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In numerical simulations of fluid flow, the
choice of the computational grid is crucial. Tradi-
tionally, there have been two viewpoints, utilizing
the Lagrangian or the Eulerian framework, each
with its own advantages and disadvantages. In a
pioneering paper [1], Hirt et al. developed the for-
malism for a grid whose motion could be deter-
mined as an independent degree of freedom, and
showed that this general framework could be used
to combine the best properties of Lagrangian and
Eulerian methods. This class of methods has been
termed Arbitrary Lagrangian-Eulerian or ALE.

It is most usual to separate the ALE algorithm
into three individual phases. These are: 1) a La-
grangian phase, in which the solution and grid
are updated, 2) a rezoning phase, in which the
nodes of the computational grid are moved to a
more optimal position, and 3) a remapping phase,
in which the Lagrangian solution is interpolated
onto the rezoned grid. Here, we focus to the sec-
ond (rezoning) stage of the ALE algorithm, pro-
ducing more optimal and smoother computational
mesh for the next Lagrangian step. We are look-
ing for a mesh optimization method applicable to
logically-orthogonal quadrilateral computational
meshes, allowing to involve several unstructured
features, such as material interfaces, virtual parts
of the mesh, central points, and slide-lines. One
of candidates for such rezoner if the Reference-
Jacobian (RJ) mesh smoothing method [2].

RJ Method
In the first step of the RJ mesh smoothing

method, locally optimal position (reference posi-
tion according to the local condition number) for
each mesh node is found. Then, in the second
step, global optimization of objective function

measuring the (least-square) distance between Ja-
cobians of the rezoned mesh and the optimal ref-
erence mesh. RJ smoothing preserves Lagrangian
shape of the mesh, and smoothes the mesh by mi-
nor nodal movement, as shown in the following
figure. This method is applicable to smoothing of
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Disturbed (red) and smoothed (blue) mesh. Both
meshes remain very close to each other, smoothed
mesh has much higher quality.

general meshes in 2D and 3D, and is suitable for
ALE method.

Material Interfaces
On boundary/interface, the mesh nodes are al-

lowed to move only on the broken line of the orig-
inal boundary. In the following figure, one pa-
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Condition Number: min = 5.0814, max = 144.0832
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Material interface/boundary parameterization
and condition number colormap for one partic-
ular boundary vertex, with original perturbed
(solid) and new smoothed (dashed) mesh.

rameterized boundary segment and one example
of smoothed boundary node along the segment
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are presented. Parameterization is defined as dis-
tance along the broken line from the segment be-
ginning.

Virtual Mesh Regions
To introduce unstructured features to the struc-

tured quadrilateral mesh, we consider virtual
cells and virtual nodes (dark-gray cells and green
nodes in the following figure). Virtual cells are

L-shape mesh and mesh with hole. Virtual cells
marked in dark gray, virtual nodes in green,
boundary/interface nodes in red.

not considered for local nor global mesh qual-
ity functional evaluation. Nodes on the inter-
face between virtual and real mesh regions (red)
are treated by the same parameterization as in-
terface/boundary nodes. This technique allows to
construct L-shaped (and other shaped) computa-
tional meshes, or meshes with holes.

Center-Points and Slide-Lines
Center-points and slide-lines represent another

possibility how to involve unstructured features in
the structured computational mesh. Examples are
shown in the following figure.

Center-point is defined as several logical mesh
nodes sharing the same physical location. They
are “glued” together and are allowed to move
only as one point. In the first subfigure, we can
see convergence of the center-point to the correct
minimum of the local condition number. In the
second subfigure, the center-point is marked in
green.

Slide-line is defined as two different edge seg-
ments, which are only allowed to slide along each
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4x6 mesh

Colormap of condition number for center-point
and original perturbed (solid) and smoothed
(dashed) mesh. Schematic 4 × 6 mesh with
(green) center-point and slide-line including mas-
ter (red) and slave (blue) segments. Hole (light-
gray) and overlap (dark-gray) are highlighted.

other. They are presented as a master (red) and
slave (blue) segments. For nodal movement, pa-
rameterization of the master line is used for both
master and slave nodes. This process can be used
for either connecting of two different mesh parts,
or for closing of logically circular computational
mesh. Overlappings and holes can appear in the
slide-line region.

All the mentioned techniques allow construc-
tion of topologically complex meshes using stan-
dard, logically orthogonal mesh representation.
Our implementation of the RJ technique is able to
manage all the mesh features, and provides high-
quality smoothed meshes suitable for ALE meth-
ods.
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