) The

location-based network of the city of Portland [51].

law distribution and the number of sexual partners of Cornell University undergraduates from
the 1990 Cornell Undergraduate Social and Sexual Patterns (CUSSP) survey [50] can also be
fitted well by such distribution. These observations, for example, support the view that sex-
education campaigns must target individuals with the highest number of partners (core group)
[11]. The location-based network of the city of Portland, Oregon also exhibits a scale-free
structure (Chowell et al. [51]). Here, nodes represent locations while directed connections
between locations represent the average movement of individuals in the city. The scale-free

(Figure 7(d)) topology implies the existence of a high a number of locations with a low number of
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Figure 8: Number of sexual partners of Cornell University undergraduates from the 1990 Cornell
Undergraduate Social and Sexual Patterns (CUSSP) survey[50]. The power-law exponent for

females is 2.86, for males is 2.90, and for the overall distribution is 2.78.

connections (i.e households) and a small number of highly connected hubs (i.e schools, hospitals,
etc.). Barabdsi and Albert (1999) [20, 21] introduced a simple theoretical model that generates
networks with a power-law degree distribution (see Figure 10). The BA algorithm starts with a
small number of nodes (m,) and, at each time step, a new node connects (with m links), with
higher probability, to nodes that have already accumulated a higher number of connections.
The resulting network has a power-law exponent of 3 and a mean connectivity of 2m. Thus, the
Barabdsi-Albert (BA) model captures features that seem characteristic of real-world networks,
namely, growth and prefferential attachment.

Figure 9 shows a network generated using the BA model. Several modifications of the BA

model have been studied including edge rewiring [25], edge removal [27], growth constraints

14



Figure 9: Network of size N = 23 generated using the BA model described in the text with

me=2and m = 1.

30, 28], and edge competition [29]. Klemrn and Eguiluz (2002) [22] developed an altervative
algorithm for the generation of scale-free networks. These researchers incorporated memory as
part of a node’s ability to acquire additional links. The Klemrn-Eguiluz model produces scale-
free networks with high clustering coefficients, a property not generated by the BA model.
The capacity of networks to mantain essential properties when nodes are removed is a mea-
sure of their robustness. In scale-free networks, most of the nodes have low degree, hence their
removal “typically” does not impact the connectivity of the remaining vertices. However, the
removal of nodes with the highest degree (pressure points) of connectivity can have dramatic
consequences (see Figure 11). This effect was first demonstrated independently and numerically
by Albert (2000) [26] and Broder (2000) [54] using subsets of data of the World-Wide Web. The
practical relevance of network robustness was highlighted by the recent service denial of highly

connected web servers including Yahoo, CNN, Amazon, Ebay, Excite and Etrade following a
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Figure 10: Connectivity distribution of the BA model decays as a power law with v = 3. Here,

N = 10000, m, = 3 and m = 2.

network attack.

Important work on the use of worst-case scenarios in the development of response policy
has been carried out by Kaplan [12, 13, 14] in the context of HIV and smallpox. However, the
nature of his approach does not allow for the incorporation of population structures such as
those identified in [20, 21, 24, 32, 33, 51]. The importance and frequency of these networks is
the main motivation behind our efforts to look at the rate of growth of epidemic outbreaks on

these graphs. The focus of this paper (instigated by Ed Kaplan) is driven by the questions:

* How 1s the initial rate of epidemic growth affected by a population’s structure?

* What is the role of ‘social’ topologies and the number of initial infectious sources on the rate

16



0.9r 7

0.8 q

0.7 B

0.6~ q

0.5 B

04 B

size of the largest component

0.3r 7

0.2 q

0 L I | I
0 0.05 0.1 0.15 0.2 0.25

Number of nodes removed

Figure 11: The size of the largest component in a scale-free networks as a function of the number
of nodes removed randomly (dashed line) or in decreasing order of degree, that is, hubs are
removed first (solid line). The network was constructed using the BA model with N = 10000,

me =3 and m = 2.

of growth of an epidemic?

The following sections represent an initial attempt to address these questions in the context
of small-world [18, 19] and scale-free networks [20]. The organization of the rest of this paper
is as follows: Section II corroborates Kaplan’s view of mixing in worst-case epidemics when
the transmission topology is given by small-world networks; Section III focuses on the study
of epidemics in scale-free networks where a natural “node” hierarchy often emerges. (This
structure, in some sense, “equivalent” to the concept of core group developed by Hethcote and

Yorke (1984) [11], seems to provide a fluid landscape for disease spread); Section IV collects
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our conclusions, caveats, and views on implications of these results in the study of the impact

of deliberate releases of biological agents.

