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Abstract. The geographical threshold graph model is a random graph model
with nodes distributed in a Euclidean space and edges assigned through a func-
tion of distance and node weights. We study this model and give conditions for
the absence and existence of the giant component, as well as for connectivity.
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1 Introduction

Large networks such as the Internet, World Wide Web, phone call graphs, infections
disease contacts, and financial transactions have provided new challenges for modeling
and analysis [1]. For example, Web graphs may have billions of nodes and edges, which
implies that the analysis on these graphs, i.e., processing and extracting information on
these large sets of data, is “hard” [2]. Extensive theoretical and experimental research
has been done in web-graph modeling. Early measurements suggested that the Inter-
net exhibits a power-law degree distribution [3] and that the web graph also follows a
power-law distribution in in- and out-degree of links [4]. Modeling approaches using
random graphs have attempted to capture both the structure and dynamics of the web
graph [5,6,7,8,9].

In this short paper we study geographical threshold graphs (GTGs), a static model for
networks that includes both geometric information and node weight information. The
motivation for analyzing this model is that many real networks need to be studied by
using a “richer” stochastic model (which in this case includes both a distance between
nodes and weights on the nodes). This model has already been applied in the study of
wireless ad hoc networks for systems where the wireless nodes have different capabil-
ities [10]. The weights, in this case, represent power or bandwidth resources available
to wireless nodes in the network. By varying the weights in a GTG model, properties
such as the diameter or degree distribution can be tuned. Other possible applications of
GTGs are in epidemic modeling, where the weights might represent susceptibility to
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infection, or other social networks where the weights may be related to attractiveness
or other individual characteristic.

2 Geographical Threshold Graph Model

In addition to unstructured random graphs [11,12], recent research has focused on ran-
dom geometric graphs (RGG) where edges are created according to a distance between
nodes [13], and threshold graphs [14,15] with edges created according to a function
of node weights. Geographical threshold graphs, which combine aspects of RGG and
threshold graphs, have only recently begun to receive attention [16,10].

The GTG model is constructed from of a set of n nodes placed independently in Rd

according to a Poisson point-wise process. A non-negative weight wi, taken randomly
and independently from a probability distribution function f (w) : R+

0 → R+
0 , is assigned

to each node vi for i ∈ [n]. Let F(x) =
∫ x

0 f (w)dw be the cumulative density function.
For two nodes i and j at distance r, the edge (i, j) exists if and only if the following
connectivity relation is satisfied:

G(wi,wj)h(r) ≥ θn , (1)

where θn is a given threshold parameter that depends on the size of the network. The
function h(r) is assumed to be decreasing in r. We use h(r) = r−α, for some positive
α, which is typical for e.g., the path-loss model in wireless networks [10]. The inter-
action strength between nodes G(wi,wj) is usually taken to be symmetric and either
multiplicatively or additively separable, i.e., in the form of G(wi,wj) = g(wi)g(wj) or
G(wi,wj) = g(wi)+ g(wj).

Some basic results have already been shown. For the case of uniformly distributed
nodes over a unit space it has been shown [16,10] that the expected degree of a node
with weight w is

E[k(w)] =
nπd/2

Γ(d/2 + 1)

∫

w′
f (w′)

(
h−1(θn/G(w,w′))

)d
dw′, (2)

where h−1 is the inverse of h. The degree distribution has been studied for specific
weight distribution functions f (w) [16]. In both the multiplicative and additive case
of G(w,w′), questions of diameter, connectivity, and topology control have been ad-
dressed [10].

Here we restrict ourselves to the case of g(w) = w, α = 2, and nodes distributed
uniformly over a two-dimensional space. For analytical simplicity we take the space
to be a unit torus. We concentrate on the analysis of the additive model, i.e., when the
connectivity relation is given by

wi + wj

r2 ≥ θn. (3)

Our techniques may be generalized to other cases in a straightforward manner. Our
contribution in this short paper is to provide the first bounds on θn for the emergence of
the giant component, and for connectivity.
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3 Giant Component in GTG

Definition 1 (Giant Component). The giant component is a connected component
with size Θ(n).

