
Mathematical Modeling and Analysis

Efficient Linearity and
Bound Preserving
Remapping for Meshes
with Changing Connectivity
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Conservative interpolation (remapping) is
one of the essential parts of most Arbitrary
Lagrangian-Eulerian (ALE) methods. It recom-
putes the conservative quantities (such as mass,
momenta, or energy) from the Lagrangian com-
putational mesh to the improved one. In this short
report we extend the idea of the swept integration
introduced in [1] to the meshes with changing
connectivity. We focus to the Voronoi meshes
in 2D. One numerical example is presented to
show, that properties of this algorithm (conserva-
tivity, linearity and bound preservation) remains
unchanged for meshes with different topology.

The remapping problem is following – we have
two different meshes (original and new) and the
unknown underlying function. We do not know
the function itself, only mean values in the origi-
nal cells are known. In [2], we extend idea of [1]
to a complete three-step algorithm: 1) reconstruc-
tion – recovers the unknown function in a piece-
wise linear form; 2) integration – integrates the
reconstructed function in the new cells to get new
mean values; and 3) repair – ensures local-bound
preservation by local mass redistribution.

In the reconstruction stage, the slopes in each
cell are computed using certain method, with or
without limiters. The only condition is to pre-
serve a global linear function. In practical tests,
it is convenient to use the monotonicity preserv-
ing Barth-Jespersen limiter [3] radically reducing
the number of possible local-bound violations.

During the integration stage new mean values
are computed. The most natural approach is the
exact integration over the overlapping areas of the
original and the new meshes. Unfortunately, this

process is quite inefficient and makes the com-
plete algorithm very slow. We use the approxi-
mate integration method based on the swept re-
gion idea – the mass in the new cell can be com-
puted from the mass of the corresponding origi-
nal cell just by adding or subtracting masses of
all swept regions. By swept regions we mean the
areas defined by the smooth movement of all cell
edges to their new positions. For this algorithm
no intersections are needed, moreover it is edge-
based and so much more efficient than the previ-
ous method.

Unfortunately, our approximate integration
does not guarantee satisfaction of the local-bound
preservation condition, so the third stage – re-
pair – is needed. It locates the problematic areas,
where the bounds are violated, and corrects the
value back to the local extreme. Due to the con-
servativity demand, it takes the mass needed for
repair from (or adds additional mass to) the neigh-
boring cells proportionally to the masses, which
can safely be taken (added) from these neighbors
without violating their local bounds.

This complete algorithm is efficient, linearity
and local-bound preserving, stable, and applica-
ble to general unstructured meshes both in 2D [2]
and 3D [4] with the same topology. There also
is a question, what to do, if the mesh topology
changes during the rezoning process. Typical ex-
ample of reconnection is displayed in the first Fig-
ure (a). Four cells of the original mesh changed
their topology, one of original edges was removed
and a new one added, making neighbors two new
cells which have not been neighbors before.

Let us note, that such topology change does
not affect the reconstruction and repair process,
only the integration stage has to be modified. Our
approach is to split the swept integration stage
into two steps. We compute the “center of re-
connection” – either intersection of removed and
created edges or average of their vertices. Then,
we shrink the removed edge to this central point
and perform swept integration of all five edges
involved (the removed edge and four edges con-
nected to its vertices) – see first Figure (b). In
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(a) (b) (c)

One reconnection in 2D mesh (a). Solving in two
steps: shrinking old edges to one point (b) and
expanding it to the new edges (c).

the second step, we expand the central point to
the created edge and perform similar five swept
integrations. The situation at the boundary and
the computation of the cell neighborhood for ex-
trema computation must be treated carefully, for
the complete algorithm to satisfy all the condi-
tions stated in the previous paragraph.

To demonstrate its properties, we present here
the cyclic remapping of the “color function” with
value 1 inside a circle in the computational do-
main center, and 0 outside (second Figure). The

(a) (b) (c)

Discontinuous “color function” remapped over a
series of sine-moving Voronoi grids. Initial values
(a), values on the middle mesh (b), and values on
the final mesh (c).

initial Voronoi mesh (a) has regularly placed gen-
erators, and the n-th mesh (in time tn = n/nmax) is
obtained from generators placed by formulas

xn
k = x0

k +α(tn) sin(2πx0
k) sin(2πy0

k) ,
yn

k = y0
k +α(tn) sin(2πx0

k) sin(2πy0
k) ,

α(t) =

{

t/5 for t ≤ 1/2
(1− t)/5 for t > 1/2.

During the generator’s movement, the grid moves
and changes it’s connectivity up to the middle of
the simulation (b), then it returns back to the orig-
inal one (c).

The performed simulations and their numerical
errors prove the algorithm’s convergence and sat-
isfaction of all required properties for the quality
remapping algorithm.
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