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Abstract

An accurate conservative interpolation (remapping) algorithm is an essential component of most Arbitrary Lagrangian–Eulerian
(ALE) methods. In this paper, we describe an efficient linearity and bound preserving method for polyhedral meshes. The algorithm
is based on reconstruction, approximate integration and conservative redistribution. We validate our method with a suite of numerical
examples, analyzing the results from the viewpoint of accuracy and order of convergence.
Published by Elsevier Ltd.
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1. Introduction

In numerical simulations of fluid flow, the choice of the
computational grid is crucial. Traditionally, there have
been two viewpoints, utilizing the Lagrangian or the Eule-
rian framework, each with its own advantages and disad-
vantages. In a pioneering paper [16], Hirt et al. developed
the formalism for a grid whose motion could be determined
as an independent degree of freedom, and showed that this
general framework could be used to combine the best prop-
erties of Lagrangian and Eulerian methods. This class of
methods has been termed Arbitrary Lagrangian–Eulerian
or ALE. Many authors have described ALE strategies to
optimize accuracy, robustness, or computational effi-
ciency—see for example [6,4,26,19,20,32,25,5,24,28].

It is possible to use the ALE method in a mainly
Lagrangian mode, with an occasional rezone/remap when-
ever the grid becomes too distorted. However, it is gener-
ally more effective to rezone and remap on each cycle, a
strategy termed continuous rezoning. It is possible to for-
mulate the ALE scheme as a single algorithm [9] based
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on solving the equations in a moving coordinate frame.
However it is more usual to separate it into three individual
phases. These are: (1) a Lagrangian phase, in which the
solution and grid are updated, (2) a rezoning phase, in
which the nodes of the computational grid are moved to
a more optimal position, and (3) a remapping phase, in
which the Lagrangian solution is interpolated onto the
rezoned grid. One advantage of continuous rezone is that
the individual grid movements can be constrained to be
small (in this paper we assume that the rezoned cell falls
within the patch consisting of neighbours of the corre-
sponding old cell), allowing the use of a local remapper
where mass (and other conserved quantities) is only
exchanged between neighboring cells. Local remappers
are logically simpler and computationally more efficient
than global remappers, where an explicit or implicit overlay
of two arbitrary meshes is required [10–12,15].

We are interested in developing an ALE methodology
for 3D unstructured mesh consisting of generalized poly-
hedra. In this paper, a generalized polyhedron is a 3D solid
with arbitrary topology and, possibly, non-planar polygo-
nal faces. This general consideration is necessary because
even simple polyhedra such as hexahedra can start out with
planar faces at the start of the simulation but end up with
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Fig. 1. Definition of the face. Bold arrows represent edges with indepen-
dent orientation, for example, e3 = (p4,p3). The inside arrows represent
components of the face, for example, the component which corresponds to
edge e3 is �e3 = (p3,p4).
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non-planar faces due to the movement of its nodes as
induced by the flow. Clearly, the geometry of a non-planar
polygon is not uniquely defined. We will consider the issues
raised by the presence of such faces in Section 2. The use of
an unstructured mesh consisting of generalized polyhedra
simplifies the setup process for computational domains
with complex geometrical shapes and helps to avoid artifi-
cial mesh imprinting due to the restrictions of a conven-
tional mesh consisting only of tetrahedra and generalized
bricks [7,8].

This paper focuses primarily on a new remapping algo-
rithm for discrete scalar function on 3D generalized
unstructured polyhedral meshes for use in continuous
rezone ALE simulations. The algorithm is based on ideas
presented in [22,27] for remapping on the general unstruc-
tured 2D polygonal meshes.

Our new method is linearity and bound preserving. Lin-
earity preservation means that the method is exact if the
discrete cell-centered values are constructed from a globally
linear function. Bound preservation mean that remapping
process does not create new extrema. The algorithm is
computationally efficient because it does not require an
explicit or implicit intersection of the two arbitrary meshes.

The algorithm is based on piece-wise linear reconstruc-
tion, approximate integration and conservative redistribu-
tion. We validate our method with a suite of numerical
examples, analyzing the results from the viewpoint of accu-
racy and order of convergence.

