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Abstract Recently, there has been a number of experimental studies convincingly

demonstrating that a suspension of self-propelled bacteria (microswimmers in general)

may have an effective viscosity significantly smaller than the viscosity of the ambient

fluid. This is in sharp contrast with suspensions of hard passive inclusions, whose

presence always increases the viscosity. Here we present a 2D model for a suspension of

microswimmers in a fluid and analyze it analytically in the dilute regime (no swimmer-

swimmer interactions) and numerically using a Mimetic Finite Difference discretization.

Our analysis shows that in the dilute regime (in the absence of rotational diffusion)

the effective shear viscosity is not affected by self-propulsion. But at the moderate

concentrations (due to swimmer-swimmer interactions) the effective viscosity decreases

linearly as a function of the propulsion strength of the swimmers. These findings prove

that (i) a physically observable decrease of viscosity for a suspension of self-propelled

microswimmers can be explained purely by hydrodynamic interactions and (ii) self-

propulsion and interaction of swimmers are both essential to the reduction of the

effective shear viscosity.

We also performed a number of numerical experiments analyzing the dynamics of

swimmers resulting from pairwise interactions. The numerical results agree with the

physically observed phenomena (e.g., attraction of swimmer to swimmer and swimmer

to the wall). This is viewed as an additional validation of the model and the numerical

scheme.
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1 Introduction

In recent years there have been a number of experimental studies convincingly demon-

strating that self-propulsion can significantly change the rheological properties of sus-

pensions.

In [1] it was shown that self-propelled bacteria (Escherichia coli ; 1µm wide and

2-3µm long; concentration around 10% by volume) enhanced the diffusion of tracer

particles (1-10µm in size) by 2–3 orders of magnitude in the quasi-two-dimensional

setting of a freely suspended soap film. Further analysis of this enhanced diffusion in

the flow created by self-propelled microswimmers (Chlamydomonas reinhardtii) was

performed recently in [2]. In [3,4] it was demonstrated that self-propelled bacteria

(Bacillus subtilis; .7µm wide and 5µm long; concentration around 3%−5% by volume)

could reduce the viscosity of the suspension by up to five times when compared to

passive/dormant bacteria. The experiments were also performed in a thin film. The

activity of the bacteria was controlled by changing the supply of oxygen.

The above experiments demonstrate that suspensions of active swimmers may have

drastically different properties than suspensions of passive inclusions. Exploiting these

properties may lead to new or improved engineering solutions (e.g., self-replicating

micromixers). Explaining and quantifying the changing viscosity for a suspension of

microswimmers is the goal of this paper. We identify the following key features affecting

this viscosity and the difficulties related to modeling and analysis of microswimmers:

(i) inhomogeneity of the fluid due to inclusions, (ii) elongated shape of the inclusions,

(iii) particle-particle interactions, and the new feature – (iv) self-propulsion.

The rheological properties of passive suspensions have been studied extensively for

over a century. The analysis of the effective viscosity for passive suspensions dates back

to the famous work of Einstein [5], where he computed the linear (in volume fraction

φ) correction to the viscosity for a suspension of neutrally buoyant inert hard spheres

in a Newtonian fluid in the dilute limit (φ → 0). Jeffery [6] extended the analysis

from spherical to ellipsoidal inclusions, where he demonstrated the dependence of the

viscosity on the distribution of orientations of the inclusions. Hinch and Leal [7,8]

analyzed the limiting distribution of orientations of ellipsoids in a shear flow in the

presence of a rotational Brownian motion and used this to obtain the effective viscosity

for a suspension of ellipsoids. Batchelor and Green [9] were the first to consider pairwise

particle interactions in order to find the O(φ2) correction to Einstein’s result [5]. Up

to this point, all works have involved formal asymptotics.

In the 1980s, rigorous homogenization results were first obtained for moderate

concentrations of particles by Levy and Sanchez-Palencia in [10] and Nunan and Keller

in [11] for periodic distributions of inclusions. Results for the densely-packed regime

were more recently proven in [12–14].

Some of the earlier works in modeling the swimming at low Reynolds number

were done by Taylor [15], who studied self-propulsion of a waving sheet, and Purcell

[16], who studied the basics of self-propulsion of microswimmers. The modeling of

swimmers can be divided into two categories based on whether they change their

shape or not. Examples of models of swimmers changing their shape are a three-

linked sphere swimmer [17,18] and a swimmers with rotating tail [19]. These models

are attractive because the real-world swimmers (bacteria, fish, etc.) swim due to shape

changes (rotation of flagella, waving of the tail, etc.). Unfortunately, the analysis of

these models is difficult and we are not aware of a rheological analysis being done for
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suspensions of such swimmers, although the dynamics of such swimmers due to their

interaction was analyzed in a number of papers (e.g., [19,20]).

The other category of models are those where the swimmers do not change shape.

The propulsion here is either due to a prescribed effective force or an effective relative

velocity of the fluid on a part of the surface of the swimmer. Self-propulsion is enforced

by equating to zero the total force and torque on each of the swimmers.

Ishikawa and Pedley [21], modeling microswimmers as spheres with a prescribed

relative velocity on the surface of the spheres, observed a decrease in viscosity only

for swimmers with shifted center of gravity in the presence of a gravitational field. In

[21] the results are obtained using boundary integral methods. Shelley and Saintillan

[22] modeled swimmers as slender rods with tangential traction prescribed on a part

of the boundary, for which they observed behavior reminiscent of that in the physical

experiment for Bacillus subtilis [23–25]. In particular, they observed local nematic

ordering of rod-like swimmers that had a significant impact on their mean swimming

speed.

In [26] authors consider a phenomenological model of active gels, treating them

from the perspective of liquid crystals. In particular, they are interested in the effective

viscosity of active gels near “nematic” phase. They view suspension of microswimmers

as one of examples of active gels. In our view, attainability of the “nematic” phase

understood as an almost perfect ordering in suspensions of microswimmers is debatable.

On the other hand, the “nematic” phase may be feasible for suspensions of engineered

microswimmers that swim due to externally applied alternating magnetic field (e.g.

[27]) and, therefore, could be synchronized to swim in the same direction.

Another notable work presenting phenomenological arguments relating the viscosity

of suspensions to the activity of particles is [28]. In [28], a tensor order parameter Q is

used to characterize the local ordering of the system (i.e., the alignment of swimming

particles to each other). The governing dynamics for Q is borrowed from the theory of

systems with nematic ordering and is phenomenological. In particular, the relationship

of the evolution of the order parameter to the microscopic alignment dynamics has

not been clarified, and the very possibility of arriving at macroscopic expressions for

the effective viscosity from first-principle arguments has not been established. In this

work, we begin to fill this gap by proposing a model that allows for an analytic and

numerical analysis of the dynamics and ultimately explains the observed effects of

decreasing viscosity.

In the recent work [29] Haines, Aranson, Berlyand and Karpeev observed a de-

crease of the effective viscosity in the dilute limit (no swimmer-swimmer interactions)

for slightly elongated disks with self-propulsion resulting from a point force in the fluid

(attached to the body). They considered two types of background flow: extensional

and oscillatory shear flows. In both cases, the decrease of viscosity was attributed to

swimmers aligning with the flow, supporting the background flow. In [30] a three-

dimensional model was considered which is an extension of [29] with addition of the

Brownian rotational noise designed to model tumbling of bacteria. The analytic for-

mula for the effective viscosity was obtained in the dilute limit for shear and straining

background flows. The key feature for the shear flow responsible for the reduction of

viscosity here is the Brownian rotational noise.

In this paper, we present a two-dimensional mathematical model of the swimmer-

fluid system. The elongated body of the swimmer is modeled by an ellipse. The “front”

half of the ellipse represents the solid surface and the “back” half represents the surface
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covered with flagella or cilia (e.g. Paramecium) that exert the propulsion force onto

the fluid.

We consider both dilute and moderate concentration regimes. In the dilute regime

(no swimmer-swimmer interactions) we demonstrate analytically that self-propulsion

has no effect on the effective viscosity. Therefore, we show that the elongated shape

of the swimmers and the propulsion force are not sufficient to change the effective

viscosity as compared to the passive suspensions.

