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Abstract. The interdiction problem arises in a variety of areas including military
logistics, infectious disease control, and counter-terrorism. In the typical formu-
lation of network interdiction, the task of the interdictor is to find a set of edges
in a weighted network such that the removal of those edges would maximally
increase the cost to an evader of traveling on a path through the network.

Our work is motivated by cases in which the evader has incomplete informa-
tion about the network or lacks planning time or computational power, e.g. when
authorities set up roadblocks to catch bank robbers, the criminals do not know all
the roadblock locations or the best path to use for their escape.

We introduce a model of network interdiction in which the motion of one or
more evaders is described by Markov processes and the evaders are assumed not
to react to interdiction decisions. The interdiction objective is to find an edge set
of size B, that maximizes the probability of capturing the evaders.

We prove that similar to the standard least-cost formulation for deterministic
motion this interdiction problem is also NP-hard. But unlike that problem our in-
terdiction problem is submodular and the optimal solution can be approximated
within 1−1/e using a greedy algorithm. Additionally, we exploit submodularity
through a priority evaluation strategy that eliminates the linear complexity scaling
in the number of network edges and speeds up the solution by orders of magni-
tude. Taken together the results bring closer the goal of finding realistic solutions
to the interdiction problem on global-scale networks.

1 Introduction

Network interdiction problems have two opposing actors: an “evader” (e.g. smuggler)
and an “interdictor” (e.g. border agent.) The evader attempts to minimize some objec-
tive function in the network, e.g. the probability of capture while traveling from network
location s to location t, while the interdictor attempts to limit the evader’s success by
removing network nodes or edges. Most often the interdictor has limited resources and
can thus only remove a very small fraction of the nodes or edges. The standard formu-
lation is the max-min problem where the interdictor plays first and chooses at most B
edges to remove, while the evader finds the least-cost path on the remaining network.
This is known as the B most vital arcs problem [1].
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This least-cost-path formulation is not suitable for some interesting interdiction sce-
narios. Specifically in many practical problems there is a fog of uncertainty about the
underlying properties of the network such as the cost to the evader in traversing an edge
(arc, or link) in terms of either resource consumption or detection probability. In ad-
dition there are mismatches in the cost and risk computations between the interdictor
and the evaders (as well as between different evaders), and all agents have an interest
in hiding their actions. For evaders, most least-cost-path interdiction models make op-
timal assumptions about the evader’s knowledge of the interdictor’s strategy, namely,
the choice of interdiction set. In many real-world situations evaders likely fall far short
of the optimum. This paper, therefore, considers the other limit case, which for many
problems is more applicable, when the evaders do not respond to interdictor’s deci-
sions. This case is particularly useful for problems where the evader is a process on the
network rather than a rational agent.

Various formulations of the network interdiction problem have existed for many
decades now. The problem likely originated in the study of military supply chains and
interdiction of transportation networks [2,3]. But in general, the network interdiction
problem applies to wide variety of areas including control of infectious disease [4], and
disruption of terrorist networks [5]. Recent interest in the problem has been revived due
to the threat of smuggling of nuclear materials [6]. In this context interdiction of edges
might consist of the placement of special radiation-sensitive detectors across transporta-
tion links. For the most-studied formulation, that of max-min interdiction described
above [1], it is known that the problem is NP-hard [7,8] and hard to approximate [9].

2 Unreactive Markovian Evader

The formulation of a stochastic model where the evader has limited or no information
about interdiction can be motivated by the following interdiction situation. Suppose
bank robbers (evaders) want to escape from the bank at node s to their safe haven at
node t1 or node t2. The authorities (interdictors) are able to position roadblocks at a few
of the roads on the network between s, t1 and t2. The robbers might not be aware of
the interdiction efforts, or believe that they will be able to move faster than the author-
ities can set up roadblocks. They certainly do not have the time or the computational
resources to identify the global minimum of the least-cost-path problem.