The outline of the rest of this paper is as follows. In Sec-
tion 2, we introduce necessary definitions. In Section 3, we
give a precise statement of the remapping problem and list
the desired properties of the remapping algorithm. In Sec-
tion 4, we describe all the stages of the remapping algo-
rithm. Numerical results that demonstrate the accuracy
and convergence of the remapping algorithm are presented
in Section 5. Finally, we conclude the paper in Section 6.

2. Grids

We consider a three-dimensional domain X and a mesh
{c} of non-overlapping cells c fully covering it. To formally
describe the mesh, we need to introduce a set of definitions
and corresponding notations. Our description of the mesh
is based on boundary representations commonly used in
geometric modeling where each object is described in terms
of its bounding, lower-dimensional entities [17,31,14,37].

An n-dimensional mesh can be completely specified by
describing the topology and geometry of its 0D to nD com-
ponent entities. In this context, the topology of an entity
refers to a shape-independent description of the object in
terms of lower-dimensional entities and the geometry of
an entity is a description of its shape in space [3,36]. The
dimension of a mesh entity is the dimension of the para-
metric space necessary to describe the entity.

The fundamental components of a mesh are its vertices

or points {p} which are its zero-dimensional topological
components. Each point p has a unique index, which for
simplicity we will also denote by p. We will call these
primary points to distinguish from derived points intro-
duced later in this section.

The one-dimensional topological entities of a mesh are
its edges {e}. The topology of an edge is uniquely defined
by the ordered set of points, P ðeÞ ¼ ðpe

0; p
e
1Þ, which bound

it. Each edge has a unique index, which we will denote
by e. We will assume that geometry of an edge is specified
by the straight line segment between pe

0 and pe
1. We can then

associate a vector going from point pe
0 to point pe

1 with the
edge e. Then it makes sense to define the following
operation:

þ1 � e ¼def
e ¼ ðpe

0; p
e
1Þ; �1 � e ¼def�e ¼defðpe

1; p
e
0Þ. ð1Þ

We can also apply the standard notation for vector opera-
tions to edges; for example, if e1 ¼ ðpe1

0 ; p
e1
1 Þ and

e2 ¼ ðpe2
0 ; p

e2
1 Þ then e1 þ e2 ¼ ðpe1

0 þ pe2
0 ; p

e1
1 þ pe2

1 Þ.
Faces are the two-dimensional topological components

of a mesh. The topology of a face f is defined by an ordered
set of edges together with the directions in which they are
used, such that:

f ¼ ðdf
1 � e

f
1 ; d

f
2 � e

f
2 ; . . .Þ and

X
k

df
k � e

f
k ¼ 0; ð2Þ

where df
k ¼ �1 defines the orientation in which the edge ef

k

is used in the face and the equation
P

kdf
k � e

f
k ¼ 0 means

that the loop of directed edge vectors is closed (Fig. 1).
We then say that the kth component of the face is an

edge along with an orientation. We will call such an edge
an external edge of the face to distinguish it from internal
edges of the face, which will be introduced later in this
section.

All edges of the face are denoted by Eðf Þ ¼ [kef
k and all

points which define edges of the face are denoted by
P ðf Þ ¼ [kP ðef

k Þ.
The loop of directed edge vectors then leads to the

notion of a face normal using the right hand rule of vectors.
Note that this is a uniquely defined spatial direction only
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Fig. 2. Triangular elements of a face: (a) center of the face pf
c , triangles, and internal edges; (b) normal to triangle Df

k .

Right cellLeft cell

nf

Fig. 3. (Left) cL(f) and (right) cR(f) cells for the face with normal nf.
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for planar faces; in all other cases, it is only serves to distin-
guish the two sides of a face.

The topology of a face is uniquely defined by the loop of
its edges. The geometry of a face whose edges are not all in
one plane, however, is not unique. Therefore, we adopt a
faceted representation to obtain a consistent definition of
its geometry as follows. First we define the ‘‘center’’ of
the face

pf
c ¼

X
pk2Pðf Þ

pk

 !,
jPðf Þj; ð3Þ

where jP(f)j is number of points in set P(f), and the sum of
points is understood in a coordinate sense (Fig. 2).

