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Abstract

We use the forced complex Ginzburg—Landau (CGL) equation to study resonance in oscillatory systems periodically forced
at approximately twice the natural oscillation frequency. The CGL equation has both resonant spatially uniform solutions and
resonant two-phase standing-wave pattern solutions such as stripes or labyrinths. The spatially uniform solutions form a tongue-
shaped region in the parameter plane of the forcing amplitude and frequency. But the parameter range of resonant standing-wave
patterns does not coincide with the tongue of spatially uniform oscillations. On one side of the tongue the boundary of resonant
patternsis inside the tongue and is formed by the nonequilibrium Ising Bloch bifurcation and the instability to traveling waves. On
the other side of the tongue the resonant patterns extend outside the tongue forming a parameter region in which standing-wave
patterns are resonant but uniform oscillations are not. The standing-wave patterns in that region appear similar to those inside the
tongue but the mechanism of their formation is different. The formation mechanism is studied using a weakly nonlinear analysis
near a Hopf-Turing bifurcation. The analysis also gives the existence and stability regions of the standing-wave patterns outside
the resonant tongue. The analysis is supported by numerical solutions of the forced complex Ginzburg—Landau equation.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Resonance phenomena in forced oscillatory systems have mostly been studied in the context of a single oscillator
such as the pendulufit—3]. The resonant behavior is manifested by the ability of the system to adjust its natural
oscillation frequency to a rational fraction of the forcing frequency. Thus, the system may respond, or lock, in ratios
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1/n(n=1,2,3,...)oftheforcing frequency and at additional fractions determined by the Farey hieféjciifie

natural frequency range, where the system locks to the forcing frequency, increases with the forcing amplitude and
forms a tongue-shaped region (Arnol'd tongues) in the amplitude—frequency plane. The parameter region pertaining
to oscillations at 1n the forcing frequency is occasionally referred to asithé resonance tongue.

More recently resonance phenomena have been studied in spatially extended systems using uniform time periodi
forcing [5-21] These systems demonstrate another property of resonance phenomena; although any spatial poin
in the system oscillates at the same fractign bf the forcing frequency, the phase of oscillation may assume
one ofn different values and may vary from one spatial domain to and8)22]. In the 2:1 resonance, there are
two stable phases of oscillations (differing from one anotherrpgnd fronts that shift the oscillation phase by
7 may appeatr. In the 4:1 resonance, there are four stable phases and two types of fronts may appear; fronts ca
shift the oscillation phases by eitheror /2. Along with these fronts spatial patterns, such as spiral waves and
standing-wave labyrinths, may appés0,12,20]

In this paper, we study to the 2:1 resonance case and the conditions for resonant behavior in spatially extendec
systems as compared with those of a single oscillator. The study is based on a variant of the complex Ginzburg-
Landau (CGL) equation which describes the dynamics of the oscillation amplitude near the Hopf bifurcation. Among
our findings are non-resonant patterns in a range of resonant uniform oscillations and resonant patterns in a rang
where uniform oscillations are not resonant. The results derived in this paper extend the analytical and numerical
results presented in R¢R0].

The paper is organized as follows.$ection 2we derive the boundaries of the 2:1 resonance tongue for uniform
oscillations. This is the domain where the system is bistable and front solutions may eXesttion 3we study two
front instabilities and the patterns that arise from them. The results are used to determine the range where resonat
patterns appear inside the 2:1 resonant tongue of uniform oscillatioBection 4 we determine the conditions for
the prevalence of resonant standing wavetsidethe resonance tongue and show that the formation mechanism
differs from that of standing waves inside the tongue. We conclude with a summary and a discussion of the results
in Section 5

2. The 2:1 resonance tongue

Consider an extended system undergoing a Hopf bifurcation to uniform oscillations at a freqidieysystem
is now uniformly forced at a frequeney; ~ 2£2. Near the Hopf bifurcation a typical dynamical variable of the
system can be written as

u=uo+[Ad” +ccl+---, (1)

whereug is the value ofu when the system is at the rest state undergoing the Hopf bifurca#igma complex
amplitude,w := w¢/2, c.c. stands for the complex conjugate, and the ellipses denote higher order terms. The
amplitude of oscillatiorA is slowly varying in space and time and for weak forcing is described by the forced CGL
equation23-26]

#A = (u+iv)A+ (1+ia)V2A — (1+iB)|A|°A + yA*. 2

In this equationyu represents the distance from the Hopf bifurcation; 2 — w;/2 the detuningg represents
dispersion 8 represents nonlinear frequency correctigrihe forcing amplitude, an&? is the two-dimensional
Laplacian operator. The term* is the complex conjugate ok and describes the effect of the weak periodic
forcing[23]. Throughout this paper, we will mostly be concerned \&ith (2 for the amplitude of oscillations. The
oscillating system irEq. (1) will be referred to as the “original system.”
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To find the resonance boundary of uniform oscillations, we wtite R exp(i¢) and consider uniform solutions
of Eq. (3. The amplitudeR and the phase obey the equations:

R =uR —R%+ yRcos 2, (3a)
¢ =vR — BR® — yR sin 2. (3b)

In 2:1 resonance the system oscillates at exactly half of the forcing frequency. Accoréligg(fly this condition is
satisfied by stationary solutions &f and¢. These solutions appear in a pair of saddle node bifurcatiops-aj,
[7], where

o = nfl
VItR

asFig. 1(a) shows. The form of the resonance boundary changes to

=32 F G =27

for v < u(B% — 1)/(28) (assumings > 0 which is used here). For further details see R&f]. The two stable

solutions are given by

v—B(ir +7)
y 9

b =¢_ +m, (5b)

whereyi' = (1 +vB)/(L+ B2), ¥ = V/¥?/(L+ 7) — ¥2, andb = (v — uf) /(1 + 7).
We refer to the solutiong_ and¢, as “phase locked” solutions or “phase states.” The existence range of these
solutionsy > yp, forms a V-shape region, hereafter the “2:1 resonance tongue.” The 2:1 resonance togga@for

(4)

1 .
o_ = > arcsin (5a)

@ ' ' ' Frequency locked  (b)

gand -, uniform oscillations
g Y= YNIB

iy

s
o)

Fig. 1. (a) A pair of saddle-node bifurcation diagrams showing the appearance of the four stationary phase sokdjofIgafs the forcing
amplitudey is increased pasy, for a fixed detuning value. The solid (dashed) curves represent stable (unstable) solutions. (b) The resonance
tongue in the—y plane (shaded region) inside which the original system responds at exactly half the forcing frequency. Also shown is the NIB
bifurcation threshold (dotted curve) inside the resonance tongue, obtained by numerically solving the one-dimensional eigenvalue problem of
Eq. (8 for a front solution ofEq. (3. The NIB bifurcation threshold corresponds to a zero value of the largest real part of the eigenvalue

(not including the zero eigenvalue associated with translation) as the two insetsyskoW18. Above the NIB bifurcation threshold fronts
bi-asymptotic to the two stable phase states,and¢., are stationary. The points “D(= 0.4,v = —0.3) and “T” (y = 0.4, v = —0.38)

represent forcing and detuning values where the Ising fronts are stable and unstable to NIB bifurcation, respectively. Parantetes= 0,

o =0.5.
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is shown inFig. 1(b). For 8 # 0 the tongue gets wider and is shifted to the right-(0) or to the left § < 0).
Outside the resonance tongue uniform solutions describe unlocked oscillations.

For the analysis that follows we rewriteq. (2 in terms of the real and imaginary parts of the amplitude,
U:=ReAandV :=1Im A:

U U
=(L— , 6
(v)-e-m(7) ©

where, is the linear operator

(n+y)+V? —v—aV?

L= 2 2
v+aVe  (n—y)+V

)

andN includes the nonlinear terms
1-8
B 1|

3. Spatial patterns inside the 2:1 resonance tongue

N = (U? + V?)

Inside the 2:1 resonance tongue the system is bistable and front solutions, bi-asymptotic to the two stable phas
states, exist. Patterns in bistable systems are strongly affected by two types of front instg2sljfie$ The first is
the nonequilibrium Ising Bloch (NIB) bifurcation in which a stationary “Ising” front solution loses stability to a pair
of counter-propagating “Bloch” front solutions. This instability designates a transition from stationary patterns to
traveling waves. The second front instability is a transverse instability (occasionally also referred to as modulational
or morphological instability) where wiggles along the front line grow in time. A transverse front instability of an
Ising front often leads to stationary labyrinthine patterns. In the context of forced oscillations the NIB bifurcation
has been studied in Refg.,30-33]and the transverse instability in R¢L7]. In the following we extend these
earlier works and use the results to delineate the range within the 2:1 resonance tongue where resonant patterr
reside.

Finite wavenumber instabilities of the uniform phase states may also lead to pattern formation inside the 2:1
resonance tongue. A linear stability analysis of the phase states indeed reveals such an instability but in a very
narrow range near the 2:1 resonance boundary. The instability leads to large amplitude stationary patterns repre
senting resonant oscillations of the original system. For further details the reader is referred [@¥Réf. the
following analyzes performed inside the tongue we assume a parameter range for which the phase states are stab
to nonuniform perturbations.

3.1. The nonequilibrium Ising Bloch (NIB) bifurcation

In the caseqx = B =0, the NIB bifurcation occurs agne = /2 + (/3)? [32,33] To evaluate the NIB
bifurcation across the resonance tongue for non-zevpj values we use a humerical eigenvalue analysis of the
Ising front solutionl (x). Inserting the form

U(x, 1)

Vien | = I (x) + e(x) €, 7
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Fig. 2. A numerical solution oEg. (6 in the rangey, < y < ynig [point “T” in Fig. 1(b)], showing the development of spiral waves from
small random perturbations around the unstable rest éfateV = 0. The pattern corresponds to unlocked spiral waves in the original system
sincew # wy /2. The frames (a)—(f) show a grey-scale map oflthéeld at successive time steps= 1.5, 8.5, 19, 90, 2000, 6000. In all of
the grey-scale figures darker hues denote highealues. Neumann boundary conditions were used on a damaiif0, 80], y = [0, 80].
Parameters are asig. 1(b),v = —0.38,y = 0.4.