Similar examples are found in cases where the interdictor is able to clandestinely re-
move edges or nodes (e.g. place hidden electronic detectors), or the evader has bounded
rationality or is constrained in strategic choices. An evader may even have no intelli-
gence of any kind and represent a process such as Internet packet traffic that the inter-
dictor wants to monitor. Therefore, our fundamental assumption is that the evader does
not respond to interdiction decisions. This transforms the interdiction problem from the
problem of increasing the evader’s cost or distance of travel, as in the standard for-
mulation, into a problem of directly capturing the evader as explicitly defined below.
Additionally, the objective function acquires certain useful computational properties
discussed later.
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2.1 Evaders

In examples discussed above, much of the challenge in interdiction stems from the
unpredictability of evader motion. Our approach is to use a stochastic evader model to
capture this unpredictability [6,10]. We assume that an evader is traveling from a source
node s to a target node t on a graph G(N,E) according to a guided random walk defined
by the Markovian transition matrix M; from node i the evader travels on edge (i, j) with
probability Mi j. The transition probabilities can be derived, for example, from the cost
and risk of traversing an edge [10].

Uncertainty in the evader’s source location s is captured through a probability vector
a. For the simplest case of an evader starting known location s, as = 1 and the rest of the
ai’s are 0. In general the probabilities can be distributed arbitrarily to all of the nodes as
long as ∑i∈N ai = 1. Given a, the probability that the evader is at location i after n steps
is the i’th entry in the vector π(n) = aMn.

When the target is reached the evader exits the network and therefore, Mt j = 0 for
all outgoing edges from t and also Mtt = 0. The matrix M is assumed to satisfy the
following condition: for every node i in the network either there is a positive probability
of reaching the target after a sufficiently large number of transitions, or the node is
a dead end, namely Mi j = 0 for all j. With these assumptions the Markov chain is
absorbing and the probability that the evader will eventually reach the target is≤ 1. For
equality to hold it is sufficient to have the extra conditions that the network is connected
and that for all nodes i �= t, ∑ j Mi j = 1 (see [11].)

A more general formulation allows multiple evaders to traverse the network, where
each evader represents a threat scenario or a particular adversarial group. Each evader
k is realized with probability w(k) (∑k w(k) = 1) and is described by a possibly dis-
tinct source distribution a(k), transition matrix M(k), and target node t(k). This gen-
eralization makes it possible to represent any joint probability distribution f (s,t) of
source-target pairs, where each evader is a slice of f at a specific value of t: a(k)|s =
f (s,t(k))/∑s f (s, t(k)) and w(k) = ∑s f (s, t(k)). In this high-level view, the evaders col-
lectively represent a stochastic process connecting pairs of nodes on the network. This
generalization has practical applications to problems of monitoring traffic between any
set of nodes when there is a limit on the number of “sensors”. The underlying network
could be e.g. a transportation system, the Internet, or water distribution pipelines.

2.2 Interdictor

The interdictor, similar to the typical formulation, possesses complete knowledge about
the network and evader parameters a and M. Interdiction of an edge at index i, j is
represented by setting ri j = 1 and ri j = 0 if the edge is not interdicted. In general some
edges are more suitable for interdiction than others. To represent this, we let di j be
the interdiction efficiency, which is the probability that interdiction of the edge would
remove an evader who traverses it.

So far we have focused on the interdiction of edges, but interdiction of nodes can be
treated similarly as a special case of edge interdiction in which all the edges leading to
an interdicted node are interdicted simultaneously. For brevity, we will not discuss node
interdiction further except in the proofs of Sec. 3 where we consider both cases.
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2.3 Objective Function

Interdiction of an unreactive evader is the problem of maximizing the probability of
stopping the evader before it reaches the target. Note that the fundamental matrix for
M, using I to denote the identity matrix is

N = I+ M+ M2 + · · ·= (I−M)−1 , (1)

and N gives all of the possible transition sequences between pairs of nodes before the
target is reached. Therefore given the starting probability a, the expected number of
times the evader reaches each node is (using (1) and linearity of expectation)

aN = a(I−M)−1 . (2)

If edge (i, j) has been interdicted (ri j = 1) and the evader traverses it then the evader
will not reach j with probability di j. The probability of the evader reaching j from i
becomes

M̂i j = Mi j−Mi jri jdi j . (3)

This defines an interdicted version of the M matrix, the matrix M̂.
The probability that a single evader does not reach the target is found by considering

the t’th entry in the vector E after substituting M̂ for M in Eq. (2),

J(a,M,r,d) = 1−
(

a [I− (M−M� r�d)]−1
)

t
, (4)

where the symbol � means element-wise (Hadamard) multiplication. In the case of
multiple evaders, the objective J is a weighted sum,