On the other hand, the numerical analysis of the moderate concentration regime,

taking into account all interactions, showed a decrease of the effective viscosity with

propulsion strength of the swimmers. At this concentration regime all of the above

features (ii-iv) are present: the elongated shape of the swimmers, the propulsion force

and the swimmer-swimmer interactions. Both concentration regimes are discussed to

pinpoint the importance of interactions between swimmers for reduction of viscosity.

To reflect the settings of the physical experiments in [3] and [1] further, we studied

the suspension at moderate concentrations of approximately 10% by volume. At such

concentrations, the numerical analysis is the only available tool. The major difficulty

in the theoretical analysis is the dependence of the apparent instantaneous viscosity on

the distribution of the swimmers in the fluid domain. The distribution changes with

time due to interaction of the swimmers with the ambient flow and other swimmers.

In direct numerical simulations, to obtain accurate values for the effective viscosity, we

average the instantaneous apparent viscosity over extended periods of time.

First, to validate the model and to analyze accuracy of the numerical method we

performed a number of tests for the dynamics of a swimmer in the proximity of a wall

or another swimmer. We observed the attraction of a swimmer to another swimmer

and a swimmer to the wall. The attraction in both cases is only short term. A swimmer

next to a wall, while getting closer to the wall, will slowly rotate and swim away from

the wall. Two nearby swimmers will swim away from one another once their positions

become offset from the mirror image configuration (see Fig. 6). These numerical results

agree with the physical observations for Escherichia coli [31], Bacillus subtilis [4], and

Volvox [20]. At the same time, the results shed light on the details of the swimmer-

swimmer and swimmer-wall interactions.

Second, we performed a number of numerical simulations at the moderate concen-

trations where we computed the effective shear viscosity of a suspension of swimmers

in a layer between two solid walls undergoing a shearing motion with relative veloc-

ity 2v. We analyzed the dependence of the effective viscosity on the velocity v and

the propulsion strength of the swimmers, fp. Using an analytical scaling argument we

demonstrated that the effective viscosity depends only on the propulsion-shear ratio
fp

µv
(µ is viscosity of the ambient fluid) for a fixed shape of the domain and the swimmers.

The simulations indicate that the effective shear viscosity decays linearly as a function

of the propulsion-shear ratio (for small values of
fp

µv ). The same linear trend continues

for negative values of the propulsion strength, which corresponds to microswimmers

swimming in the opposite direction, i.e. pullers instead of pushers. For larger values of

the propulsion-shear ratio a deviation from the linear trend was observed and explained

by the finite size of the container.

The paper outline is as follows. In Section 2 we present a mathematical model for

a swimmer in a fluid. We write down the complete set of PDEs and motivate each of

the modeling assumptions. In section 2.3 we prove dependence of the effective shear

viscosity on the propulsion-shear ratio. In Section 3.1 we define the instantaneous ap-
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parent viscosity and the effective shear viscosity, which coincide for homogeneous fluids

but are generally different for inhomogeneous ones. In Section 4 we briefly describe the

numerical method, technical difficulties and their solutions followed by the computa-

tional results for dynamics of interacting swimmers and the effective shear viscosity for

a suspension of swimmers. Section 4.5 relates the time and size units in our numerical

simulations to the units in physical experiments [4]. Finally, in Section 5 we summarize

the results of our analysis. In appendix A we present the variational formulation for

the model and demonstrate its well-posedness.

2 Mathematical model of a swimmer

We present the PDE model for a microswimmer in a Stokesian fluid in Section 2.1 and

motivate model assumptions in Section 2.2. The model is written in two dimensions

but it can be readily extended to three dimensions. Although this PDE model was

developed independently, reference should be made to the earlier works of Shelley and

Saintillan [22] as well as Short, et al. [32]. Notable differences with [22] and [32] are that

tractions are prescribed only on part of the boundary and collisions rules are different

(no collisions in [32]).

2.1 The PDE model for the swimmer

Let Ω ⊂ R2 be a bounded domain with a smooth boundary representing the container

of the fluid with swimmers. Each swimmer is modeled as an ellipse Si, i = 1, . . . , N ,

with the center at xi
C

, and the orientation di of the longest semiaxis, see Fig. 1. Here

and below the superscript i indicates the index of the swimmer.

Fig. 1 Illustration of an i-th swimmer with two parts of the boundary: Γ i
H and Γ i

P . On the

front part Γ i
H of the swimmer (H stands for “head”) the fluid sticks to the surface. On the back

part of the swimmer Γ i
P (P stands for “propeller”) the fluid cannot penetrate the boundary

of the swimmer. Also, the fluid is pushed backwards on Γ i
P due to a prescribed tangential

component of traction.

The motion of the fluid surrounding the swimmers is governed by the incompressible

stationary Stokes equation

{
µ4u = ∇p

div(u) = 0
in ΩF := Ω \

⋃

i

S̄i, (1)
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where u is the fluid velocity, p is the pressure, and µ is viscosity. The boundary of the

fluid domain ΩF includes boundaries of the swimmers, Γ i
H

and Γ i
P

, and the boundary

of the container, ∂Ω. The following boundary conditions are imposed:

u(x) = g(x) for x ∈ ∂Ω, (2)

u(x) = ui
C

+ ωi × (x− xi
C

) for x ∈ Γ i
H

, (3){ (
u(x)− [ui

C
+ ωi × (x− xi

C
)]

) · n = 0

τσ(u, p)n = −f
(
(x− xi

C
) · di) (τ · di)

for x ∈ Γ i
P

, (4)

Fi
H

+ Fi
P

= 0 (balance of forces), (5)

Ti
H

+ Ti
P

= 0 (balance of torques). (6)

Here, the instantaneous translational, ui
C

and rotational, ωi, velocities are additional

unknowns. The symbols n and τ denote the unit normal and unit tangent to the

surface. The stress tensor σ(u, p) is defined by

σ(u, p) := 2µD(u)− pI, D(u) :=
1

2

(
∇u + (∇u)T

)
, (7)

where I is the identity matrix.

The known scalar function f in (4) defines the propulsion model (see e.g., (12)).

The known vector function g in (2) is the velocity of the container boundary. The

viscous forces Fi
H

, Fi
P

and torques Ti
H

, Ti
P

on ΓH and ΓP , respectively, are given by

Fi
H

:=

∫

Γ i
H

σ(u, p)n dx, Fi
P

:=

∫

Γ i
P

σ(u, p)n dx (8)

and

Ti
H

:=

∫

Γ i
H

(x− xi
C

)× σ(u, p)n dx, Ti
P

:=

∫

Γ i
P

(x− xi
C

)× σ(u, p)n dx. (9)

The PDE problem (1)-(6) defines the so-called instantaneous problem. The existence

and uniqueness of the solution is outlined in Appendix A.

The dynamics of the swimmers, defining the evolution of the fluid domain ΩF (t),

is given by the following ODEs:





d

dt
xi

C
(t) = ui

C
(t),

d

dt
di(t) = di(t)× ωi(t)

(10)

with the initial conditions

xi
C

(0) = xi,0
C

, di
C

(0) = di,0
C

, ‖di,0
C
‖ = 1. (11)
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2.2 Discussion and motivation for the PDE model

Modeling of the fluid motion by the incompressible stationary Stokes equations (1)

is a fairly standard reduction from the Navier-Stokes equations for small Reynolds

number, Re := ρV L
µ ¿ 1. Here ρ is the density of the fluid (ρ ≈ 1g/cm2), V and

L are representative velocity and size in the problem. For instance, on the scale of

self-propelled bacteria, such as Bacillus subtilis (5µm in length and .7µm in width)

swimming with the velocity up to 100µm/sec, we obtain Re ≈ 10−4 ¿ 1.

The boundary condition (2) indicates that the fluid sticks to the walls of the con-

tainer Ω, which are moving with velocity g. This is the standard boundary condition

for solid walls. It can also be applied to the case of microswimmers in a thin film. The

boundary ∂Ω, here, would be the fluid-air interface. The reason for using the no-slip

boundary condition would be the experimental evidence that microorganisms produce

a surfactant that solidifies the interface [23] and effectively creates no-slip conditions.

The solid-like behavior of the interface was also evidenced in [33], where dry friction

like behavior was observed for a micro gear touching interface, which manifests solid

surface.

The boundary condition (3) is similar to the condition (2) in that the fluid sticks to

the surface Γ i
H

. But unlike ∂Ω, the boundary Γ i
H

is moving with translational velocity

ui
C

and rotational velocity ωi that are not known a priori and need to be found in the

process of solving (1)-(6).