Next, for the face component df
k � e

f
k ¼ ðpk

0; p
k
1Þ, we define

a triangle (which will be a planar facet of the face) as the
ordered set of points Df

k ¼ ðpk
0; p

k
1; p

f
c Þ.

We will call edges, ðpk
1; p

f
c Þ; ðpf

c ; p
k
0Þ of the triangle

Df
k ¼ ðpk

0; p
k
1; p

f
c Þ internal edges (Fig. 2), since they are not

part of the mesh definition. It is important to note that ori-
entations of the internal edge in the two triangle which
share it are opposite to each other (Fig. 2).

Orientation of the boundary of the triangle uniquely
defines the unit normal (using the right-hand rule) to the
triangle. We will denote this normal as nðDf

k Þ, or generically
by nf if we are not talking about a specific triangle of the
face. Note that the normals of the triangular facets will
be consistent with the face normal, and if face f is planar
then by construction all normals nðDf

k Þ are the same.
Now, we can define the geometry of the face as the

union of all triangles (with corresponding normals) which
correspond to the edges of the face:

f ¼ ðDf
0 ;D

f
1 ; . . .Þ. ð4Þ

We will denote the set of all triangles for a face f by
T ðf Þ ¼ [kD

f
k .

A cell, c, is a solid or a three-dimensional topological
component of a mesh which is bounded by faces, or effec-
tively, by triangles that form the faces. We will call cells
defined in this section generalized polyhedra or polyhedra
for simplicity where it does not lead to ambiguity. Faces
of the cell c are denoted by F(c). All cells which share face
of vertex with cell c are denoted by C(c).

Because each face is shared by only two cells, we will
refer to the cell into which the face normal is pointing as
the ‘‘right’’ cell and the other cell as the ‘‘left’’ cell
(Fig. 3). Cells adjacent to face f are denoted by C(f).

Clearly each cell, c, has an outward and inward normal
on its boundary for which we will use generic notations nþc
and n�c , correspondingly. The outward and inward normals
are different for each triangle of the corresponding bound-
ary faces for the cell. We will use notations nþc ðD

f
k Þ; nþc ðD

f
k Þ

if we are referring to particular face and triangle.

3. The remapping problem

3.1. Lagrangian and rezoned meshes

In the context of ALE methods, we will denote compo-
nents and variables of the Lagrangian (old) mesh by sym-
bols without tilde; for example, the cells of the
Lagrangian mesh will be denoted by {c}. Components of
the rezoned (new) mesh will be denoted by symbols with
tilde; for example, cells of the new mesh will be denoted
by f~cg. The new mesh has the same connectivity as the
original mesh and differs only in the positions of mesh
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vertices. Let us note that during Lagrangian and rezone
stages of the ALE method only primary points of the faces
are moved independently; positions of the face centers used
to define the face geometry are enslaved to the positions of
the external points as described in previous section.

In Figs. 4 and 5, two pairs of Lagrangian and rezoned
meshes are presented. In Fig. 4, we show a hexahedral
mesh, and in Fig. 5, we show a mesh consisting of general
polyhedra. The rezoned grids were generated using the Ref-
erence Jacobian Matrix based smoothing algorithm (RJM
method) described in [21,13]. The goal of the RJM method
is to improve the quality of the mesh while keeping the
mesh as close as possible to the Lagrangian mesh. As we
can see in the figures, the geometrical quality of the rezoned
meshes is better than the original ones, but the nodes of the
rezoned meshes stay very close to their original positions.
This is very important, since the numerical error of the
remapping part of the ALE algorithm depends on the rel-
ative movement of the mesh nodes. Let us note, that one
can use other methods for rezoning (see, for example, [18]).
Fig. 4. (a) Lagrangian hexahedral mesh, and (b) rezoned mesh o

Fig. 5. (a) Lagrangian polyhedral mesh, and (b) rezoned mesh o
In Fig. 6(a) we present one polyhedron from polyhedral
mesh presented in Fig. 5. This polyhedron has twenty one
faces, which are clearly not all flat.