J = ∑
k

w(k)J(k) , (5)

where, for evader k,

J(k)(a(k),M(k),r,d) = 1−
(

a(k)
[
I−

(
M(k)−M(k)� r�d

)]−1
)

t(k)
. (6)

Equations (4) and (5) define the interdiction probability. Hence the Unreactive
Markovian Evader interdiction problem (UME) is

argmax
r∈F

J(a,M,r,d) , (7)

where ri j represents an interdicted edge chosen from a set F ⊆ 2E of feasible interdic-
tion strategies. The simplest formulation is the case when interdicting an edge has a unit
cost with a fixed budget B and F are all subsets of the edge set E of size at most B. This
problem can also be written as a mixed integer program as shown in the Appendix.

Computation of the objective function can be achieved with ∼ 2
3 |N|3 operations for

each evader, where |N| is the number of nodes, because it is dominated by the cost
of Gaussian elimination solve in Eq. (4). If the matrix M has special structure then it
could be reduced to O(|N|2) [10] or even faster. We will use this evader model in the
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simulations, but in general the methods of Secs. 3 and 4 would work for any model
that satisfies the hypotheses on M and even for non-Markovian evaders as long as it is
possible to compute the equivalent of the objective function in Eq. (4).

Thus far interdiction was described as the removal of the evader from the network,
and the creation of a sub-stochastic process M̂. However, the mathematical formalism
is open to several alternative interpretations. For example interdiction could be viewed
as redirection of the evader into a special absorbing state - a “jail node”. In this larger
state space the evader even remains Markovian. Since M̂ is just a mathematical device it
is not even necessary for “interdiction” to change the physical traffic on the network. In
particular, in monitoring problems “interdiction” corresponds to labeling of intercepted
traffic as “inspected” - a process that involves no removal or redirection.

3 Complexity

This section proves technical results about the interdiction problem (7) including the
equivalence in complexity of node and edge interdiction and the NP-hardness of node
interdiction (and therefore of edge interdiction). Practical algorithms are found in the
next section.

We first state the decision problem for (7).

Definition 1. UME-Decision
Instance: A graph G(N,E), interdiction efficiencies 0 ≤ di ≤ 1 for each i ∈ N, budget
B ≥ 0, and real ρ ≥ 0; a set K of evaders, such that for each k ∈ K there is a matrix
M(k) on G, a sources-target pair (a(k),t(k)) and a weight w(k).

Question: Is there a set of (interdicted) nodes Y of size B such that

∑
k∈K

w(k)
(

a(k)
(

I− M̂(k)
)−1

)

t(k)
≤ ρ? (8)

The matrix M̂(k) is constructed from M(k) by replacing element M(k)
i j by M(k)

i j (1− di)
for i ∈Y and each (i, j) corresponding to edges ∈ E leaving i. This sum is the weighted
probability of the evaders reaching their targets. 	

The decision problem is stated for node interdiction but the complexity is the same for
edge interdiction, as proved next.

Lemma 1. Edge interdiction is polynomially equivalent to node interdiction.

Proof. To reduce edge interdiction to node interdiction, take the graph G(N,E) and
construct G′ by splitting the edges. On each edge (i, j) ∈ E insert a node v to create the
edges (i,v),(v, j) and set the node interdiction efficiency dv = di j,di = d j = 0, where
di j is the interdiction efficiency of (i, j) in E .

Conversely, to reduce node interdiction to edge interdiction, construct from G(N,E)
a graph G′ by representing each node v with interdiction efficiency dv by nodes i, j,
joining them with an edge (i, j), and setting di j = dv. Next, change the transition matrix
M of each evader such that all transitions into v now move into i while all departures
from v now occur from j, and Mi j = 1. In particular, if v was an evader’s target node in
G, then j is its target node in G′. 	
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Consider now the complexity of node interdiction. One source of hardness in the UME
problem stems from the difficulty of avoiding the case where multiple edges or nodes
are interdicted on the same evader path - a source of inefficiency. This resembles the Set
Cover problem [12], where including an element in two sets is redundant in a similar
way, and this insight motivates the proof.

First we give the definition of the set cover decision problem.

Definition 2. Set Cover. For a collection C of subsets of a finite set X, and a positive
integer β , does C contain a cover of size ≤ β for X? 	