The first boundary condition in (4) indicates that the fluid cannot flow through

the surface of the swimmer. The second condition describes a force that acts on the

fluid and pushes it backward, as a result propelling the swimmer forward. Thus, we

have just enough boundary conditions on Γ i
P

for solvability of the problem. Note that

the form of the right-hand side in (4) indicates that the propulsion of the swimmer is

coordinate invariant. An example of the scalar function f is the “uniform” distribution

of force along the boundary:

τσ(u, p)n = −f
(
(x− xi

C
) · di) (τ · di) :=

−fp

|Γ i
P
| (τ · di), (12)

where fp is the total force of the propulsion:

fp =

∫

Γ i
P

f
(
(x− xi

C
) · di) dx. (13)

Boundary conditions (5) and (6) indicate that all swimmers are self-propelled as

opposed to moving due to an external force (e.g., gravity). One can obtain these equa-

tions from Newton’s second law, noting that in the Stokes regime the inertial forces

are negligible compared to the viscous forces (see [34] for more details).

From a modeling point of view an important feature of microswimmers propelled

by flagella is the clockwise rotation of the swimmer’s body around its axis due to

hydrodynamic torque resulting from the counter-clockwise rotation of the flagella. In

two-dimensional model there cannot be rotation around the axis. Also, the rotation of

bacteria in thin films can be freely neglected due to proximity of the fluid-air interface

above and below versus only on side of bacteria, as considered in [31]. On the other

hand, should an analogous three-dimensional model be constructed this feature should

be added in the definition of the tangential component of tractions on the part of the

boundary responsible for the self-propulsion.
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2.3 Scaling observation

The following observation will simplify the future analysis. Consider two initial value

problems (1)-(11) in the same domain Ω and with the same initial data (i.e., positions

of the swimmers {xi
C

(0),di(0)}N
i=1) but with different boundary conditions:

Problem I: The boundary data are

gI(t,x) and fI(s). (14)

Problem II: The boundary data are

gII(t,x) = λgI(t/λ,x) and fII(s) = λfI(s). (15)

We use superscripts I and II to denote solutions to the above problems. The following

result is verified by the directed substitution.

Lemma 1 (Scaling) Let functions uI(t,x), pI(t,x) and positions of the swimmers

{xi,I
C

(t),di,I(t)}N
i=1 be solution to the first problem. Then, the functions

uII(t,x) := λuI(t/λ,x), pII(t,x) := λpI(t/λ,x) (16)

and the positions of the swimmers,

xi,II
C

(t) = xi,I
C

(t/λ) , di,II(t) = di,I (t/λ) , (17)

are solutions to the second problem.

Remark 1 The statement of Lemma 1 can be phrased as follows. Simultaneously in-

creasing the propulsion force f(·) of the swimmers and the fluid velocity g(x) by a

factor of λ leads to swimmers moving along the same trajectories but λ times faster.

The corresponding viscous forces are increased by a factor λ.

Remark 2 A rotational diffusion may be used to model the Brownian motion or tum-

bling. This diffusion introduces a new time-scale which breaks up the scaling result of

Lemma 1.

3 Effective viscosity

In the theory of fluid dynamics one of the primary objects of interest is the relation

between the applied forces (stress) and the observed fluid flow (strain rate). For New-

tonian fluids this relationship is linear:

σ(x) = 2µD
(
u(x)

)− p(x)I for x ∈ ΩF . (18)

For non-Newtonian fluids (18) does not hold with the same value of µ. Hence, assuming

that one still desires to characterize the relation between the stress and the strain rate

in the form similar to (18), the viscosity µ should be permitted to vary.

In the most general case, µ will depend on the form of the flow, i.e. µ
(
D(u)

)
. This

is not very informative, as in this case the relation (18) is equivalent to σ = F
(
D(u)

)
,

where F (·) is some function. Thus, to characterize the relation between the stress and

the strain rate, one should specify the function F (·).
To avoid this problem, we accept the fact that the general relation between the

bulk stress and the bulk strain rate greatly depends on the type of the fluid flow. Thus,

we will limit ourselves to a rather specific, but experimentally intuitive definition along

the lines, proposed by Batchelor [35]:
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“We shall consider here only the important and representative case in which

the suspension is confined between two parallel rigid planes in steady relative

shearing motion, with the stress being observed as the force per unit area on

a section of one boundary with linear dimensions large compared with particle

spacing.”

3.1 Definition of effective viscosity and instantaneous apparent viscosity

Consider a fluid (or a complex fluid, such as a suspension of active or passive particles

in the fluid) between two solid plates a distance 2H apart, see Fig. 2. We induce a

shearing motion on the boundary by moving the top plate to the right with velocity

ve1 and the bottom plate to the left with velocity −ve1. We prescribe the periodic

conditions on the vertical left and right boundaries. The effective shear viscosity, being

a measure of friction in the fluid, should be defined in terms of the total viscous forces

FT :=

∫

ΓT

σ(u, p)n dx and FB :=

∫

ΓB

σ(u, p)n dx, (19)

acting on the top (ΓT ) and the bottom (ΓB) plates, respectively, and should scale

correctly with the dimensions of the domain. These considerations suggest the following

quantity, dubbed as the instantaneous apparent viscosity :

µ̄(v; t) :=
H

Lv

(
FT (t)− FB(t)

) · e1, (20)

where L is the length of the plate on which viscous forces FT and FB are acting and
v

2H = ε̇ is the shear rate of the background flow created by the motion of the top and

bottom plates.

Fig. 2 Schematic illustration of shear flow between two plates.
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For homogeneous fluids the quantity (20) does not depend on time since the vis-

cous forces FT and FB do not change with time. For inhomogeneous fluid there are

additional challenges. For instance, for a suspension of passive or active inclusions, the

value of µ̄(v; t) will be different depending on the concentration and distribution of in-

clusions. For a suspension of active inclusions, such as swimmers, it will also depend on

the propulsion strength of the swimmers. Moreover, changing the propulsion strength

from fp to −fp will change the value of µ̄(v; t) in a nontrivial way. In general, this value

will not remain the same and will not simply change sign. For this reason, we call the

quantity in (20) the instantaneous apparent viscosity and not the effective viscosity,

which will be defined later. The word instantaneous indicates that µ̄(v; t) is computed

at a particular instance of time and depends on a particular configuration of swimmers.

The word apparent indicates the nontrivial dependence on the propulsion strength fp.

This dependence will be analyzed later in section 3.2.1.

We would like to define the effective viscosity as a material property independent of

the configuration of swimmers. Thus, we define the effective viscosity as a time average

of the instantaneous apparent viscosity

µ̂(v) := lim
T→∞

1

T

∫ T

0
µ̄(v; t) dt. (21)

We assume that this time-averaged quantity does not depend on the initial configura-

tion of swimmers. Verification this assumption is a separate research topic, which we

leave for possible future analysis.

3.2 Estimates and observations for the instantaneous apparent viscosity

Here we make some analytic observations regarding the instantaneous apparent viscos-

ity. First, we make use of the scaling observation, Remark 1. This observation tells us

that the instantaneous apparent viscosity, as defined by (20), takes the same value for

problems I and II, (14)-(15), at times t/λ and t, respectively:

µ̄II(λv, λfp; t/λ) =
H

Lλv

(
FII

T (t/λ)− FII
B (t/λ)

)
· e1 =

=
H

Lv

(
FI

T (t)− FI
B(t)

)
· e1 = µ̄I(v, fp; t).

(22)

Hence, the effective viscosities, being time averages of the instantaneous apparent vis-

cosities, also, match for the problems I and II:

µ̂II(λv, λfp) = lim
T→∞

1

T

∫ T

0
µ̄II(λv, λfp; t/λ) dt =

= lim
T→∞

1

T

∫ T

0
µ̄I(v, fp; t) dt = µ̂I(v, fp).

(23)

This means that the effective viscosity of a suspension of swimmers depends only

on the ratio of the propulsion strength fp to the shear rate defined by v, i.e.