in Eq. (6 and linearizing arount{x) we obtain
[J(U. V) —iI]le=0, (8)

whereJ(U, V) is the Jacobian dEq. (6 atl(x), A the eigenvalueg(x) the eigenvectorT the identity matrix, and
the form ofl(x) is obtained by numerical integration Bfy. (6. Solving(8) for 1 we identify the NIB bifurcation
threshold as the valug = ynis(v) at which the largest real part of the eigenvalues zero (excluding the zero
eigenvalue associated with the translation mode). The NIB bifurcation thresholdimtipane and for > 0 is
shown inFig. (b).

Fory < v < ynie spiral waves prevaiFig. 2shows numerical solutions &q. (6) in this range displaying the
development of rotating spiral waves starting from random perturbations of the unstable redt sté@teSince
the amplitudeA oscillates at the spiral frequenay, the original system [seEq. (1)] oscillates at a frequency
wf /2 + wy rather thanws /2 and therefore is out of resonance.

As the NIB bifurcation is traversed stationary Ising fronts appear. The same random perturbations of the unstable
rest state (as iRig. 2) now lead to coarsening and to the formation of larger domain patteiffig adshows. Since
the domain boundaries approach stationary planar Ising fronts the patterns represent resonant oscillations. We now
turn over to the high frequency side of the 2:1 resonance tongue.

3.2. Transverse instability of the Ising front

Asvis increased, and the high frequency boundary of the 2:1 resonance tongue is approached, a transverse front
instability is encounterefl7,20] The onset of this instabilityy = vt (y1 > yniB), is shown by the dashed line in
Fig. 4. The significance of the transverse front instability is demonstratEd)ir; a planar Ising front evolves to a
labyrinthine pattern through fingering and tip splitting. The asymptotic pattern is stationary and therefore represents
resonant oscillations.
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Fig. 3. A numerical solution oEq. (6 in the rangeynis < y [point “D” in Fig. 1(b)] showing the coarsening of small domains into larger
ones separated by a planar Ising front. The asymptotic state is resonant since the Ising front is stationary and any point in the original system it
oscillates at exactly = wt /2. The frames (a)—(f) show thé field at successive time steps= 1.5, 8.5, 19, 90, 350, 850. Neumann boundary
conditions were used on a domair= [0, 80], y = [0, 80]. Parameters are ashig. 1(b),v = —0.3,y = 0.4.

We evaluated the transverse instability boundary by deriving a linear evolution equation for transverse front
modulations as we now descriligg. (6), for « = g = 0 (but arbitraryv), has the exact Ising front solution

Uo = I(x) cose, (9a)
Vo = I(x)sing, (9b)
2.5 -
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Fig. 4. The transverse instability ling,= y7, for an Ising front inside the 2:1 resonance tongue. The dashed line denotes the approximate
analytical result of/r given byEq. (29. The crossesxX) depict the conditiorD = 0 whereD is calculated semi-analytically usirieg. (20,
while the solid circlesq) represent results of a numerical two-dimensional eigenvalue analysis of the Ising front. Parametérs; « = 0.35,

B=0.
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(a)

(d)

Fig. 5. A numerical solution oEq. (6 in the rangey, < y < yr (point “L” in Fig. 4), showing the development of a stationary labyrinthine
pattern from a transverse instability of a planar Ising front. The pattern corresponds to resonant labyrinthine standing waves in the original
system. The frames (a—f) show tbifield at successive time steps= 0, 150, 250, 400, 600, 1400. Neumann boundary conditions were used

on a domainx = [0, 77], y = [0, 77]. Parameters: = 2.0, y = 2.05, and other parameters asHiy. 4.

whereg = 1/2 arccosf/y), 7 = v/y2 — v2, andI(x) is given by

I(x) = i\/u+f/tanh,/“42”7x. (10)

Fora ~ B ~ € « 1, wheree is an auxiliary small parameter, we expand the solutiokaf(6 aroundEq. (9 as
follows:

U(x, y, t) = Uo(x) + €Ur(x) + €2Ua2(x) + - - -, (11a)
V(x, y. 1) = Vo(x) + €Vai(x) + € Va(x) + - -, (11b)

where y = x — A(Y, T1, T>, . . .) is the longitudinal spatial coordinate in a frame centered at the front position,
x= A, T1, T2, ...),Y = \/eyisthe transverse spatial coordinate scaled to describe weak dependeritesaid
(i=1,2,...)are slow time coordinates. In terms of these coordinates partial derivatitzeg (6) take the forms

dy = edy, 3 = edr, + €20, + - (12)

InsertingEgs. (1) into Eq. (6 and considering small transverse perturbatiohsy €, we obtain at ordet
U1 1
M = , 13)
where f12 = f1,2(Uo, Vo, 3,; o, B) are odd functions of and M is the linear operator

Ha 2UoVo + v

M =
2U00Vo — v Ho
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with
Hi=—(n+y)— 8> +3U§+ V¢, Ho=—(n—y)— 2+3VE + Uj.