Since Set Cover is NP-complete, the idea of the proof is to construct a network G(N,E)
where each subset c ∈ C is represented by a node of G, and each element xi ∈ X is
represented by an evader. The evader xi is then made to traverse all nodes {c ∈C|xi ∈ c}.
The set cover problem is exactly problem of finding B nodes that would interdict all of
the evaders (see Fig. 1.)

Theorem 2. The UME problem is NP-hard even if di = h (constant) ∀ nodes i ∈ N.

Proof. First we note that for a given a subset Y ⊆ N with |Y | ≤ B, we can update M(k)

and compute (8) to verify UME-Decision as a yes-instance. The number of steps is
bounded by O(|K||N|3). Therefore, UME-Decision is in NP.

To show UME-Decision is NP-complete, reduce Set Cover with X ,C to UME
-Decision on a suitable graph G(N,E). It is sufficient to consider just the special case
where all interdiction efficiencies are equal, di = 1. For each c ∈C, create a node c in N.

Fig. 1. Illustration of the reduction of Set Cover to UME-Decision. (a) A set cover prob-
lem on elements x1 . . .x6 ∈ X with subsets K = {x1,x2},R = {x1,x3},B = {x3,x4,x5},G =
{x2,x4,x5,x6},Y = {x2,x6} contained in X . (b) The induced interdiction problem with each sub-
set represented by a node and each element by an evader. Each arrow indicates the path of a single
evader.
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We consider three cases for elements x ∈ X ; elements that have no covering sets, ele-
ments that have one covering set, and elements that have at least two covering sets.

Consider first all x ∈ X which have at least two covering sets. For each such x create
an evader as follows. Let O be any ordering of the collection of subsets covering x.
Create in E a Hamiltonian path of |O|−1 edges to join sequentially all the elements of
O, assigning the start, a and end t nodes in agreement with the ordering of O. Construct
an evader transition matrix of size |C|× |C| and give the evader transitions probability
Mi j = 1 iff i, j ∈C and i < j, and = 0 otherwise.

For the case of zero covering sets, that is, where ∃x ∈ X such that x /∈ S for all S ∈C,
represent x by an evader whose source and target are identical: no edges are added
to E and the transition matrix is M = 0. Thus, J in Eq. (4) is non-zero regardless of
interdiction strategy.

For the case when x has just one covering set, that is, when ∃x ∈ X such that there is
a unique c∈C with x∈ c, represent c as two nodes i and j connected by an edge exactly
as in the case of more than one cover above. After introducing j, add it to the middle
of the path of each evader x if i is in the path of x, that is, if c ∈ C. It is equivalent
to supposing that C contains another subset exactly like c. This supposition does not
change the answer or the polynomial complexity of the given instance of Set Cover. To
complete the reduction, set B = β , ρ = 0, X = K, w(k) = 1/|X | and di = 1, ∀i ∈ N.

Now assume Set Cover is a yes-instance with a cover Ĉ ⊆C. We set the interdicted

transition matrix M̂(k)
i j = 0 for all (i, j) ∈ E corresponding to c ∈ Ĉ, and all k ∈ K. Since

Ĉ is a cover for X , all the created paths are disconnected, ∑k∈K (a(k)(I− M̂(k))−1)t(k) = 0
and UME-Decision is an yes-instance.

Conversely, assume that UME-Decision is a yes-instance. Let Y be the set of inter-
dicted nodes. For y ∈ Y , there is element y of C. Since all the evaders are disconnected
from their target and each evader represents a element in X , Y ⊆C covers X and |Y | ≤ β .
Hence, Set Cover is a yes-instance. Therefore, UME-Decision is NP-complete. 	

This proof relies on multiple evaders and it remains an open problem to show that UME
is NP-hard with just a single evader. We conjecture that the answer is positive because
the more general problem of interdicting a single unreactive evader having an arbitrary
(non-Markovian) path is NP-hard. This could be proved by creating from a single such
evader several Markovian evaders such that the evader has an equal probability of fol-
lowing the path of each of the Markovian evaders in the proof above.