µ̂

(
v

fp

)
:= µ̂

(
v

fp
, 1

)
= µ̂

(
1,

fp

v

)
. (24)

The nondimensional analog of
fp

v is
fp

µv . Due to its importance we shall refer to the

ratio
fp

µv as the propulsion-shear ratio.
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3.2.1 The apparent viscosity for the instantaneous problem

In this section we identify the dependence of the instantaneous apparent viscosity on

the propulsion strength fp of the swimmers for a given distribution of swimmers. We

will consider three instantaneous problems A, B and C given by (1)-(6) in the same

fluid domain ΩF but with different boundary conditions:

A. Active swimmers + Shear: vA = v and fA
p = fp.

B. Passive/dormant swimmers + Shear: vB = v and fB
p = 0.

C. Active swimmers + No shear: vC = 0 and fC
p = fp.

Due to linearity of the Stokes equations (1) the solution (uA, pA) to the problem

A is a sum of the solutions (uB, pB) and (uC, pC) to the problems B and C:

uA(x) = uB(x) + uC(x) and pA(x) = pB(x) + pC(x). (25)

We have a similar relation for the forces on the top and bottom plates. Thus, the

expression that enters the definition (20) of the instantaneous apparent viscosity is

FA
T (v, fp)− FA

B(v, fp) =
(
FB

T (v)− FB
B(v)

)
+

(
FC

T (fp)− FC
B(fp)

)
. (26)

Here we explicitly indicated that the forces depend on the shear velocity v and the

propulsion strength of the swimmers. Inserting this in definition (20), we obtain

µ̄A(v, fp) =
H

Lv

(
FA

T (v, fp)− FA
B(v, fp)

)
· e1 =

=
H

Lv

(
FB

T (v)− FB
B(v)

)
· e1 +

H

Lv

(
FC

T (fp)− FC
B(fp)

)
· e1 =

= µ̄B(v) +
1

v
η̄(fp),

(27)

where
1

v
η̄(fp) := µ̄A(v, fp)− µ̄B(v) =

H

Lv

(
FC

T (fp)− FC
B(fp)

)
· e1 (28)

is the contribution to the instantaneous apparent viscosity due to self-propulsion.

3.3 Effective shear viscosity for a suspension of swimmers in the dilute regime

Consider a suspension of swimmers in the dilute regime: the fluid domain is sufficiently

large and swimmers are sufficiently far apart from one another. Thus, the dilute as-

sumptions are as follows: (i) individual swimmers interact only with the background

flow and do not interact with one another, (ii) only orientations of swimmers play

role in the effective viscosity. We use decomposition (27) of the instantaneous apparent

viscosity to derive the following results.

Let ω(θ) be the rotational velocity of a swimmer as a function of angle θ between

the swimmer major semiaxis and the x-axis. Assume that shear motion is along the

x-axis.

Lemma 2 The rotational velocity of swimmers is an even function of θ, i.e.

ω(θ) = ω(−θ). (29)
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Proof Indeed, the rotation of swimmers is entirely due to the background flow and

does not depend on the propulsion strength fp of the swimmers. That is the rotational

velocity ω = ω(θ, ε̇) is only a function of the orientation of the swimmer and the shear

rate ε̇ of the background flow.

Due to reversibility of the Stokes flow, we get

ω(θ,−ε̇) = −ω(θ, ε̇). (30)

Consider the reflection of the problem across x-axis. Such reflection maps

1. orientation θ to −θ,

2. the flow with shear rate ε̇ to the flow with shear rate −ε̇,

3. angular velocity ω to −ω (due to change of the clockwise orientation)

Using the mapping 1-3 above and (30) we get the desired result (29)

ω(−θ, ε̇) = −ω(θ,−ε̇) = −(− ω(θ, ε̇)
)

= ω(θ, ε̇).

Let p(θ) be the density function for the portion of time that a swimmer spends at

the angle θ, ∫ π

−π
p(θ) dθ = 1.

Here the average can be taken over the time it takes a swimmer to complete a full

rotation in the shear flow. Note that p(θ) is the same for all swimmers regardless of

their initial orientation.

Lemma 3 The density function p(θ) is an even function of θ, i.e.

p(θ) = p(−θ). (31)

Proof The statement (31) follows from Lemma 2 and the conservation of angular flux

condition

p(θ)ω(θ) = constant for all θ, (32)

which says that the average flux of orientations of swimmers through the angle θ does

not depend on θ.

Indeed, (32) holds due to every swimmer rotating periodically in the same direction

(clockwise for v > 0, counter-clockwise for v < 0). Thus, the number of swimmers

passing through orientations θ1 and θ2 on average over time is the same.

From (32) and (29) we have

p(θ)ω(θ) = p(−θ)ω(−θ) = p(−θ)ω(θ).

Dividing through by ω(θ) we get (32).

Now we consider the contribution of self-propulsion to the instantaneous apparent

viscosity µ̄(fp; t) as introduced in (27) and (28).

Lemma 4 The total contribution, 1
v η̂(fp) := µ̂(v, fp) − µ̂(v, 0), of self-propulsion to

the effective viscosity is zero:

1

v
η̂(fp) =

1

v
lim

T→∞
1

T

∫ T

0
η̄(fp; t) dt =

=
H

Lv
lim

T→∞
1

T

∫ ∞

0

(
FC

T (fp; t)− FC
B(fp; t)

)
· e1 dt = 0.

(33)
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Proof The contribution of N swimmers to η̄(fp; t) is a sum of contributions η̄1(fp, θi(t))

of individual swimmers:

η̄(fp; t) =

N∑

i=1

η̄1(fp, θi(t)).

From the symmetry of the flow, the contribution η̄1(fp, θ) is an odd function of θ:

η̄1(fp, θ) = −η̄1(fp,−θ).

Hence, the contribution of all swimmers to the instantaneous apparent viscosity due

to self-propulsion is

η̂(fp) = lim
T→∞

1

T

∫ T

0

N∑

i=1

η̄1(fp, θi(t)) dt = N

∫ π

−π
p(θ)η̄1(fp, θ) dθ =

= N

∫ 0

−π
p(θ)η̄1(fp, θ) dθ + N

∫ π

0
p(θ)η̄1(fp, θ) dθ =

= −N

∫ π

0
p(θ)η̄1(fp, θ) dθ + N

∫ π

0
p(θ)η̄1(fp, θ) dθ = 0.

(34)

This proves the assertion of the lemma.

Note that η̂(fp) = 0 independently of the initial orientations of the swimmers. This

is due to the first line of (34), which says that the time average of the contribution of

each swimmer η̄1(fp, θi(t)) is equal to the average over one full rotation of the swimmer.

The later one does not depend on the initial orientation of the swimmer.

From the definition of the effective viscosity (21), decomposition of instantaneous

apparent viscosity (27), independence of the dynamics of the orientations of swimmers

of the propulsion strength and, finally, Lemma 4 we get the following statement.

Theorem 1 The effective viscosity µ̂(v, fp), defined by (21), of a suspension of swim-

mers with propulsion strength fp, defined by (13), interacting only with the background

shear flow (i.e., no swimmer-swimmer interactions) is independent on the propulsion

strength fp.

Remark 3 The immediate consequence of Theorem 1 is that in the dilute limit the

effective viscosities of suspensions of active and passive swimmers are the same.

Remark 4 The result of Theorem 1 is based on a different set of assumptions than

Ishikawa and Pedley [21], where swimmers have a shifted center of gravity. Out swim-

mers centers of gravity is the same as their geometric center. In fact, our result ex-

plains why Ishikawa and Pedley could not obtain decrease of viscosity for swimmers

with “neutral” center of gravity.

Remark 5 Adding to the model the rotational diffusion (either due to Brownian mo-

tion or tumbling), in the absence of the swimmer-swimmer interactions, would breaks

up the symmetry (31) and lead to a preferential alignment of swimmers. Depending

on the sign of the propulsion strength fp, the flow due to swimmers helps (fp > 0) or

resists (fp < 0) the background shearing motion. This explains the results of [30], where

the decrease of effective viscosity is observed in the presence of rotational diffusion.
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4 Numerical modeling and analysis

We solve the ODEs (10) using the forward Euler method with variable time step 4tn
(see more on the choice of the time-step in Section 4.2). On each time step tn, using

positions xi
C

(tn) and orientations di(tn) of swimmers, we find their new translational

and rotational velocities by solving the problem (1)-(6). After that, we update positions

of the swimmers, assuming constant velocities on the time interval (tn, tn +4tn):

xi
C

(tn+1) = xi
C

(tn) +4tnvi
C

(tn). (35)

Since our spatial discretization method is first-order accurate for stresses in terms of

the mesh size, the first-order accurate time integration method is sufficient to balance

spatial and temporal errors.