In this section we analyze the conditions for the existence of the giant component,
giving bounds on the threshold parameter value θn where it first appears. For θn = cn,
we specify positive constants c′ > c′′ and prove that whp, if c > c′ the giant component
does not exist whereas if c < c′′ the giant component exists.

3.1 Absence of Giant Component

Lemma 1. Let θn = cn for c > c′, where c′ = 2πE[w]. Then whp there is no giant
component in GTG.

Proof. We use an approach similar to one given in [17]. Divide the nodes into three
classes: alive, dead and neutral. Denote the number of alive nodes as Yi. The algorithm
works as follows. At time t = 0, designate one node (picked u.a.r.) as being alive and
all others as neutral. Now, at each subsequent time step t, pick a node vt u.a.r. from
among those that are alive, and then consider all neutral nodes connected to vt . Denote
the number of these nodes as Zt . Change these nodes from neutral to alive, and change
vt itself from alive to dead. The random variables Yi,Zi satisfy the following recursion
relation: Y0 = 1 and Yt = Yt−1 + Zt − 1, for t ≥ 1. The number of alive nodes satisfies

Yt − 1 =
t

∑
k=1

Zk − t. (4)

At a time step k, let dk be the degree of node vk. Since Zk only includes the neutral nodes
connected to vk,

Zk ≤ dk. (5)

Now let T be the largest t such that Yt > 0. Then T is the size of the component contain-
ing v0, and the giant component exists if and only if T = Θ(n) with some nonvanishing
probability. The variable T satisfies the following relation

Pr[T ≥ t] = Pr[Yt > 0] = Pr[Yt ≥ 1] = Pr[
t

∑
k=1

Zk ≥ t] ≤ Pr[
t

∑
k=1

dk ≥ t]. (6)

Consider the threshold θn = cn for some c > 0. It is shown in the Appendix that for
a node vk with random weight wk, the vertex degree distribution is Poisson: d(wk) ∼
Po(a(wk + µ)), where a = nπ/θn and µ = E[w]. Since the sum of independent random
Poisson variables is a Poisson random variable,

Pr
[ t

∑
k=1

dk ≥ t
]

= Pr
[
Po(a

t

∑
k=1

(wk + µ)) ≥ t
]
. (7)

We now use the following inequality. For any ε ∈ (0,1),
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Pr
[
Po(a∑(wk + µ)) ≥ t

]
≤ Pr

[
Po(a∑(wk + µ)) ≥ t|∑wk ∈ (1 ± ε)tµ

]

+ Pr
[
∑wk /∈ (1 ± ε)tµ

]
.

By the central limit theorem, for t → ∞, the sum (∑wk − tµ)/(
√

tσ) tends to the normal
distribution N(0,1). That is,

Pr
[
∑wk /∈ (1 ± ε)tµ

]
= Pr

[∑wk − tµ√
tσ

/∈ (−ε,ε)
√

t
µ
σ

]
→ 0. (8)

Finally, we use the concentration on the Poisson random variable [13]. Define λ =
E[a∑(wk + µ)] = 2atµ. Given any ε0 ∈ (0,1), for t → ∞, i.e., λ → +∞, it follows that

Pr[Po(λ) /∈ (1 ± ε0)λ] ≤ e−λH(1−ε0) + e−λH(1+ε0) → 0, (9)

where the function H(x) = 1 − x + x lnx, for x > 0. It is now sufficient to choose a
small enough that t > 2atµ(1 + ε0) for some positive constant ε0. This is equivalent to
1 > 2aµ, i.e., c > 2πµ. It follows that Pr[Po(a∑(wi +µ)) ≥ t] = o(1) for t = Θ(n), which
completes the proof.

3.2 Existence of Giant Component

Lemma 2. Let θn = cn for c < c′′ = supα∈(0,1) αF−1(1−α)/λc, where πλc ≈ 4.52 is the
mean degree at which the giant component first appears in Random Geometric Graphs
(RGG) [13]. Then whp the giant component exists in GTG.