Thus far no consideration was given to the problem where the cost ci j of interdicting
an edge (i, j) is not fixed but rather is a function of the edge. This could be termed
the “budgeted” case as opposed to the “unit cost” case discussed so far. However, the
budgeted case is NP-hard as could be proved through reduction from the knapsack
problem to a star network with “spokes” corresponding to items.

4 An Efficient Interdiction Algorithm

The solution to the UME problem can be efficiently approximated using a greedy algo-
rithm by exploiting submodularity. In this section we prove that the UME problem is
submodular, construct a greedy algorithm, and examine the algorithm’s performance.
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We then show how to improve the algorithm’s speed by further exploiting the submod-
ular structure using a “priority” evaluation scheme and “fast initialization”.

4.1 Submodularity of the Interdiction Problem

In general, a function is called submodular if the rate of increase decreases monotoni-
cally, which is akin to concavity.

Definition 3. A real-valued function on a space S, f : S→R is submodular [13, Prop.
2.1iii] if for any subsets S1 ⊆ S2 ⊂ S and any x ∈ S � S2 it satisfies

f (S1∪{x})− f (S1)≥ f (S2∪{x})− f (S2) . (9)

Lemma 3. J(r) is submodular on the set of interdicted edges.

Proof. First, note that it is sufficient to consider a single evader because in Eq. (5), J(r)
is a convex combination of k evaders [13, Prop. 2.7]. For simplicity of notation, we drop
the superscript k in the rest of the proof.

Let S = {(i, j) ∈ E|ri j = 1} be the interdiction set and let J(S) be the probability
of interdicting the evader using S, and let Q(p) be the probability of the evader taking
a path p to the target. On path p, the probability of interdicting the evader with an
interdiction set S is

P(p|S) = Q(p)

(
1− ∏

(i, j)∈p∩S

(1−di j)

)
. (10)

Moreover,
J(S) = ∑

p
P(p|S) . (11)

If an edge (u,v) /∈ S is added to the interdiction set S (assuming (u,v) ∈ p), the proba-
bility of interdicting the evader in path p increases by

P(p|S∪{(u,v)})−P(p|S)= Q(p)duv ∏
(i, j)∈p∩S

(1−di j) ,

which can be viewed as the probability of taking the path p times the probability of
being interdicted at (u,v) but not being interdicted elsewhere along p. If (u,v) ∈ S or
(u,v) /∈ p then adding (u,v) has, of course, no effect: P(p|S∪{(u,v)})−P(p|S)= 0.

Consider now two interdiction sets S1 and S2 such that S1 ⊂ S2. In the case where
(u,v) /∈ S1 and (u,v) ∈ p, we have

P(p|S1∪{(u,v)})−P(p|S1) = Q(p)duv ∏
(i, j)∈p∩S1

(1−di j) , (12)

≥ Q(p)duv ∏
(i, j)∈p∩S2

(1−di j) , (13)

≥ P(p|S2∪{(u,v)})−P(p|S2) . (14)

In the above (13) holds because an edge (u′,v′)∈ (S2 � S1)∩ p would contribute a factor
of (1−du′v′)≤ 1. The inequality (14) becomes an equality iff (u,v) /∈ S2. Overall (14)
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holds true for any path and becomes an equality when (u,v) ∈ S1. Applying the sum of
Eq. (11) gives

J(p|S1∪{(u,v)})− J(p|S1)≥ J(p|S2∪{(u,v)})− J(p|S2) , (15)

and therefore J(S) is submodular. 	

Note that the proof relies on the fact that the evader does not react to interdiction. If the
evader did react then it would no longer be true in general that P(p|S) =
Q(p)

(
1−∏(i, j)∈p∩S (1−di j)

)
above. Instead, the product may show explicit depen-

dence on paths other than p, or interdicted edges that are not on p. Also, when the
evaders are not Markovian the proof is still valid because specifics of evader motion are
contained in the function Q(p).

4.2 Greedy Algorithm

Submodularity has a number of important theoretical and algorithmic consequences.
Suppose (as is likely in practice) that the edges are interdicted incrementally such that
the interdiction set Sl ⊇ Sl−1 at every step l. Moreover, suppose at each step, the inter-
diction set Sl is grown by adding the one edge that gives the greatest increase in J. This
defines a greedy algorithm, Alg. 1.

Algorithm 1. Greedy construction of the interdiction set S with budget B for a graph
G(N,E).