In Fig. 6(b) we show an overlap of the cell presented in
Fig. 6(a) with its new configuration.

3.2. Statement of the remapping problem

We assume that there is an underlying function g(r),
r = (x,y,z) (in the context of ALE methods it can be den-
sity of mass, density of momentum, or density of the total
energy), that is defined throughout the problem domain.
For definiteness we will refer to the function g(r) as density.
The only information that we are given about this function
is its mean value in each of the cells of the old grid:

�gðcÞ ¼
R

c gðrÞdV
V ðcÞ ; ð5Þ

where V(c) is the volume of the cell c. We will refer to the
numerator of (5) as the cell mass:
btained by using Reference Jacobian Matrix based rezoning.

btained by using Reference Jacobian Matrix based rezoning.



Fig. 6. (a) Generalized polyhedron with 21 faces—Lagrangian mesh; (b) overlap of Lagrangian (thick line) and rezoned (thin line) cells.
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mðcÞ ¼def
Z

c
gðrÞdV ð6Þ

and therefore

�gðcÞ ¼ mðcÞ
V ðcÞ . ð7Þ

The total problem mass is

M ¼def
Z

X
gðrÞdV ¼

X
c

Z
c

gðrÞdV ¼
X

c

mðcÞ ¼
X

c

�gðcÞV ðcÞ.

ð8Þ
The problem statement is to find accurate approximations
for the masses of the new cells m̂ð~cÞ:

m̂ð~cÞ � mð~cÞ ¼
Z

~c
gðrÞdV ; ð9Þ

where mð~cÞ is the unknown exact mass in the new cell. The
approximate mean values of density in the new cells are
defined by

�gð~cÞ ¼ m̂ð~cÞ
V ð~cÞ . ð10Þ

We require that, if the underlying function g(r) is global
linear function—that is,

gðrÞ ¼ aþ bxþ cy þ dz ð11Þ
—then our remapping process is exact, that is,

m̂ð~cÞ ¼
Z

~c
gðrÞdV . ð12Þ

This property of the remapping process is referred to here
as linearity-preservation.

We will require that remapping be conservative:eM ¼X
~c

m̂ð~cÞ ¼ M ; ð13Þ

that is, the total mass remains the same after remapping.
Another important requirement is local bound

preservation

�gmax
~c P �gð~cÞP �gmin

~c ; �gmax
~c ¼ max

c02CðcÞ
�gðc0Þ; �gmin

~c ¼ min
c02CðcÞ

�gðc0Þ;

ð14Þ
which means that remapping process does not create new
extrema.

4. Remapping algorithm

Our algorithm consists of three stages:

• Piecewise-linear reconstruction of the underlying function
on the original mesh.

• Approximate integration of the reconstructed function
on the new grid to obtain mean values in the cells.

• Repair to ensure local bound preservation.

In the first stage, gradient of the function in all cells are
computed to obtain the reconstructed piecewise linear
function. This can be done using different methods, with
or without limiters. During the second stage we integrate
this reconstructed function to obtain new mean values on
the new grid. The most natural approach is to use exact
integration [27,22], but it requires computation of all the
intersections of the Lagrangian grid with the rezoned
one—a time consuming process in 2D and almost infeasi-
ble in 3D. Therefore, we use a numerical quadrature
method called swept area integration, which is much faster
as it does not require finding any intersections. The prob-
lem, however, is that it is an approximate method, and as
a result local bounds of the function may be violated or
new extrema may be created. Therefore, we need a repair
procedure which ensures satisfaction of the local bound
preservation condition.

4.1. Stage 1—Piecewise linear reconstruction

We want to reconstruct the underlying function in the
form

gcðrÞ ¼ gcðx; y; zÞ ¼ �gðcÞ þ
X

a¼x;y;z

og
oa

� �
c

ða� acÞ; ð15Þ

where

ac ¼
R

c adV
V ðcÞ ð16Þ
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are the coordinates of the cell centroid and

V ðcÞ ¼
Z

c
1dV ð17Þ

is the volume of the cell. In other words, we want to com-
pute the slopes (og/oa)c in the directions of the coordinate
axes {a} in each grid cell.