Proof. For any constant α ∈ (0,1), we prove that whp there are αn “high-weighted”
nodes, all with weights greater than or equal to some sn; we state sn later. Let Xi be
the indicator of the event Wi ≥ sn. Then Pr[Xi = 1] = 1−F(s) =: q. Let X = ∑n

i=1 Xi be
the number of high-weighted nodes. Using the Chernoff bound Pr[X ≤ (1 − δ)E[X ]] ≤
exp(−E[X ]δ2/2), with δ = 1 − α/q,

Pr[X ≤ αn] = Pr[X ≤ (1 − δ)E[X ]] ≤ exp
(
− n(q − α)2/(2q)

)
= n−β (10)

for some constant β > 1 satisfying (q − α)2 = 2qβ lnn/n. Solving that quadratic equa-
tion in q gives q = α+Θ(ln n/n), so F(sn) = 1−q = 1−α−Θ(lnn/n). For any ε > 0
and n sufficiently large the following is satisfied

F−1(1 − α) ≥ sn ≥ F−1(1 − α− ε). (11)

Thus, let us define the sequence sn by its limit

sn → F−1(1 − α) = Θ(1). (12)

Now we consider the set of αn high-weighted nodes. For each such node vi with weight
wi, define its characteristic radius to be

r2
t (wi) = wi/θn. (13)



Giant Component and Connectivity in Geographical Threshold Graphs 213

Then it follows that any other high-weighted node v j within this radius is connected to
vi, since the connectivity relation is satisfied:

(wi + wj)/r2 ≥ wi/r2
t = θn. (14)

Let θn = cn, where c < αF−1(1 − α)/λc. For the radius rt , whp it follows

r2
t (wi) =

wi

θn
≥ sn

θn
>

λc

αn
. (15)

Let us therefore consider small circles, with a fixed radius r0 s.t.
√

sn/θn > r0 >√
λc/(αn), around each of these αn nodes. A subgraph of this must be a RGG with

mean degree > λc, which whp contains a giant component. Since its size is Θ(αn) =
Θ(n), it is a giant component of the GTG too. We may optimize the bound by taking
the supremum of c over α ∈ (0,1), and the lemma follows.

4 Connectivity in GTG

Definition 2 (Connectivity). The graph on n vertices is connected if the largest com-
ponent has size n.

In this section we analyze sufficient conditions for the entire graph to be connected. We
consider the connectivity threshold θn = cn/ lnn and specify a bound on c.

Lemma 3. Let θn = cn/ lnn for c < supα∈(0,1) αF−1(1 − α)/4. Then the GTG is con-
nected whp.

Proof. The proof is divided into two parts. In the first part, we prove that a constant
fraction of nodes αn are connected. In the second part we prove that the rest of the
(1 − α)n nodes are connected to the first set of αn nodes.

First part: Invoking the proof of the appearance of the giant component, there are αn
nodes all with weights ≥ sn → F−1(1 − α) = Θ(1).

Let θn = cn/ lnn, where c < αF−1(1−α)π. Analogously to rt , define the connectiv-
ity radius rc

r2
c (wi) =

wi

θn
≥ sn

θn
>

lnn
απn

. (16)

Similarly to Lemma 2 let us consider small circles around each of these αn nodes, and
consider these nodes as a RGG. It is known that rn =

√
lnn/(πn) is the connectivity

threshold in RGG [18]. The connectivity of RGG implies the connectivity of these αn
nodes in our GTG.