Solvability of Eq. (13 requires the right-hand side of this equation to be orthogonal to the null veabdrA T,
the adjoint of M. We evaluated@ numerically and found it to be an even functionyofSince f1 and f> are odd
functions ofx the solvability condition is automatically satisfied. For the same re&gand V1 must be odd too
(i.e. they preserve the symmetry of the zero-order approximatignyo).

Proceeding to ordes we find

U: dr, A — 85 AU, +
m (Y2 _ | On ;)? gl (14)
Vo (BTlA — 8YA)V0 + g2
where the prime denotes derivation with respect to the argument and
g1,2 = gl,z(U(Js VO! Uls Vls aX; as ﬂ)
are odd functions of. Solvability ofEq. (14 leads to
dr, A = 02A. (15)

UsingEg. (19 into Eg. (149 we conclude that/> and V, are again odd functions ¢f (i.e. preserve the symmetry
of the lower order approximations).
Proceeding to ordes® we find

M Us\ |0, AUy+ (83 A)V§ + (9y AY?UG + ha (16)
V3 ) | 8, AV) — a(d3 AYUL + 0y APV 4 ha |

where

h12 = h12(Uo, Vo, U1, V1, Uz, V2, 0y; a, B)
are odd functions of. Solvability of Eq. (16, yields

I, A = —aZP A, 17)
where

® (E1V) - E2U0))d

[ (BrUy + B2V dx

and &, and Z» are the components of the null vectdr InsertingEgs. (15) and (2)7into Eq. (12, we obtain

WA = DaﬁA, (19)
where
D=1-qaX. (20)

The sign ofD determines the stability of the Ising front to transverse perturbations; the front is stable (unstable)
whenD > 0 (D < 0) and the conditioD = 0 gives the instability threshold = yr.
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o

Fig. 6. The transverse instability threshojg, as a function o&. The solid curve represents the approximatioprofiven byEq. (24 and the
solid circles denote results of the two-dimensional eigenvalue analysis of the Ising front. Pargmetd)&, v = 2, 8 = 0.

To evaluate this threshold we need to calculate the integraisin(18 which we first do numerically. The
calculation yields the solid circles iRig. 4, which are in good agreement with the results of a numerical two-
dimensional eigenvalue analysis of the Ising front markefign 4 by crosses.

An approximate analytical expression fpf can be obtained if we restrict ourselves to the high edge regime
of the 2:1 tongue boundafl?], #/y <« 1, and to the vicinity of the Hopf bifurcations/y « 1. Under these
conditions

Hi —v
M~ [ ) HJ, (21)
and
E1~ Uy, By~ -V (22)
InsertingEqg. (29 into Eq. (18 we obtain
p~1— 2 (23)

/2 =12

The threshold of the transverse instabili/= 0, now becomes

YT A vV 14 ol (24)

where the produactx is assumed to be positive. We found a good agreement between the analytical approximation
(24) of yr and the two-dimensional eigenvalue analysis of the Ising front for siigllas shown irFig. 4and for
smallx values as presented kig. 6.

4. Spatial patterns outside the 2:1 resonance tongue

In the previous section, we related resonant patterns, within the 2:1 resonance tongue, to the existence of Ising
fronts. The patterns take the form of large stationary domains, possibly coexisting with stripe patterns, in the
range where the Ising front is transversely stable, and appear as labyrinths beyond the transverse front instability.
Surprisingly, these resonant labyrinthine patterns persist outside the 2:1 resonancejengyewhere Ising front
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Fig. 7. A numerical solution dEq. (6 in the rangey < yy, (but sufficiently close tgs), showing the gradual nucleation of a stationary pattern

from uniform oscillations oscillations. The uniform oscillations correspond, in the original system, to unlocked oscillations while the @symptot
stationary pattern corresponds to resonant labyrinthine standing waves. Note that the resonant labyrinthine pattern exists in a range wher
uniform oscillations are not resonant. The frames (a)—(f) showtfield at successive time steps= 0, 4, 8, 13, 18, 1400. Neumann boundary
conditions were used ona= [0, 77], y = [0, 77] physical grid. Parameterg:= 0.5, v = 2.0,a = 0.5, 8 = 0 andy = 1.95.

solutions no longer exigfl6,20] Fig. 7shows how an asymptotic stationary labyrinthine pattern develops outside
the resonance tongue. The asymptotic pattern is very similar to that obtained inside the 2:1 resonance tongue (se
Fig. 5. The formation mechanism, however, is different; initial nuclei expand through successive stripe by stripe
growth into the surrounding unlocked oscillations.

In this section, we investigate the conditions and mechanisms that give rise to stationary solutiqQné&pfor
resonant patterns of the original system, outside the 2:1 resonance tongue. We further study their existence rang
and their stability to secondary instabilities such as zigzag. We find two different realizations of stationary patterns
outside the 2:1 tongue: (i) the stationary patterns coexist with stable unlocked uniform oscillations, (ii) the stationary
patterns are the only attractor.