4.1 Solution of the instantaneous problem

Efficient and accurate solution of the PDE problem (1)-(6) on each time step is required

for computing the viscosity of the suspension. We use the recently developed Mimetic

Finite Difference (MFD) method [36]. Since the MFD method for the Stokes problem

is a new method, we give a short comparative description of this method and some

other popular methods.

4.1.1 Short description of MFD method

The MFD method combines mesh flexibility of the Finite Volume (FV) methods with

analytical power of Finite Element (FE) methods. To some extend it can be viewed as

an extension of FE methods to unstructured polygonal (polyhedral in three dimensions)

meshes. The mesh flexibility simplifies mesh generation around swimmers that may

have complicated shapes. The major difference between the MFD and FE methods

lies in definition of basis functions. The FE methods define then explicitly everywhere

in the computational domain. The MFD method specifies the basis functions only

on mesh edges. This reduction of topological complexity has a number of important

consequences for numerical modeling of complex phenomena.

First, the MFD method minimizes the number of discrete unknowns (compared to

the FE method) (a) by partitioning of the computation domain into smaller number of

elements that are polygons and (b) by using velocity and pressure degrees of freedom

only where they are needed for accuracy and stability of the discretization. For example,

the MFD method on a square mesh with N mesh vertices uses about 2.5N velocity

and N pressure unknowns. The FE methods on the same mesh and with roughly the

same accuracy uses about 4N velocity and N pressure unknowns.

Second, the MFD method is built the same way on general polygonal meshes as

on triangular meshes. Thus, it can be used on locally refined meshes with hanging

nodes and on moving meshes with non-convex elements that are frequently used in

numerical modeling. It was shown in [37] that the MFD method can be employed even

when the mesh elements have curved faces. In this work, we use polygonal meshes

near boundary of the swimmers (see Section 4.1.2) and make the computational mesh

coarser far away from the swimmers. This approach increases accuracy in the areas

of interest. The MFD method is the second-order accurate (with respect to the local

mesh size) for the velocity and the first-order accurate for the pressure.
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4.1.2 Mesh construction

In the simulations, we used a three-step algorithm for construction of the computational

mesh. First, we construct a uniform square background mesh, i.e. the square domain

of size 1 by 1 is divided into N2 squares with sides h = 1/N .

Fig. 3 A sample mesh near a swimmer. The computational domain is around the swimmer
and is colored light blue. The mesh is coarsened away from the swimmer. Notice that the mesh
elements adjacent to the swimmer are polygons with 3, 4 and 5 vertices.

Second, we overlap the background mesh with the ellipses representing swimmers.

For this, we find the points of intersection of the ellipses with the edges of the back-

ground mesh. These points are connected by straight edges and added to the new mesh.

The mesh elements inside the ellipses are then thrown out. As a result, the boundary

of the ellipses is approximated with the second-order accuracy and the resulting mesh

is polygonal (see Fig. 3).

Third, we coarsen the mesh by grouping the mesh elements those centers are at

least 2h away from the swimmers into square mesh elements with sides 2h. This process

can be repeated by grouping the mesh elements those centers are at least 4h away from

the swimmers into square mesh elements with sides 4h. This strategy leaves the mesh

intact in the neighborhood of swimmers where spacial variation of flow is the largest.

4.2 Choosing the time step

There are several factors that determine the size of the time step 4tn. For moderate

concentrations of swimmers (∼ 10% by volume) the crucial point to be addressed is

collision of swimmers. For this, the relative displacements of swimmers on each time

step should be small compared to their pairwise distances. Due to the hydrodynamic

attraction of swimmers it is common to see pairs of swimmers arbitrarily close to one

another. This requires to use extremely small time steps; therefore, such an approach

is not practical.

We implemented a balanced algorithm for choosing the time step. First, we fix the

upper 4tupper and the lower 4tlower bounds for the time step. Then, we pick the size
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of the time step 4t such that

4tupper ≥ 4t ≥ 4tlower

and the swimmers cannot get closer than the mesh size h to one another. If both criteria

cannot be satisfied, we set 4t := 4tlower and apply the collision algorithm described

in the next subsection.

Numerical experiments have shown that 4tupper := .01 and 4tlower := .001 for

the propulsion strength of swimmers fp = 1 and the shear rate ε̇ = 1 lead to smooth

dynamics of the apparent viscosity (see Fig. 7). When fp > 1, the time step is selected

based on the scaling observation (see Remark 1). This remark implies that trajectories

of swimmers for the case with ε̇ = 1, fp = f0
p , 4t = 4t0 will be close to that in the

case with ε̇ = 1/λ, fp = f0
p /λ, 4t = 4t0/λ. We choose the scaling constant λ = fp,

i.e. we fix the propulsion strength of the swimmers. This leads to smaller values of the

shear rate than in the base case. Therefore, our choice of the upper and lower bounds

for the time step is 4tupper := .01/fp and 4tlower := .001/fp.

4.3 Implementing collisions of swimmers

Dynamic change of the time step only minimizes probability of collisions and does not

eliminate them completely. There are two popular methods for dealing with collisions

of rigid objects. A group of methods use a short range repulsive force to push swimmers

away from one another. The method employed in our simulations is used commonly

in modeling of granular media [38] and is better suited for the problems with many

bodies close to one another, where long time simulations are necessary.

Lubrication theory can be used to make asymptotically correct predictions for small

pairwise distances δ << 1 between swimmers. But the smallest allowed pairwise dis-

tance is tied together with the size of the time step, 4t ∼ δ. Since for many swimmers

at concentration 9% by volume almost always there are swimmers next to one another,

allowing too small pairwise distances would make time stepping prohibitively slow. In

our analysis, we require swimmers to be approximately one mesh size apart. Lubri-

cation theory would be more appropriate for a very detailed, short-term analysis of

two swimmers near contact, than for an analysis of many swimmers where long-term

collection of statistics is essential.

To avoid additional technical difficulties, we consider a small exclusion region

around each swimmer. The exclusion region for the ellipse with major semi-axis a

and b is defined as the ellipse with major semi-axis a+h and b+h, respectively. There-

fore, if the exclusion regions of two swimmers do not overlap, then these swimmers

are guaranteed not to have a common mesh element adjacent to both. The collision is

implemented as a soft collision of exclusion regions, where the place of mass is taken

by the viscous drag coefficients of the ellipses.

Consider two ellipses in contact. The force of their interaction is directed along the

normal to their surfaces at the point of the contact. The force F1,2 of the first swimmer

S1 onto the second swimmer S2 is equal in magnitude and opposite in direction to F2,1,

the force of S2 onto S1

F1,2 = −F2,1. (36)

To estimate the effect of the interaction force F2,1 on the motion of the swimmer

S1, we compute the net force and the net torque applied to the swimmer:

F1
net = F2,1 and T 1

net = F2,1 × (x− x1
C

). (37)
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(a) (b)

Fig. 4 Two ellipsoidal exclusion regions (containing swimmers) in contact (a) and two over-
lapping ellipsoidal exclusion regions (b).

The force F2,1 will be acting on swimmer S1 as long as S1 and S2 are in contact.

In the Stokes regime (where inertia is negligible compared to the viscous forces) the

forces F2,1 and F1,2 will be only as strong as necessary to prevent mutual penetration

of swimmers. Also, in the Stokes regime, the role of the mass is played by the viscous

drag coefficients. We have three drug coefficients: two for translational motion along

the major axes, γa and γb, and one for the rotational motion, γθ.

If d is the direction of the major axis and d⊥ is the direction of the minor axis,

we may write the net force as F1
net = fad + fbd⊥ and the motion of the ellipse as

u1
C = u1

ad + u1
bd⊥ and ω1. The drag coefficients relate the forces acting on the ellipse

with the motion of the ellipse as follows:

fa = γau1
a, fb = γbu

1
b , T 1

net = γθω1. (38)

Now, suppose that at time t0 we solved the Stokes problem for two swimmers S1

and S2 and found their velocities ui
C and ωi, i = 1, 2. The positions of the swimmers

at time t1 = t0 +4t are computed as follows:

xi
C(t1) = xi

C(t0) +4xi, 4xi = 4tui
C(t0).