S←∅

while B > 0 do
x∗ ←∅

δ ∗ ←−1
for all x ∈ E �S do

Δ (S,x) := J (S∪{x})−J (S)
if Δ (S,x) > δ ∗ then

x∗ ← {x}
δ ∗ ← Δ (S,x)

S← S∪ x∗
B← B−1

Output(S)

The computational time is O(B|N|3|E|) for each evader, which is strongly polyno-
mial since |B| ≤ |E|. The linear growth in this bound as a function of the number of
evaders could sometimes be significantly reduced. Suppose one is interested in inter-
dicting flow f (s, t) that has a small number of sources but a larger number of targets.
In the current formulation the cost grows linearly in the number of targets (evaders) but
is independent of the number of sources. Therefore for this f (s, t) it is advantageous to
reformulate UME by inverting the source-target relationship by deriving a Markov pro-
cess which describes how an evader moves from a given source s to each of the targets.
In this formulation the cost would be independent of the number of targets and grow
linearly in the number of sources.
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4.3 Solution Quality

The quality of the approximation can be bounded as a fraction of the optimal solution
by exploiting the submodularity property [13]. In submodular set functions such as J(S)
there is an interference between the elements of S in the sense that sum of the individual
contributions is greater than the contribution when part of S. Let S∗B be the optimal
interdiction set with a budget B and let Sg

B be the solution with a greedy algorithm.
Consider just the first edge x1 found by the greedy algorithm. By the design of the
greedy algorithm the gain from x1 is greater than the gain for all other edges y, including
any of the edges in the optimal set S∗. It follows that

Δ(∅,x1)B≥ ∑
y∈S∗B

Δ(∅,y)≥ J(S∗B) . (16)

Thus x1 provides a gain greater than the average gain for all the edges in S∗B,

Δ(∅,x1)≥ J(S∗B)
B

. (17)

A similar argument for the rest of the edges in Sg
B gives the bound,

J(Sg
B)≥

(
1− 1

e

)
J(S∗B) , (18)

where e is Euler’s constant [13, p.268]. Hence, the greedy algorithm achieves at least
63% of the optimal solution.

This performance bound depends on the assumption that the cost of an edge is a con-
stant. Fortunately, good discrete optimization algorithms for submodular functions are
known even for the case where the cost of an element (here, an edge) is variable. These
algorithms are generalizations of the simple greedy algorithm and provide a constant-
factor approximation to the optimum [14,15]. Moreover, for any particular instance of
the problem one can bound the approximation ratio, and such an “online” bound is often
better than the “offline” a priori bound [16].

4.4 Exploiting Submodularity with Priority Evaluation

In addition to its theoretical utility, submodularity can be exploited to compute the same
solution much faster using a priority evaluation scheme. The basic greedy algorithm
recomputes the objective function change Δ(Sl,x) for each edge x ∈ E �Sl at each step
l. Submodularity, however, implies that the gain Δ(Sl,x) from adding any edge x would
be less than or equal to the gain Δ(Sk,x) computed at any earlier step k < l. Therefore,
if at step l for some edge x′, we find that Δ(Sl,x′)≥ Δ(Sk,x) for all x and any past step
k ≤ l, then x′ is the optimal edge at step l; there is no need for further computation (as
was suggested in a different context [16].) In other words, one can use stale values of
Δ(Sk,x) to prove that x′ is optimal at step l.

As a result, it may not be necessary to compute Δ(Sl,x) for all edges x ∈ E � S at
every iteration. Rather, the computation should prioritize the edges in descending order
of Δ(Sl ,x). This “lazy” evaluation algorithm is easily implemented with a priority queue
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which stores the gain Δ(Sk,x) and k for each edge where k is the step at which it was
last calculated. (The step information k determines whether the value is stale.)