In Ref. [20] we identified a codimension 2 point where the Hopf bifurcation to uniform oscillations coincides
with a finite wavenumber instability of thé = O rest state. In the following we show, using a weakly nonlinear
analysis, how the two realizations of resonant standing waves outside the 2:1 tongue relate to the coupling betweel
a Hopf mode kg = 0, wg # 0) and a finite wavenumber Turing mode & 0, wg = 0). We further show that these
standing waves are unstable to zigzag perturbatiotScasl5indicates. With appropriate initial conditions they
may appear indistinguishable from the labyrinthine patterns inside the 2:1 tongue.

We begin with a linear stability analysis of the rest statg,) = (0, 0), to inhomogeneous perturbations of the

form
( g) — <’le: > eat-l—ikx. (25)

Inserting this form irEq. (6 we obtain the dispersion relation

o(k) = — k24 1/y2 — (v — ak?)2. (26)
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0.5

Hopf Turing

Re ©

0 ¢k 1.5

Fig. 8. The growth rate (real part 6) of perturbations around thé = O state at the codimension 2 poipt= 0, y = y.. Two modes become
marginal at this point, a Hopf zerk-mode and a Turing finitdemode. Parameters: = 0,v = 2.0, = 0.5,y = y. ~ 1.8.
At the codimension 2 poinfy = 0, y = y, where

1%

Ve

the Hopf & = 0, w = wp) and the Turingk = ko, @ = 0) modes simultaneously become marginatigs 8shows.
The wavenumbekg and the frequencyg are given by

(27)

Vo
K= 1y (e82)
VoY
D= et (280)

Note that if we restrict ourselves to the high frequency edge of the 2:1 tongu®) we must choose > 0. Also,
if we want the codimension 2 point to lie outside the 2:1 tongue we have to clfoasefor at 8 = « the Turing
mode becomes marginal at the tongue boundaryyd.e: yp.

4.1. Amplitude equations for the Hopf-Turing bifurcation

In the vicinity of the codimension 2 point, whede= y — y: ~ © « 1, we can expand solutions Bfy. (6 as

U\ _ Yo U) e (V2
()=o) o) o () - @

where

<‘lio> = egBo € + g By €"" + c.c.. (30)
0

We assume thal := d/u andy, are of order unity. The complex amplitud®g(X, Y1, T) and By(X, Y2, T) in

Eqg. (30 describe weak spatiotemporal modulations of the (relatively) fast oscillations associated with the Hopf
mode and of the strong spatial variations associated with the Turing mode. The weak dependence is expressed by
the introduction of the slow variable® = ut, X = \/ux, Y1 = /ity and Y2 = uY/4y. The different scales used

for they coordinate stem from the different states (uniform versus stripes) the amplitudes m¢84Ha&] The
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eigenvectorgy andey correspond to the eigenvaluef0) ando (ko), respectively, and are given by

1+ia .
e0: )0 ’ ek:< >’
1 1

wherep = v/1+ a2 andn = a + p.
Inserting the expansiof29) into Eq. (6 we obtain at orden

Uy 5 Ug — aVp
M = —(20x0, + 0 , 31
<v1> (@ixi + Y2)<01U0+V0> (31

where

—0r + ye+ 8)% —v—ozaf

M= 2 4 2
v+ ooy 0 — yc + 0%

Defining an inner product as

k
(fg): (CZO)OZ//f dx d7; (32)

where the integrals are evaluated over the temporal oscillation period and over the stripe wavelength, the adjoint
operator is

Mz [t ¥ vt ad? 33)
—v—ai))zc 8,—)/0—1-83
and its null vector is
1+ix) 1
g = o gloot 4 (a B p) g lkox, (34)
1

The solvability condition associated withg. (3] is automatically satisfied and we can proceed to solving this
equation. We find

0
Uz Uog :
= 3 | DBre** +cc. b 35

Vv

whereD = 2ikgdx + 8%2 andC is an arbitrary constant which for simplicity, we set to zero.
Proceeding to ordet®?2 we obtain

Uz Uo U1
M(Vg)Z(NO_'CO)(Vo)_El(Vl)’ (36)
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1-p
B 1|

where

1+d+d8 —or —ad%

Lo= ~
0 ad% 1—d+d% —dr

1 , No = (U + V)

oy |1 -«
L= (28X8X + 8y2) a1l

Solvability of Eq. (36 yields two coupled equations for the amplitudgsand By :

i~ _ . .
drBo = (1 - ad) Bo — (4 + im1)| Bo|*Bo — (8pn + im2)| Bk|*Bo + (1 + ip)(3% + 9%,)Bo, (37a)

P~ B 2 B 2 . 22
7By = (1+ &d) Bi—6on (1— = ) |Bul?Bi — 42— 32 ) 1Bol*Bi — 5 (2ikodx + 0, Br. (37b)
0

where

_ 2(20% 4+ 1) . 42op(x + 1)+ @Bp + )18
1= 7%0 ) 2= o

4n.