Their orientations are incremented similarly by values 4θi. By our assumptions, 4t =

4tlower and new positions result in overlap of ellipses (the protective regions).

In general, for two overlapping ellipses, there will be two points of intersection

denoted by P1 and P2 (see Fig. 4(b)). The midpoint M := (P1+P2)/2 will be considered

as the point of the interaction. The interaction force (denoted by n(P1,P2)) will be

assumed to act perpendicular to the line (P1, P2) as shown on the figure. Based on

this, we can compute the corrected velocities of the swimmers:

u1
a = γ−1

a fa = γ−1
a d · n(P1,P2),

u1
b = γ−1

b fb = γ−1
b d⊥ · n(P1,P2),

ω1 = γ−1
θ T 1

net = γ−1
θ n(P1,P2) × (M − x1

C
).

(39)
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We are left to answer the question: How big should be the displacements 4x1 and

4θ1? Since we already computed the direction of the displacements the above question

is reduced to the question of scaling: How big should be the scaling δt in 4x1 = δtu
1
C

and 4θ1 = δtω
1?

We suggest to take δt so that the swimmers are slightly out of contact. For this,

we select two points O1 and O2 on the boundaries of S1 and S2, respectively, that are

between P1 and P2. For example, let us take O1 to be the point, where the tangent line

is parallel to the line passing through P1 and P2. We choose the point O2 in a similar

fashion. Denoting the velocities of points O1 and O2 by uO1 and uO2 , respectively, we

take

δt := (1 + α)
(O1 −O2) · n(P1,P2)

(uO1 − uO2) · n(P1,P2)
.

Here α ≥ 0 is an analogue of a restitution coefficient (measure of bounce, i.e. elastic vs

inelastic collision). It can, also, serve as a “reserve” to guaranty that after the procedure

the ellipses do not overlap. In numerical simulations, we use α = 0.1. which corresponds

to soft collisions.

4.4 Dynamics: Interaction of swimmers

Here we present two numerical experiments for the hydrodynamic interaction of swim-

mers at the intermediate distances (distances of order of the size of the swimmer): a

swimmer next to a wall (see Fig. 5a) and two side-by-side swimmers (see Fig. 5b). In

both cases attraction due to a hydrodynamic interaction was observed.

This behavior can be explained, heuristically, by the fact that each swimmer acts

as a force dipole (see (5)). It pushes fluid forward (ahead of itself) due to the no-slip

condition on ΓH and backward (behind itself) due to the thrust condition on ΓP . Since

the fluid is incompressible, it is being forced towards the swimmer on its sides creating

lateral suction of sorts.

4.4.1 A swimmer next to a wall

In this numerical experiment, the swimmer was positioned distance 0.1 away parallel

to a wall (see Fig. 5a). The lengths of the semi-axes of the swimmer were a = 0.048 and

b = 0.024. The propulsion force is given by (12) with the propulsion strength fp = 1.

The computed initial translational and rotational velocities of the swimmer were

u1
C

=

[
0.065

−0.016

]
, ω1 = 0.061. (40)

The vertical swimmer’s velocity is roughly quarter of its horizontal velocity indicating

rather strong interaction with the wall. Over time the swimmer approaches the wall

while simultaneously rotating away from it. When it has rotated sufficiently, it begins

moving away from the wall.

We conclude that a swimmer positioned parallel to the wall is attracted to it and

spends a significant amount of time swimming parallel to it. But it will not remain

next to the wall indefinitely. The entire time spent near the wall, the swimmer rotates

away and eventually swims away.
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4.4.2 Two adjacent “mirror image” swimmers

In this experiment, we consider two swimmers with the length of the semi-axes a =

0.048 and b = 0.024, initially positioned parallel to the x-axes, with the centers on the

same vertical line (see Fig. 5b):

x1
C

=

[
0.5

0.4

]
and x2

C
=

[
0.5

0.6

]
.

The swimmers are mirror images of one another with respect to the horizontal line

y = 0.5.

The computed initial translational and rotational velocities of the swimmers were

u1,2
C

=

[
0.066

±0.014

]
, ω1,2 = ∓0.02. (41)

With time the swimmers approach one another, simultaneously rotating away from one

another. This dynamics of two side-by-side swimmers is reminiscent of the dynamics

of two well-separated “external pushers” in a similar configuration [34]. There is a

difference between the well-separated and moderately separated regimes, however. In

the well separated regime, the swimmers have enough time to rotate sufficiently away

from one another for the translational correction (to swimming straight) due to the

suction to be dominated by the vertical velocity for a free swimmer. In the moderate

regime, the suction is too strong and the swimmers do not have enough time to rotate

sufficiently outwards.

(a) (b)

Fig. 5 Figure (a) shows the fluid flow for a single microswimmer next to a wall. Figure (b)
shows the fluid flow for two swimmers side by side. The bold blue arrows indicate the direction
of the fluid that pushes the swimmer closer to the wall (a) and the two swimmers closer to one
another (b). The bold red lines with arrows indicate the trajectories that each of the swimmers
will follow. Both (a) and (b) show the initial period of attraction (red line getting closer to the
wall and two red lines getting closer to one another). The two swimmers in the mirror image
configuration remain close to one another after this. The swimmer next to the wall rotates
away from the wall to eventually get further and further away from it.
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One can also compare the velocities (41) and (40). While the translational velocities

in both cases are almost the same, the rotational velocity in (40) is roughly three times

larger than in (41). This may explain the difference in the dynamics between swimmer

next to a wall and two “mirror image” swimmers.

In Fig. 5(b) one can clearly see the trajectories of the swimmers converge and

experience a sharp turn after which they become parallel. The swimmers will remain

in this symmetrical configuration with distance 0.0664 between their centers and at

the angles ∓0.28 (turned somewhat outwards) with the x-axes.

If the swimmers are initially not in a perfectly symmetric configuration, they even-

tually separate and swim away from one another. This type of dynamics is presented

below.

4.4.3 Two adjacent “offset” swimmers

In this experiment, we consider two swimmers parallel to the x-axes with the centers

offset from the same vertical line:

x1
C

=

[
0.55

0.40

]
and x2

C
=

[
0.45

0.60

]
.

This initial configuration of swimmers can be thought of as a perturbation of the

“mirror image” configuration.

The computed initial translational and rotational velocities of the swimmers were

u1
C

=

[
0.0626

0.0047

]
, ω1 = −0.12, u2

C
=

[
0.0740

−0.0064

]
, ω2 = −0.11. (42)

Initially, both of the swimmers rotate in the same direction, clockwise. The direction of

the rotation is determined by the swimmer which is ahead of the other one, the bottom

swimmer in this configuration. Thus, the second (top) swimmer rotates towards the

first one (see the streamlines in Fig. 6). This swimmer two will cross the trajectory of

the first swimmer, behind it, and will swim away. This demonstrates that there is no

stable configuration of swimmers where they stay close to one another indefinitely.

4.5 Time and size scales in the physical and numerical experiments

In an attempt to relate the physical and numerical units, we recall the physical param-

eters of bacteria such as Bacillus subtilis. The length of the bacterium is around 5µm

and the typical swimming speed is ∼ 20µm/sec. The length of a swimmer in the above

numerical experiments is 2a = 0.096. In these experiments, (40) and (41), the typical

forward component of the velocity of a swimmer is

0.065 ≈ 2

3

swimmer body length

computer unit of time
. (43)

Since the typical speed of the bacterium is 4 body lengths per second, the unit of

computer time for fp = 1 corresponds to

(
unit of computer time for fp = 1

)
=

2/3

4
sec = 1/6 sec. (44)
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Fig. 6 Figure illustrates the fluid flow for two “offset” parallel microswimmers. Bold red lines
show the trajectories each of the swimmers will follow.

Now we compute the physical analogue of the shear rate for the computational

experiment with fp = 1. The size of the container is 1/0.096 ≈ 10 lengths of a swimmer,

which corresponds to 50µm. The speed of the top plate relative to the bottom plate is

2 50µm
1/6 sec

= 600µm
sec . Thus, the shear rate is 600µm·sec−1

50µm = 12 sec−1.

4.6 Effective viscosity

For a homogeneous fluid, the instantaneous apparent viscosity defined by (20) and the

effective viscosity defined by (21) are the same. For an inhomogeneous fluid (e.g., sus-

pensions) (20) takes different values depending on the distribution of inclusions. Figure

7 illustrates sample values of the instantaneous apparent viscosity for a suspension of

swimmers as a function of time.