The priority algorithm (Alg. 2) combines lazy evaluation with the following fast
initialization step. Unlike in other submodular problems, in UME one can compute
Δ(∅,x) simultaneously for all edges x ∈ E because in this initial step, Δ(∅,x) is just
the probability of transition through edge x multiplied by the interdiction efficiency
dx, and the former could be found for all edges in just one operation. For the “non-
retreating” model of Ref. [10] the probability of transition through x = (i, j) is just the
expected number of transitions though x because in that model an evader moves through
x at most once. This expectation is given by the i, j element in a(I−M)−1�M (derived
from Eq. (2)). The probability is multiplied by the weight of the evader and then by dx:

Δ(∅,x) = ∑k

(
a(k)(I−M(k))−1

)
i
M(k)

i j w(k)dx. In addition to these increments, for dis-

connected graphs the objective J(S) also contains the constant term ∑k w(k) (∑i∈Z(k) ai
)
,

where Z(k) ⊂ N are nodes from which evader k cannot reach his target t(k).
In subsequent steps this formula is no longer valid because interdiction of x may

reduce the probability of motion through other interdicted edges. Fortunately, in many
instances of the problem the initialization is the most expensive step since it involves
computing the cost for all edges in the graph. As a result of the two speedups the number
of cost evaluations could theoretically be linear in the budget and the number of evaders
and independent of the size of the solution space (the number of edges).

The performance gain from priority evaluation can be very significant. In many com-
putational experiments, the second best edge from the previous step was the best in
the current step, and frequently only a small fraction of the edges had to be recom-
puted at each iteration. In order to systematically gauge the improvement in perfor-
mance, the algorithm was tested on 50 synthetic interdiction problems. In each case, the

Algorithm 2. Priority greedy construction of the interdiction set S with budget B
S←∅

PQ←∅ {Priority Queue: (value,data,data)}
for all x = (i, j) ∈ E do

Δ (x)←{The cost found using fast initialization}
PUSH (PQ,(Δ (x),x,0))

s← 0
while B > 0 do

s← s+1
loop

(Δ (x),x,n)← POP(PQ)
if n = s then

S← S∪{x}
break

else
Δ (x)← J (S∪{x})−J (S)
PUSH (PQ,(Δ (x),x,s))

B← B−1
Output(S)



Optimal Interdiction of Unreactive Markovian Evaders 113

underlying graph was a 100-node Geographical Threshold Graph (GTG), a possible
model of sensor or transportation networks [17], with approximately 1600 directed
edges (the threshold parameter was set at θ = 30). Most of the networks were con-
nected. We set the cost of traversing an edge to 1, the interdiction efficiency dx to 0.5,
∀x ∈ E , and the budget to 10. We used two evaders with uniformly distributed source
nodes based on the model of [10] with an equal mixture of λ = 0.1 and λ = 1000. For
this instance of the problem the priority algorithm required an average of 29.9 evalua-
tions of the objective as compared to 31885.2 in the basic greedy algorithm - a factor
of 1067.1 speedup.

The two algorithms find the same solution, but the basic greedy algorithm needs to
recompute the gain for all edges uninterdicted edges at every iteration, while the priority
algorithm can exploit fast initialization and stale computational values. Consequently,
the former algorithm uses approximately B|E| cost computations, while the latter typi-
cally uses much fewer (Fig. 2a).

Simulations show that for the priority algorithm the number of edges did not seem to
affect the number of cost computations (Fig. 2b), in agreement with the theoretical limit.
Indeed, the only lower bound for the number of cost computations is B and this bound
is tight (consider a graph with B evaders each of which has a distinct target separated
from each evader’s source by exactly one edge of sufficiently small cost). The priority
algorithm performance gains were also observed in other example networks.1
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Fig. 2. Comparison between the basic greedy (blue circles) and the priority greedy algorithms (red
diamonds) for the number of cost evaluations as a function of (a) budget, and (b) number of edges.
In (a) each point is the average of 50 network interdiction problems. The average coefficient of
variation (the ratio of the standard deviation to the mean) is 0.10 for basic greedy and 0.15 for
the priority greedy. Notice the almost perfectly linear trends as a function of budget (shown here
on a log-log scale, the power ≈ 1.0 in both.) In (b), the budget was fixed at 10 and the number of
edges was increased by decreasing the connectivity threshold parameter from θ = 50 to θ = 20
to represent, e.g., increasingly dense transportation networks.