Second part: Color the αn high-weighted nodes blue, and the remaining (1−α)n nodes
red. Now let us tile our space into n/(c0 lnn) squares of size c0 lnn/n. We state c0 later.
Consider any square Si, and let Bi be the number of blue nodes in Si. In expectation there
are E[Bi] = αc0 lnn blue nodes in each square. From the Chernoff bound it follows

Pr[Bi ≥ (1 − δ)αc0 lnn] ≥ 1 − n−αc0δ2/2. (17)
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Let us consider one red node r. The node r belongs to some square Si. Let Mr be the
event that the red node r is connected to some blue node b ∈ Si. Let the weights of r,b
be wr,wb, respectively. The probability of the complement of Mr, conditioned on there
being at least one blue node in Si, is given by

Pr[Mc
r |Bi ≥ 1] = Pr[wr + wb ≤ r2θn] ≤ Pr[wr + wb ≤ 2c0

lnn
n

c
n

lnn
]

= Pr[wr + wb ≤ 2c0c]. (18)

As long as F−1(1 − α) > 2c0c, wb > 2c0c and hence Pr[Mc
r |Bi ≥ 1] = 0. For large

enough n it must hold that (1 − δ)αc0 lnn > 1, and so from Eq. (17),

Pr[Mc
r ] ≤ Pr[Mc

r |Bi ≥ (1 − δ)αc0 lnn]+ Pr[Bi < (1 − δ)αc0 lnn]

≤ 0 + n−αc0δ2/2. (19)

If αc0δ2/2 ≥ 1 + ε for some ε > 0, then by the union bound,

Pr[
⋃

r

Mc
r ] ≤ ∑

r
Pr[Mc

r ] ≤ (1 − α)nn−(1+ε) = (1 − α)n−ε. (20)

Finally, the probability that all red nodes are connected to the set of blue nodes is given
by the following relation

Pr[
⋂

r

Mr] = 1 − Pr[
⋃

r

Mc
r ] ≥ 1 − (1 − α)n−ε → 1. (21)

The requirements we have imposed on constants so far are: c < αF−1(1 − α)π, c <
F−1(1 − α)/(2c0) and αc0 ≥ 2(1 + ε)/δ2. These conditions combine to give

c < αF−1(1 − α)min(π,
δ2

4(1 + ε)
). (22)

Since α ∈ (0,1), δ ∈ (0,1) and ε > 0 are arbitrary, we obtain

c < sup
α∈(0,1)

αF−1(1 − α)/4. (23)

5 Discussion

The GTG model is a versatile one and can be used not only for the generation and analy-
sis of web-graphs or large complex networks, but more generally for relation graphs in a
large data set. If the data have a metric and can be mapped to nodes in Euclidean space,
much of the foregoing analysis applies: one may hope to control structural properties
of the data set by studying it as a GTG.

Furthermore, while we considered the GTG model as a static structure, the set of
weights in the model could vary in time. This would introduce dynamics, as might be
appropriate for particular applications such as wireless networking.
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Appendix

Degree Distribution

The nodes are placed into the unit torus. W.l.o.g. let us consider the degree of the node
v1. Let the weight vector be w. Let the position vector of the nodes be x. It is straight-
forward to show that the probability of v1 having degree k, given weights w, is

Pr[d1 = k|w] =
(

n − 1
k

) k+1

∏
i=2

Area(B(xi,ri1))
n

∏
j=k+2

(1 − Area(B(x j,r j1))), (24)

where Area(B(xi,ri1)) is the area of the ball at center xi with radius ri1, and due to (3)
the radii are given by

ri1 =
√

w1 + wi

θn
(25)

for i = 2, . . . ,n. After marginalization, it follows

Pr[d1 = k|w1] =
( n

∏
i=2

∫

wi

dwi f (wi)
)

Pr[d1 = k|w]

=
(

n − 1
k

)(∫

w
dw f (w)

(w1 + w)π
θn

)k(
1 −

∫

w
dw f (w)

(w1 + w)π
θn

)n−1−k

=
(

n − 1
k

)( (w1 + µ)π
θn

)k(
1 − (w1 + µ)π

θn

)n−1−k

→ e−λ λk

k!
,

where
λ = (w1 + µ)nπ/θn. (26)

That is, the degree distribution of a node with weight w, in the limit follows the Poisson
distribution

d(k|w) ∼ Po((w+ µ)nπ/θn). (27)
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