4.1.1. Unlimited slopes

In 1D, we can use just central difference as an unlimited
slope. To compute an unlimited slope in 2D, we construct a
contour surrounding the cell and use the Green’s Theorem.
In 3D, this would be too slow, because it would require the
computation of the intersections of this neighborhood with
the original grid. So, we use an alternative method based
on least squares reconstruction of gradients [29] as
described below.

Let us construct the functional

F
og
ox

� �UL

c

;
og
oy

� �UL

c

;
og
oz

� �UL

c

 !

¼
X

c02CðcÞ
�gðc0Þ �

R
c0 gcðrÞdV

V ðc0Þ

� �2

ð18Þ

for each cell, which measures the sum of differences be-
tween the mean values in the neighboring cells and average
values of the reconstructed function from the original cell
in the same neighboring cell. The superscript ‘‘UL’’ in the
equation indicates that these are unlimited slopes. The
neighborhood C(c) of cell c is defined in Section 2. We want
to minimize this functional, so we want the reconstructed
function to be as close to the mean values in the neighbor-
ing cells as possible.

To find the minimum we easily differentiate this func-
tional with respect to all three variables ðog=oaÞUL

c and let
these derivatives be equal to zero. This gives us a linear
system

A

og
ox

� �UL

c

og
oy

� �UL

c

og
oz

� �UL

c

0BBBB@
1CCCCA ¼

axx axy axz

axy ayy ayz

axz ayz azz

0B@
1CA �

og
ox

� �UL

c

og
oy

� �UL

c

og
oz

� �UL

c

0BBBB@
1CCCCA ¼

bx

by

bz

0B@
1CA
ð19Þ

for unknown partial derivatives, where

aab ¼2
X

c02CðcÞ

Ic0
a Ic0

b

V ðc0Þ2
ð20aÞ

ba ¼2
X

c02CðcÞ

Ic0
a

V ðc0Þ �gðc0Þ � �gðcÞð Þ ð20bÞ

for a,b 2 {x,y,z}, and where the integrals Ic0
a are defined as

Ic0

a ¼
Z

c0
ða� acÞdV . ð21Þ
For solving it, we use a direct formula obtained from the
inverse matrix computation. If the matrix A is singular
then the stencil of cells can be extended to use additional
levels of cells in the neighborhood. Issues related to least-
squares procedures for gradient reconstruction on unstruc-
tured meshes are considered, for example, in [33,1,29].

We will denote linear reconstruction in the cell using
unlimited slopes by

gUL
c ðrÞ ¼ �gðcÞ þ

X
a¼x;y;z

og
oa

� �UL

c

ða� acÞ. ð22Þ
4.1.2. Limited slopes

For computation of the final slopes we limit the slopes
ðog=oaÞUL

c described in 4.1.1 as follows

og
oa

� �
c

¼ Uc
og
oa

� �UL

c

; ð23Þ

where Uc is Barth–Jespersen (BJ) limiter [2].
The BJ limiter is constructed in such a way that values of

the reconstructed function at the cell vertices are within the
bounds defined by the maximum and the minimum of the
mean values of the set C(c), consisting of the cell c and
its nearest neighbors. Here, we need to mention that there
are some pathological situations when one needs to extend
the stencil for reconstruction to be exact for a global linear
function [35].

At each cell vertex p we evaluate the limiter

Up ¼

min 1;
�gmax

~c ��gðcÞ
gUL

c ðpÞ��gðcÞ

� �
for gUL

c ðpÞ � �gðcÞ > 0;

min 1;
�gmin

~c ��gðcÞ
gUL

c ðpÞ��gðcÞ

� �
for gUL

c ðpÞ � �gðcÞ < 0;

1 for gUL
c ðpÞ � �gðcÞ ¼ 0

8>>>>>>><>>>>>>>:
ð24Þ

and then we take their minimum as a cell limiter

Uc ¼ min
p2PðcÞ

Up. ð25Þ
4.2. Stage 2—Swept region integration

4.2.1. Volume integrals of polynomial functions

Here we show that, for a density function g(r),
r = {x,y,z} that has bounded second derivatives, the mass
in a cell (up to fifth-order accuracy in mesh size h) can be
written as the sum of the surface integrals of polynomial
functions over the boundaries of the cell.