Finally, by rescalindegs. (37 back to the relatively fast space—time scales we obtain the following approximation
to Eq. (6 in the vicinity of the codimension 2 point:

Y iwot ikox
v = egAo € + e A€ +cc+ - (38)
where the ellipses denote high order corrections and the amplitigdasd A, satisfy

i . . .
3 Ao = (u — ad) Ao — (4+im1)|Aol* Ao — (8pn + im2)|Ar|* Ao + (1 +ip) VAo, (39a)

p p 2 B 2 e 2\2
Ay = (M + &d) Av = 6pn (1= 7 ) 1A = 4 (282 ) 140l Ak — 25 (2ikods + 5)°Ar.  (39D)
0

4.2. Hopf and Turing pure-mode solutions

Egs. (39 admit two families of pure-mode solutions and a mixed-mode sol{8i6,38] The pure-mode solutions
are

Ao =3/ — KZKx=m+ivo J = 0; (40a)
and
B ~ do — 2002K2 | .
Ag=0, A= \/W L SR gk, (40b)
6on(a — B)

The phases/p andy are arbitrary constants which we set to zero and d/a + um1/4. In the context of the
original system, the uniform-oscillation solutigd0g corresponds to unlocked uniform oscillations, while the
stationary uniform solutiof40b) represents resonant standing waves.
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(a) Hopf (A 0,0) (b) Hopf (A 0,0)
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Fig. 9. Bifurcation diagrams for uniform solutions Bf. (39 showing the existence and stability ranges of the two pure mode solutions and
the mixed mode solution in a forcing range extending to the tongue boupdary,. The vertical axis iR = 4/ RS + Rf. The solid (dashed)
curves denote stable (unstable) solutionsB(a) g and the oscillatory solutiord(, 0) is stable up to the tongue boundary. 8o} Bz and the
oscillatory solution loses stability gt= ynq < yp. Parametersy = 0.5,v = 2,a = 0.5, (a)8 = 0, and (b)8 = 0.1.

We first study the linear stability of the unifornk (= 0) solutiong(40a) and (40pby reducing the systeif39)
to equations for the absolute values of the amplitugigand A, [39]:

. . d 3
Ro = 1Ro — 4R3 — 8pnRZ Ry, Ry = (u + a) Ry — 6pn (1 — 5) R —4 (2 - f) RZR., (41)

where Rg := |Ag| and Ry = |Ax|. Fig. 9 shows bifurcation diagrams for the uniform oscillatory and stationary
solutions(40a) and (40pas obtained by analyziriggs. (4). The stationary solutio(@0b) exists aboves, where
o V— ua
- , 42
Vita?z J1+a? (42)

and becomes stable at= ys where

_ e +3p) _ v—ple+3p)/4 “3)
S Tt a2 t2

The oscillatory solutior{40g exists for ally < yp (providedu > 0) but the stability of this solution depends on
the value off. For 8 < Bg, wheregg is defined below, the oscillatory solution is stable up to the tongue boundary
y = yp. For 8 > Bg the stability range of409 reduces toy < y4 whereyy is smaller thany and is given by
_ ple—3B) v+ ule —3p)
YH=VYc+ =
1+ a? V14 a2

The value of8g is determined by the conditiony = 3, which leads to the following quartic equation 6s:

Ye = Vc —

(44)

[v+ u(e—3B8)\/1+ B3 — [v— upelV1+a2=0. (45)

The mixed mode solution and its stability properties will be studied elsew8ieWe only note here that this
solution is unstable as long &8 > ys which is realized foB < S where

wolul

Bm = 3o (46)
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Fig. 10. The stability thresholgs for resonant standing-wave solutions. The solid line descElge$43 while the solid circles represent results
of numerical solutions oEq. (6. The parameter values are the same d&dn4.

Using these results we can distinguish among three stability ranggg farg < Swu:

(i) ¥ < ys, where only the oscillatory solutioi@03 is stable;
(i) yn < y < yp, where only the stationary solutigd0b) is stable;
(i) ys < y < yH, where both solution§10) are stable.

Wheng < Bg the range (ii) disappears and the bistability range (iii) extends to the tongue boyndayy.

To test the amplitudé&qg. (39 we compared the prediction &q. (43 for ys (the instability threshold for
stationary stripes) with numerical solutionsid]. (6. Fig. 10indicates a good agreement fowvalues of order
unity. A deviation develops at smallvalues, but whemw ~ , By varies on the scallagl and the analysis is no
longer valid.

4.3. Hopf-Turing competition

Using the stability results described above we can distinguish between two different realizations of resonant
standing waves (of the original system) outside the 2:1 tongue boundary. J\Vhesg there is a range just below
the tongue boundaryy < y < yp, where unlocked uniform oscillations are unstable and resonant standing waves
are the only stable state. In this case, resonant behavior develops no matter what the initial conditions are. When
B < Bg resonant standing waves and unlocked oscillations coexist as stable states ingganges yy, extending
up to the tongue boundary. In this case the realization of resonant behavior depends on initial conditions.