Since in practice the instantaneous apparent viscosity is computed on a finite inter-

val of time it is important to derive an error estimate for the effective viscosity, which

is a non-trivial task. Intuitively, the more evaluations one makes (longer simulation

time), the more accurate is the estimate of the effective viscosity. However, the same

number of samples (time steps) can be done with small or large time step 4t. Small 4t

is important for capturing correctly the dynamics of the suspension. Long simulation

time is important for the accuracy of the overall estimate of the effective viscosity. Both

extremes, million samples with 4t = 10−12 or hundred samples with 4t = 10 may be

equally poor at predicting the effective viscosity. In the first case, one would get a very

accurate dynamics of the suspension, but would miss the range of values. In the second

case, one would get a rather broad range of values for completely inaccurate dynamics

of the suspension. Since the interaction of swimmers is assumed to play a key role in

the effective viscosity the last choice is not satisfactory as well.

We begin by identifying an acceptable time step, which may be a subjective quan-

tity. As a criterion, the time step should be much smaller than the time required to

change significantly the instantaneous apparent viscosity. For the propulsion-shear ratio
fp

µv = λ, the appropriate time step was chosen to be 4tupper = 0.01/λ.
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Fig. 7 The green horizontal line indicates the viscosity of the ambient fluid (µ = 1). The
blue (oscillating) line shows the instantaneous apparent viscosity as defined by (20). The
red horizontal line indicates the time average of the instantaneous apparent viscosity. The
computations are performed for the suspension of 25 swimmers at 9% volume fraction in a
1 × 1 square with periodic boundary conditions in the x-direction. The propulsion of each
swimmer is defined by (12) with the total propulsion strength fp = 1 as defined by (13).
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Fig. 8 Autocorrelation function for fp = 1 and time step 4t = 0.02.

A mean of N independent identically distributed random variables approaches nor-

mal distribution with the standard deviation s/
√

N , where s is the standard deviation

of the underlying distribution. In our analysis, all evaluations of the instantaneous

apparent viscosity µ̄(v; t) do not represent independent samples. For example, the cor-

relation between the values of µ̄(v; t) on two consecutive time steps is more than 0.8

for
fp

µv = 1. Let nlag be the smallest lag when the autocorrelation equals to zero. As

shown in Fig. 8, the zero-autocorrelation lag is nlag = 58 for
fp

µv = 1. This number

indicates that the samples nlag time steps apart are essentially uncorrelated and may

be viewed as independent samples.

The total number of time steps divided by nlag is the sample size N . The error in

estimating the effective viscosity is then assumed to have a normal distribution with
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the standard deviation

standard deviation for the instantaneous apparent viscosity√
Ntotal/nlag

. (45)

The standard deviation of the error, computed according to (45), is shown as vertical

error bars on Figure 9.

4.6.1 Effective viscosity as a function of the propulsion-shear ratio

In this section, we analyze the dependence of the effective viscosity on the propulsion-

shear ratio
fp

µv . To compute the effective viscosity, we consider a 1 × 1 container with

periodic boundary conditions on vertical sides and set the shear velocity v = 1 on hor-

izontal sides. We fix the size and number of swimmers and vary only their propulsion

strength fp. For each value of fp, we simulate the dynamics of the swimmers and com-

pute the viscous forces acting on the top and bottom plates and then the instantaneous

apparent viscosity as defined by (20).

µ̃
µ

fp

µv

Fig. 9 The points marked by circles indicate the numerically obtained values of the effective

viscosity for a given propulsion-shear ratio
fp

µv
. These points are combined into two groups:

A and B. Points in group A exhibit linear trend. Points in group B exhibit finite domain
effects. The solid horizontal line shows the viscosity of the ambient fluid (µ = 1). The dashed
horizontal line shows the effective viscosity of a suspension of passive inclusions (fp = 0). The
decline straight line shows the weighted least square interpolation to the data.
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Fig. 10 Sample trajectory of a single swimmer with the propulsion strength fp = 1 in the
shear flow v = 1. The swimmer’s position and orientation at time moments T0 = T4, T1, T2,
and T3 are shown.

The effective viscosity as a function of the propulsion strength is shown in Fig. 9.

Generally, the standard deviation of the estimates for the effective viscosity is much

larger for larger values of the propulsion-shear ratio
fp

µv . This is due to the fact that

the standard deviation of the instantaneous apparent viscosity is proportional to the

propulsion strength of the swimmers. Therefore, according to the error estimate (45)

to compute the effective viscosity for
fp

µv = 10 with the same accuracy as for
fp

µv = 1 it

requires not 10 but 102 more time steps.

The red line on Figure 9 is given by

α

(
fp

µv

)
+ β, α = −0.046, β = 1.141, (46)

and represents the weighted least square fit to the data. The weights are inversely

proportional to the square of the estimated error in computing each of the data points.

Thus, the data points corresponding to larger values of the propulsion-shear ratio

and having larger errors effect α and β significantly less than the than data points

corresponding to smaller values.

The linear decrease of the effective viscosity is observed for the propulsion-shear

ratio ranging from negative one to five. Around
fp

µv ≈ 5 this linear trend is changing. We

explain this change by the finite size of the fluid domain. More precisely, we show how

the finite size of the container effects the dynamics of a single swimmer. In Fig. 10,

we show the trajectory of a single swimmer when the propulsion-shear ratio is one.

A single swimmer in a shear background flow swims along an ellipse-like trajectory.

The larger is the propulsion-shear ratio, the larger is the vertical semi-axis of this

trajectory. For
fp

µv ∼ 6, this semi-axis is half of the container size and no longer fits

into the fluid domain. Due to the swimmer-wall interaction, the elliptic-like trajectory

of the swimmer deforms significantly at larger values of the propulsion-shear ratio. This

explains smooth transition from the linear trend (points in group A in Fig. 9) to the

finite domain effect (points in group B).
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Extrapolating the linear trend (46) to the propulsion-shear ratio
fp

µv = 24, corre-

sponding to the measurements in [3] (shear rate 0.5sec−1), we get an 8.5-fold decrease

in the effective viscosity from 1.1408 to 0.1327. This is close to the 7-fold decrease in

the viscosity observed in experiments [3].

Heuristically, the decrease of the viscosity due to interactions can be related to the

reduction of viscosity in the dilute limit in the presence of the rotational Brownian

noise [30]. In this work, it is observed that the rotational Brownian noise breaks up the

symmetry (31) in the angular distribution of swimmers and leads to the preferential

alignment of swimmers with the shearing flow. Crudely, one can view the interactions

between the swimmers as a form of rotational (and translational) noise that has the

same effect as the rotational Brownian noise in [30]. The intensity of the rotational

noise due to the interactions is proportional to the activity of the swimmers (that is

the propulsion strength fp). The break up of the symmetry (31) and shift of the peaks

of the angular distributions of the swimmers can be observed in Fig. 11. The greater

is the propulsion strength fp of the swimmers, the larger is the shift of the peaks in

the distributions.

We compared the distribution p(θ, fp) of swimmers by angles resulting from hy-

drodynamic interactions of swimmers with propulsion strength fp to the distribution

pdil(θ, D) of swimmers in the dilute limit in the presence of rotational diffusion with

coefficient D. The distribution pdil(θ, D) solves the Fokker-Plank equation

D
∂2

∂θ2
pdil +

γ

2

(
1− 3

5
cos(2θ)

)
∂

∂θ
pdil + γ

3

5
sin(2θ)pdil = 0, (47)

where γ = 2 is the shear rate in the numerical simulations. In both cases, increasing fp

or D leads to the shift in the positive direction of the peak in the distributions p(θ, fp)

and pdil(θ, D), respectively. The distribution p(θ, fp) has a more pronounced peak

compared with distribution pdil(θ, D) and does not flatten as rapidly. The flattening

part may be the explained by the interactions with the walls.

4.6.2 Distribution of swimmers in the domain

The distribution of swimmers in the domain and their orientations plays a crucial role

in determining the instantaneous apparent viscosity.