1 Specifically, the simulations were a two evader problem on a grid-like networks consisting of
a lattice (whose dimensions were grown from 8-by-8 to 16-by-16) with random edges added
at every node. The number of edges in the networks grew from approximately 380 to 1530 but
there was no increasing trend in the number of cost evaluations.
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The priority algorithm surpasses a benchmark solution of the corresponding mixed
integer program (See Appendix) using a MIP solver running CPLEX (version 10.1) in
consistency, time, and space. For example, in runs on 100-node GTG networks with
4 evaders and a budget of 10, the priority algorithm terminates in 1 to 20 seconds,
while CPLEX terminated in times ranging from under 1 second to 9.75 hours (the high
variance in CPLEX run times, even on small problems, made systematic comparison
difficult.) The difference in solution optimality was zero in the majority of runs. In the
hardest problem we found (in terms of its CPLEX computational time - 9.75 hours), the
priority algorithm found a solution at 75% of the optimum in less than 10 seconds.

For our implementation, memory usage in the priority algorithm never exceeded
300MiB. Further improvement could be made by re-implementing the priority algo-
rithm so that it would require only order O(|E|) to store both the priority queue and
the vectors of Eq. (4). In contrast, the implementation in CPLEX repeatedly used over
1GiB for the search tree. As was suggested from the complexity proof, in runs where
the number of evaders was increased from 2 to 4 the computational time for an exact
solution grew rapidly.

5 Outlook

The submodularity property of the UME problem provides a rich source for algorithmic
improvement. In particular, there is room for more efficient approximation schemes and
practical value in their invention. Simultaneously, it would be interesting to classify
the UME problem into a known approximability class. It would also be valuable to
investigate various trade-offs in the interdiction problem, such as the trade-off between
quality and quantity of interdiction devices.

As well, to our knowledge little is known about the accuracy of the assumptions of
the unreactive Markovian model or of the standard max-min model in various applica-
tions. The detailed nature of any real instance of network interdiction would determine
which of the two formulations is more appropriate.
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Appendix: Mixed Integer Program for UME

In the unreactive Markovian evader interdiction (UME) problem an evader k ∈ K is
sampled from a source distribution a(k), and moves to a sink t(k) with a path specified
by the matrix M(k). This matrix is the Markov transition matrix with zeros in the row
of the absorbing state (sink). The probability that the evader arrives at t(k) is (a(k)(I−
M(k))−1)t(k) and is 1 without any interdiction (removal of edges).

Notation summary

G(N,E): simple graph with node and edge sets N and E , respectively.
K: the set of evaders.
w(k): probability that the evader k occurs.
a(k)

i : probability that node i is the source node of evader k.
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t(k): the sink of evader k.
M(k): the modified transition matrix for the evader k.
di j: the conditional probability that interdiction of edge (i, j) would remove an evader

who traverses it.
B: the interdiction budget.

π (k)
i : decision variable on conditional probability of node evader k traversing node i.

ri j: interdiction decision variable, 1 if edge (i, j) is interdicted and 0 otherwise.

Definition 4. Unreactive Markovian Evader interdiction (UME) problem

min
r

H(r) = ∑
k∈K

w(k)h(k)(r) ,

s.t. ∑
(i, j)∈E

ri j = B ,

ri j ∈ {0,1}, ∀(i, j) ∈ E,

where

h(k)(r) = min
π

πt(k) ,

s.t. π (k)
i − ∑

( j,i)∈E

(M(k)
ji −M(k)

ji d jir ji)π
(k)
j = a(k)

i , ∀i ∈ N , (19)

π (k)
i ≥ 0, ∀i ∈ N. (20)

The constraint (19) is nonlinear. We can replace this with a set of linear constraints, and
the evader problem becomes

h(k)(r) = min
π ,θ

πt(k) ,

s.t. π (k)
i − ∑

( j,i)∈E

θ (k)
ji = a(k)

i , ∀i ∈ N ,

θ (k)
ji ≥M(k)

ji π (k)
j −M(k)

ji d jir ji, ∀( j, i) ∈ E , (21a)

θ (k)
ji ≥M(k)

ji (1−d ji)π
(k)
j , ∀( j, i) ∈ E , (21b)

θ (k)
i j ≥ 0, ∀(i, j) ∈ E ,

π (k)
i ≥ 0, ∀i ∈ N .

If we set ri j = 0, the constraint (21a) is dominating (21b), and θi j will take value

M(k)
i j π (k)

i at optimal because of the minimization. If we set ri j = 1, the constraint (21b)

is dominating since π (k)
j ≤ 1. Although formulation (21) has an additional variable θ , at

the optimum the two formulations are equivalent because π and r have the same values.
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