3 Epidemics on small-world networks

Simple epidemic models such as the susceptible-infected-recovered (SIR) model have been stud-
ied on small-world networks. Moore and Newman [36] studied SIR epidemics on small world
networks via site and bond percolation. In site percolation, nodes (sites) are occupied (by spins)
or not and any two spins occupying nearest neighbour sites are connected by an open bond. In
bond percolation, the relevant entities are bonds or edges. Bonds are sequentially visited and
set open with probability p or closed with probability 1 — p (independently). The percolation
threshold is the smallest probability p at which an infinite cluster of sites emerges when sites or
bonds (depending on the type of percolation) are occupied with that probability. SIR epidemic
processes are built on the assumption that nodes are occupied by individuals which can be
infected by neighbors connected by edges or bonds (Grassberger [37], 1983). When the total
probability of transmission from one individual to another is greater than this threshold, the
disease explodes, that is, a “giant” component (whose size is the size of the epidemic) appears
(38, 39]. In an epidemic that starts with a single infectious source and spreads as a bond per-
colation process, the subset of nodes (individuals) that can be reached from the initial infective
individuals by traversing only open bonds, is the size of the epidemic outbreak. Newman [35]
studied SIR epidemics on a two-dimensional small world network via bond percolation. His

results were motivated by the study of disease transmission in plants coming from two sources:
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from nearest neighbor (plants) and long-distance contacts (vectors). Epidemics on small-world
networks can exhibit phase transition behavior, that is, there is a critical value of the disor-
der parameter (p.) such that for values of p > p, self-sustained oscillations in the number of
infected individuals in susceptible-infected-susceptible (SIS) epidemics are possible (Kuperman
et al. [40]).

In order to study the role of the disorder parameter p (small-world networks) on the initial
rate of growth of disease spread, the following algorithm is used to compute its initial (empirical)
rate of growth. The number of infected individuals is computed as a function of time I(¢) (time
is discrete) for a small time range (¢ < t.). The value of t. is selected so that I(t) is still in its

exponentially growing phase. The algorithm follows three steps:

500
450 ¢
400 ¢

350 H
exponential ;
300 growth

280 ¢

#infectives

200 ¢
150+
100 +
a0

time

Figure 12: Computation of the empirical rate of growth of epidemics on networks.

1. Computation of t.. The time t. at which I(¢) changes cancavity, that is, the value of ¢ at

which the second derivative of I(t) changes from positive to negative (see Figure 12).
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2. Rescaling of I(t). 1(t) = log.[I(t)] for t < t. where ¢, is the value computed in Step 1.

3. Regression on I(t). Compute the average slope r of the best fitting line to I(t). r is
the average “r” that results from 50 realizations. The average initial rate of growth r is

computed as a function of the disorder parameter (p) of small-world networks (p € [0, 1]

is changed in increments of 0.01).

3.1 Epidemiological model

We consider an stochastic SIR epidemiological model. Hence, individuals can be in one of three
epidemiological states: Suceptible (S), infected (I), or recovered (R). A susceptible individual
in contact with ¢ infectious individuals may become infected in a short period of time ¢ with a
probability given by Bi&t where B is the constant risk of infection per unit of time and 6t = 1
in this discrete time model. Similarly, infected recover with a probability given by 4t where %

is the mean period of infectivity. After recovery, individuals get full immunity to the disease.

Epidemics were simulated on small-world networks of size N = 10® with K = 2, K = 3,
and K =5 (K is the coordination number of small-world networks). Empirical results on the

average rate of growth were obtained from the mean of 50 realizations with disease parameters

A
A~

8= % and ¥ = % Simulations were started by placing randomly a single infectious source. The

average rate of growth increases in a nonlinear fashion as the disorder in the network grows.
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Figure 13: Rate of growth of epidemics in small-world networks of size N = 10* with K = 2,

K =3, or K =5, and as a function of the disorder parameter p € [0,1]. Averages are taken

from 50 realizations. p is incremented by 0.01. Disease parameters are: B = %, v = % and

I(0)=1
It saturates when it is close to 1 (totally random networks) with 7,4n40m = 0.7481 and K = 2.
Figure 13 shows the average (from 50 realizations) rate of growth of epidemics in small-world
networks of size N = 10® (with K = 2, K = 3, and K = 5) as a function of the disorder
parameter p. The rate of growth in small-world networks also increases as the coordination
number (K) increases.

The initial rate of growth of epidemics depends on the network topology. The simulations
start with and initial (small) group of infective individuals chosen from those with the highest
connectivity. The resulting rate of growth is computed and compared to that resulting from

epidemics where the intial infectious sources are chosen (uniformly) at random. Naturally,
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Figure 14: Rate of growth is higher when the epidemics start at the individuals (nodes) with
the highest connectivity (*) rather than chosen uniformly at random (.) with N = 10* and

N

K = 2. Averages are taken from 50 realizations. Disease parameters are: 8 = %, v = % and

1(0) = 1.

epidemics that started at the most connected nodes exhibited a higher average rate of growth
(see Figure 14). Higher rates of growth are observed as the number of initial infectious sources

(always small compared to the size of the network) in the network increases (see Figure 15).

4 Epidemics on scale-free networks

Pastor-Satorras and Vespignani [42] studied a SIS epidemic model on scale-free networks (gener-
ated using the BA model) and found that the disease may persist independently of its transmissi-

bility. That is, the basic reproductive number R,, routinely computed in classical mathematical
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taken from 50 realizations. Disease parameters are: [ =

IS

_ 2
Y = 7

epidemilogy, sometimes loses its meaning in their setting. The small number of nodes with a
high connectivity (hubs) observed in scale-free networks are responsible for “zero” threshold
behavior. This observation gives rise to the following question: Can a control strategy be im-
plemented that restores a positive epidemic threshold ?