In physical experiments [31] and some numerical simulations [39,40], it was ob-

served that swimmers tend to aggregate near the walls. In our numerical experiments,

we observed this aggregation through computing the time averaged volume density of

swimmers as a function of distance from the bottom wall (see Fig. 12). For each hori-

zontal line, we computed the portion of the line covered by swimmers. This number is

the instantaneous volume fraction of swimmers and fluctuates with time. To eliminate

the fluctuations we take a time average of the instantaneous volume fractions. Due to

the top-bottom symmetry of the PDE and random initial conditions, the graph of the

distribution is also symmetric.

In [29], it was demonstrated that in the absence of pairwise interactions, shear flow

leads to a distribution of swimmers by the angles that decreases the viscosity. In the

presence of the pairwise interactions and the swimmer-wall interactions the dynamics

of the swimmers is much more complex.
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Fig. 11 Distribution of swimmers by angles in the shearing flow (v = 1) for different val-
ues of the propulsion strength: fp = 0, 1, . . . , 5. The horizontal axis indicates the angle
θ ∈ (−π/2, π/2). The vertical axis indicates the distribution density. To remove focus from
local irregularities and highlight the global pattern the angular distributions are smoothed by
convolution with the Gaussian with mean zero and standard deviation π/40.

5 Summary

In this work we formulated a well-posed PDE model for the suspension of swimmers

which includes the propulsion strength fp of the swimmers as a parameter. We analyzed

the effective shear viscosity of the suspension at the dilute (each swimmer interacts only

with the background flow) and moderate concentration regimes.

Using the symmetries of the model, we demonstrated that in the dilute regime the

effective shear viscosity of the suspension does not depend on the propulsion strength

of swimmers. Hence, in the dilute regime the suspension of active microswimmers has
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Fig. 12 The right figure shows a sample distribution of 25 swimmers with the propulsion
strength fp = 1. The volume fraction of swimmers is 0.09. The left figure shows the time-
averaged volume fraction of swimmers as a function of the depth (distance from the bottom
wall). Note the increase of the density near the top and bottom walls.

the same effective viscosity as the suspension of passive inclusions of the same shape

and at the same concentration. This argument is not specific to our choice of a swimmer

and can be applied to a large class of swimmers without any changes. In particular,

it can be applied to the swimmers in [21,22,29]. Adding rotational diffusion to the

model breaks up the symmetry in the angular distribution of swimmers, leading to

preferential alignment of swimmers, which in turn leads to decrease of the effective

viscosity for pushers (fp > 0) and increase for pullers (fp < 0).

Using invariance of the PDE model under scaling, we observed the dependence

of the effective shear viscosity on the propulsion-shear ratio
fp

µv where µ is the fluid

viscosity and v is the shear rate of the background flow. This allowed us to analyze the

effective viscosity as the function of one parameter.

The numerical simulations performed at the moderate concentrations (∼ 10% by

volume) indicated that the effective shear viscosity decays linearly as a function of the

propulsion-shear ratio. This remains true for negative values of the propulsion strength

(fp < 0), which corresponds to pullers instead of pushers. We observed the increase of

effective shear viscosity for pullers. We found out that the size of the fluid container

places an upper bound on the propulsion-shear ratio for which the effective shear

viscosity changes linearly. Our numerical experiments indicated that the decrease of the

effective viscosity observed in the physical experiments can be explained entirely from

a point of view of hydrodynamics. This is an important observation, since biological

system are very complex and include a variety of processes (chemotaxis, oxygen taxis,

etc.) that could be hard to isolate in physical experiments. Our mathematical model

does not include these phenomena and places the focus only on the hydrodynamic

interactions.

Comparison of the results in the dilute and moderate concentration regimes, had

shown that changes (increase or decrease) in the effective shear viscosity are not just due

to self-propulsion but crucially depend on the swimmer-swimmer interactions. For this

reason and as an additional validation of the model and verification of the numerical

approach, we performed a number of simulations for two nearby swimmers and for a

swimmer next to a wall. The observed results matched with the physically observed
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behavior for bacteria. The swimmers attract one another due to lateral suction of fluid

induced by self propulsion. But neither two swimmers nor a swimmer next to a wall

have a steady state configuration in terms of relative positions.

The method presented in this paper is ideally suited for the complex problems

involving swimming microorganisms (e.g. bacteria), where the nature of the experi-

mentally observed phenomenon is not clear a priori. For instance, it may not be clear if

the experiment can be explained purely from hydrodynamic considerations or chemo-

taxis and other phenomena should be considered as well. Our method allows to perform

analysis only with hydrodynamic interactions (accurately handling all interactions) and

later add chemotaxis if necessary. As an example of physical experiment that could be

analyzed by our method we refer to a recent work [33] describing extraction of me-

chanical energy from “chaotically” swimming bacteria by means of asymmetric gears.
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A Variational formulation and well-posedness of problem (1)-(6)

There are a number of questions that are easier to answer working with the variational for-
mulation of the instantaneous PDE problem (1)-(6). Those questions are the existence and
uniqueness of the solution and construction of the appropriate numerical method.

For simplicity of presentation, we derive the variational formulation for a single swimmer.
Extension to multiple swimmers is straightforward.

The admissible class of velocity fields, Ag, is the subspace of the Sobolev space (H1(ΩF ))2

of vector functions satisfying the boundary conditions (2), (3), and the first one in (4). The
linear space of variations, A0, for the admissible class Ag is obtained by setting g = 0.

Using the second equation in (1), we rewrite the first one as follows:

2µ div
(
D(u)

)
= ∇p. (48)

This is done to the obtain symmetrized gradient D(u) and later the stress tensor σ(u, p).
Multiplying (48) by v ∈ A0 and integrating by part over ΩF , we obtain

2µ

∫

ΩF

D(u) : ∇v dx−
∫

ΩF

p div(v) dx =

∫

∂ΩF

nσ(u, p)v dx. (49)

Let us consider the last integral surface integral in (49). Note that ∂ΩF = ∂Ω∪∂S, where
∂S = ΓH ∪ΓP . Due to the boundary conditions on the test function v we have that the surface
integral over ∂Ω is zero. The integral over the surface of a microswimmer can be written as

∫

∂S
nσ(u, p)v dx =

∫

∂S
nσ(u, p)(vC + ωv × (x− xC )) dx

+

∫

Γ
P

nσ(u, p)τ ((v − vC − ωv × (x− xC )) · τ ) dx ≡ I1 + I2.

(50)
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The balance of forces and torque imply that the first integral is zero:

I1 = vC · (FH + FP ) + ωv · (TH + TP ) = 0.

For the second, integral, we use formula (12) to obtain

I2 =
−fp

|ΓP |
(d · τ )

[∫

Γ
P

v · τ dx−
∫

Γ
P

(vC + ωv × (x− xC ))τ dx

]

=
−fp

|ΓP |
(d · τ )

[∫

Γ
P

v · τ dx +

∫

Γ
H

v · τ dx

]
≡ L(v),

which is a linear functional of v.
Let us introduce the following notations:

a(u,v) = 2µ

∫

ΩF

D(u) : ∇v dx = 2µ

∫

ΩF

D(u) : D(v) dx, (51)

b(p,v) =

∫

ΩF

p div(v) dx. (52)

Using these notations, we obtain the variational formulation: Find a pair (u, p), u ∈ Ag and
p ∈ L2

0(ΩF ), such that

{
a(u,v)− b(p,v) = L(v), ∀v ∈ A0,

b(q,u) = 0, ∀q ∈ L2
0(ΩF ).

(53)

Let Adiv
g be the subspace of Ag consisting of divergence free functions. Then, a minimiza-

tion problem, corresponding to the variational problem (53) reads:

min
u∈Adiv

g

E[u], E[u] = a(u,u)− L(u). (54)

The existence and uniqueness of minimizers of (54) is proved by standard arguments
provided that the coercivity of the bilinear form a(·, ·) can be shown. The coercivity proof,
using Korn’s inequality, is essentially contained in [41]. In short, for any velocity function with
the prescribed trace on a part of the boundary with nonzero two-dimensional measure, we
have

a(u, u) ≥ c ||u||21, (55)

where || · || denotes the norm on the Sobolev space (H1(ΩF ))2 and constant c > 0 depends
only on ΩF .

Finally, the unique field u that solves (54) is a weak solution of the Stokes equation on
a regular bounded domain. By the standard theory (e.g., [42]), there exists a unique pressure
field p ∈ L2

0(ΩF ), which together with u satisfies the a priori L2 estimates.
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