To gain some insight about the initial conditions that lead to resonant behavior in thg eagg we consider
front solutions ofEgs. (39 which are bi-asymptotic to the two coexisting statés,(©) and (Q Ax). The direction
of the front propagation determines which of the two states invades into the other and prevails at long times. We
therefore look for the threshold valug,= yn, at which the Hopf—Turing front has a zero velocity. An analytical
expression for the Hopf-Turing front velocity has been found in Rdf.. Using this result we find

pe(y/3/2—-1) v+ pa(y/3/2-1)
V1ita? Vita?Z
Fig. 11shows the lineyy in the v—y plane, as obtained froffq. (47) and the good agreement of this result with

numerical solutions dEq. (39. Fory > y the (Q A;) state invades thedp, 0) state afig. 12demonstrates. This
dominance of the (Q4;) state implies that any initial state involving at least one island of resonant standing waves

N =Vc+ (47)
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0.4

0.4 1
v

Fig. 11. Dominance range oj resonant standing waves outside the 2:1 resonance topguesfarFor yy < y < w standing waves, (G4z),
invade unlocked oscillationsAg, 0), and become the asymptotic pattern (Sige 12). The solid liney = yn describe€q. (47) while the solid
circles represent results of numerical solution&qf (39. Parameter values are the same dsign 4.

is likely to evolve into a resonant standing-wave pattern occupying the whole system<Fgy, the (Ag, 0) state
is the dominant one and the asymptotic state is unlocked oscillations.

Returning toFig. 7which shows the development of standing-wave patterns outside the 2:1 tongue we can now
interpret the stripe by stripe growth mechanism as an invasion of thig JGtate (standing waves) into théd, 0)
(unlocked oscillations)rig. 7 applies to the case < Bg where the two states stably coexist ang'te yn. When
B > Bg similar stripe by stripe growth can be realized, but unlike the former case, standing waves develop from
any initial condition even in the absence of an initial 43) island that serves as a nucleation center. The growth

X

Fig. 12. Invasion of resonant standing waves into unlocked oscillations, obtained by numerical integfatjof88fin the rangen < y < .
The solution represents the real part 8f( Vo) reconstructed according fq. (30. Neumann boundary conditions were used. This behavior
reproduces the results Bfg. 7 obtained by solvindeq. (6 with the same parameter values.
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mechanism of standing-wave patterns outside the 2:1 tongue is very different from the fingering and tip splitting
mechanism that applies inside the tongue [Bige 5. The asymptotic patterns, however, may look very similar

as a comparison dfigs. 5 and &uggests. This is partly because the standing-wave stripes are unstable to zigzag
perturbations as we now show.

4.4. Zigzag instability of the pure Turing mode

Consider the stationary periodic stripe solution giverielyy (408. To study the stability of this solution to zigzag
perturbationg36], we write

Ao 0 8Ag
()= (2)- () @

where

8Ag aor ()| , as_ ()| ke
— gl(Kx+0y) 0 g(Kx—0y)
(am) [aﬂ(t)] ! laz(r)l

InsertingEq. (49 into Eq. (39, and linearizing around (01;) we obtain two sets of ordinary differential equations

aos =[u— WP — Q% —iMlaos,  ax=-—

P+ 2'0]:%(4k0KQ2 + 0% | @t — Pais., (49)
whereP = u + pdja — 20°K2, W = 4a/[3(a — B)] and M = dja + ma|Ar* + p(K? + 0?). Seeking solutions
of Eq. (49 in the form
aot = dos €, (50a)
aps = g €, (50b)
we find the following expressions for the perturbation growth rates:

RerF = u— WP — Q2 (51a)
2
A= P (4kokQ?+ QY- PP (51b)
T A :

The first mode to grow is the Turing phase mode whose growth rate is gi\ﬂejﬁ(@/). The long-wavelength zigzag
instability sets in aKk = 0 and exists anywhere in the parameter ranges we consider (for which andva > 0).
Fig. 13shows the dispersion reIatio‘uj‘(Q) at the onseX = 0 and beyond the instabilitif' < 0. The maximal
growth rate beyond the instability occurs@t= Qg where

03 = —2koK. (52)

Fig. 14summarizes the results of the linear stability analysis of stationary stripe solutions (standing waves in the
original system) in the—K parameter space. The periodic stripe soluti@td) form at the parabolic dashed curve
given by

Ve = Ve + 2apK>. (53)
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0.01

-0.01

Fig. 13. Growth curves for the zigzag instability of the stationary-stripe soligpr(40. Shown are the growth ratai, as computed from
Eq. (511, at the instability threshol& = 0 (dashed curve) and beyond the instabikty= —0.05 (solid curve). Other parameters:= 2.0,
a=0.5.