This question was studied by Pastor-Satorras and Vespignani [43] and independently by Dezso
and Barabdsi [46]. Both groups concluded that targeted immunization campaigns towards the
most connected nodes or hubs increase the probability of recovering finite epidemic threshold
behavior. A similar result has been observed on the spread of foot and mouth disease (FMD) in
three distinct regions of Uruguay (Rivas et al. [44]). A contrasting result has been established

on alternative highly clustered scale-free networks [22]. Here, a finite epidemic threshold has
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been observed on (SIS) epidemics (Eguiluz and Klemrn [23]).

6000

—— Scale-free (highest degree node)
—— Scale—free (randomly chosen node)
r=337 — - Small-world (highest degree node)
Small-world (randomly chosen node)
5000
r=137
4000
0
©
=3
=]
=
T
£ 3000
3 r=043
2 -
£ / Vo r=036
2000~ /
/ \
/ \
/ \
/ \
1000 ; N
7/ N\
0 N hel T =

h s
0 10 20 30 40 50 60
time steps

Figure 16: Average number of infected individuals from 50 realizations over time in small-
world (p = 0.1) and scale-free networks of the same size (N = 10*) and average connectivity
(k = 4). Two different initial conditions are considered: The initial infectious source is placed

in a randomly selected or in the most connected node (highest degree). The rates of growth

~

of the epidemics are higher in scale-free networks. Disease parameters are: g = %, v = % and

1(0) = 1.

An extensive number of simulations has been carried out of SIR epidemics on scale-free
networks. We compute the average rate of growth from the mean of 50 realizations of the
epidemic process with two sets of initial conditions: We place the infective source at a randomly
selected node or at the most connected node (highest degree). Simulations are carried out on
small-world and scale-free networks of the same size (N = 10%) and average connectivity (k = 4).

Significantly higher rates of growth are observed in scale-free networks (see Figure 16). Hence,
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scale-free topologies seem to provide ideal scenarios for the study of worst-case epidemics. The
existence of highly connected nodes or hubs in scale-free networks plays a central role on the
rate at which viruses (or information) spreads. Or, in other words, the concept of core group

[11], is still critical to disease spread on topologically defined networks.

5 Conclusions and caveats

The development and implementation of policies that deal with the deliberate release of biolog-
ical agents must consider worst possible situations and such scenarios are highly dependent on
the network of individual interactions (social topology). Hence, gaining some understanding of
the nature of the topological social structures that facilitate disease spread is critical. Kaplan et
al. [14] assumes that random mixing corresponds to a worst-case scenarios and (using such a set
up) concludes, in the case of a smallpox bio-terrorist attack, that mass vaccination, is a better
policy than ring vaccination. Halloran et al. [15] using a stochastic model with a structured
community of 2000 people conclude that targeted vaccination outperforms mass vaccination.
The disagreement in results may be directly related to the pre-assumed population structure
and mixing topology (network of interactions).

Here, we have tried to identify under what conditions random mixing can be used to model
worst-case scenarios. We have found that on small-world networks, random mixing, indeed
supports epidemics with the highest average rate of growth. However, this is not necessarily
the case on scale-free networks. The nature of the mixing between individuals (the connectivity

hierarchy in scale-free networks) plays a key role on the initial average rate of growth of an
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initial epidemic outbreak. The inherent connectivity hierarchy of scale free networks and the
“sensitivity” (lack of robustness) to the removal of key nodes (most connected individuals),
in some sense, corresponds to the concept of core group [11]. Highly connected nodes are
pressure points in the network and, consequently, their identification and management must be
considered in the development and implementation of a logistic plan of response to the threat
of a bio-terrorist attack.

The location-based network of the simulated city of Portland possess scale-free nature
(Chowell et al. [51]). Hence, the initial rate of growth of epidemics in this city can be ex-
pected to be (on the average) significantly higher whenever a source is placed at a hub (see
Figure 16).

While the use of classical epidemiological approaches has been and will continue to be central
in the study of disease spread [1, 2, 3]. It is clear that the study of the potential initial im-
pact of the deliberate release of pathogens on unsuspecting populations must be addressed on
various setups. The reasons for such an approach are multiple, the interest is no longer on
long-term disease dynamics but on the elaboration of policies that result on timely responses
(see Rivas et al. [44]). Such a degree of urgency requires the identification of the most sensitive
points of release (pressure points) and the use of models that account for multiple releases.
The approach used here has its own drawbacks. The most important comes from the fact that
temporal dynamics are not explicitly considered. The incorporation of temporal dynamics on
networks poses challenges and opportunities for serious theoretical work. Although, we have

fell short in addressing the challenge posed by Ed Kaplan, we hope that our results have at
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least helped clarify it because the development of contingency plans in worst-case scenarios is

fundamental.
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