Below the solid parabolic curve, = ys, where
7s = vs + 200K (54)

the stripe solutions are unstable to uniform oscillations or traveling wav@x%(BeO). Above this curve stationary

stripe patterns become stable but may go through secondary zigzag and Eckhaus instabilities as depicted in th
figure. (The Eckhaus instability analysis will be presented elsewjB&tg Numerical solutions of the forced CGL
equation(6) support the above predictions. The stripes are stable for poKitraéues (that do not cross the Eckhaus
instability) while for negativeK values (see point “Z” irFig. 14 the stripes are unstable to zigzag perturbations
asFig. 15demonstrates. Ag is reduced belows (see point “O” inFig. 14 the stationary stripes lose stability to
oscillations, ag-ig. 16demonstrates.

,
¥ zig—zag
\\
\\ // //
16 oscillations ;
-0.6 -0.2 0 0.6 ‘

K

Fig. 14. The neutral stability curve for stationary stripes (thick solid curve) with secondary zigzag and Eckhaus instabilities (thin solid curves)
Stationary stripe solutions appear at the dashed parabolic curve but becomes stable only above the solid parabolic curve. In between the tw
curves uniform oscillations and traveling waves prevail. The points$7=(1.95, K = —0.2) and “O” (y = 1.77, K = —0.2) represent forcing

and wavenumber values where the stripe solutions are unstable to zigzag and oscillating patterns, respectively. All the other parameters are th
same as irfrig. 7.
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1E

Fig. 15. Numerical solution of the forced CGL equati@) for negative deviations frorkg (K = —0.2), showing the development of a zig—
zag pattern (point “Z” inFig. 14. The frames (left to right) correspond te= 1, 300, 400. Periodic boundary conditions were used on a
x =y = [0, 51] physical grid. Parameters are af-ig. 14v = 2,y = 1.95.

X

Fig. 16. Numerical solution of the forced CGL equati@) for negative deviations fromg (K = —0.2), showing in a space—time plot the
development of oscillations (point “O” iRig. 14). Neumann boundary conditions were used. Parameters ardrag 4 v = 2, y = 1.77,
x = [0, 64] andr = [0, 60].

5. Discussion

We have presented a theoretical study of resonant patterns in oscillatory systems that are subjected to uniform
time-periodic forcing at a frequency about twice as large as the unforced system'’s frequency. The study is based on
the amplitude equation for forced systems undergoing a Hopf bifurcation to uniform oscillations. Resonant patterns
are defined in this paper as spatiotemporal patterns where the oscillation frequency at any spatial point is exactly
half the forcing frequency.

We find that the range of resonant patterns in the forcing amplitude and frequenpjane does not coincide
with the 2:1 resonance tongue of uniform oscillations. Below the NIB bifurcation, non-resonant traveling waves
prevail. Above the NIB bifurcation resonant standing waves prevail, but these extend beyond the tongue of uniform
oscillations. FoB > Bg there exists a rangey < y < w, outside the 2:1 tongue where resonant standing waves
are the only stable patterns. Fr< g resonant standing waves outside the 2:1 tongue coexist with unlocked
oscillations. In the rangen < ¥ < yp, however, the standing-wave patterns are dominant in the sense that nuclei
of standing waves grow into unlocked oscillations and become the asymptotic state of the system.
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" Frequency locked
patterns

b

0 . ) .
-1 1

Fig. 17. The 2:1 resonance tongue of uniform oscillations (the dashed boundary) vs. the tongue of resonant patterns (the shaded area with soli
boundary). Parameters are as-ig. 1(b).

Fig. 17summarizes the regions in they plane where resonant patterns prevail along with the 2:1 tongue inside
which frequency-locked uniform oscillations exist. The boundagy ynig, inside the 2:1 tongue, appears to merge
with the liney = y outside the 2:1 tongue and form together the boundary of the region of resonant patterns. More
careful analysis is needed, however, to substantiate this numerical observation.

The resonant standing waves outside the tongue are zigzag unstable and may appear as labyrinthine patterr
with appropriate initial conditionf20]. These labyrinths appear indistinguishable from the labyrinths that prevail
inside the 2:1 tongue. Their formation mechanism however is quite distinct. While labyrinths inside the tongue
develop from a transverse front instability through fingering and tip splitting F&geb), labyrinths outside the
tongue develop through stripe by stripe nucleation from standing-wave nucldti(sed. The two mechanisms
have been identified recently in experiments on the Belousov—-Zhabotinsky rega€fjon

The results described in this paper are restricted to a relatively small volume in the parameter space spannec
by u, v, a, B, y. The analysis is based on the forced complex Ginzburg—Landau equation which is valid close to
the Hopf bifurcation. We therefore avoided largevalues. The study was originally motivated by experimental
observations of resonance labyrinthine patterns on the high right edge of the 2:1 resonantlitdhdweeordingly
we chosev to be positive and followindgeqg. (28, « > 0. We also chose andg to be small (and of the same order
of magnitude) to facilitate the analysis of the transverse Ising front instability. We confined ourselves to the case
B < 5a/9 for which resonant standing waves exist outside the 2:1 resonance tongue. Tife=c&a¢9 will be
considered elsewhefd0]. Different parameter ranges have been studied in RE6s42] (v < 0, « < 0), and in
Ref.[17] (@ > B ~ w).
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