Consider the Taylor series expansion for g(r) with origin
at the point r0

gðrÞ ¼ gðr0Þ þ
X

a2fx;y;zg

og
oa

� �����
r0

ða� a0Þ þOðh2Þ. ð26Þ
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Using (26) with r0 2 ~c and the definition of mass, we derive

mð~cÞ ¼
Z

~c
gðrÞdV ¼ gðr0Þ

Z
~c

1dV

þ
X

a2fx;y;zg

og
oa

� �����
r0

�
Z

~c
ða� a0ÞdV

( )
þOðh5Þ. ð27Þ

Now, using the divergence theorem, we can express the vol-
ume integrals of linear functions participating in (27) as
surface integrals over the boundary of ~c. For example,Z

~c
1dV ¼

Z
~c

divU1 dV ¼
I

o~c
U1 � nþ~c dS; ð28Þ

where nþ~c is outward normal to o~c and U1 ¼ 1
3
� ðx; y; zÞT.

Similarly for
R

~c xdV we useZ
~c

xdV ¼
I

o~c
Ux � nþ~c dS; Ux ¼

1

4
� ðx2; xy; xzÞT; ð29Þ

and so on. For more details about integration of poly-
nomial function see Appendix A.

4.2.2. Swept regions
Let us introduce notion of swept region for the face f of

cell c. The swept region is a generalized prism, which is
formed by face f itself (bottom base), and corresponding
face ~f of the new cell ~c (top base). The side faces of the
prism are generalized quadrilaterals formed by a pair of
(a)

ORIGINAL CELL

FACE COMPOSED
FROM TRIANGLES

ORIG

NEW

SWE

(b)

Fig. 7. Swept regions: (a) original cell is presented in thick lines, and new cell is
of generalized cube composed of the four triangles; (c) swept region.
corresponding edges of f and ~f and straight line segments
connecting old and new positions of the vertices corre-
sponding to these edges. In Fig. 7 we demonstrate the
notion of swept region for a generalized cube. In the case
presented in Fig. 7c, the right face moves outward from
the original cell and the region in-between the original
and new positions of the face is the swept region. In fact,
all faces can move in different ways and swept regions
can be tangled.

We will denote the swept region corresponding to face
f by Rf.

Now let us recall that each face f has an independently
defined normal nf as described in Section 2. We will define
the signed volume of the swept region Rf to face f as
follows:

V ðRf Þ ¼
I

oRf

U1 � nf
Rf

dS. ð30Þ

Here nf
Rf

is the normal to boundary of Rf (outward or
inward) which is consistent with nf, that is, on face f it
coincides with nf

n
f
Rf
ðf Þ ¼ nf . ð31Þ

Depending on the sign of signed volume of the swept
region we can say that the most part of the swept region
lies in the left cell or the right cell with respect to face f.
INAL CELL

 FACE POSITION

PT REGION

(c)

presented in thin lines, arrows show movement of the vertices; (b) one face
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4.2.3. Flux form of surface integral

Using the notion of a swept region, the surface integral
of a vector, U, over the boundary of cell ~c can be written as
follows:I

o~c
U � nþ~c dS ¼

I
oc

U � nþc dS þ
X

f2F ðcÞ

I
oRf

U � nþRf
dS. ð32Þ

We will define flux corresponding to face f as follows:

Ff ¼
I

oRf

U � nf
Rf

dS. ð33Þ

Using definition (33) we can writeI
oRf

U � nþRf
dS ¼ �signfnf � nþc ðf Þg �Ff ; ð34Þ

where nþc ðf Þ is normal to the face f corresponding to out-
ward normal to boundary of cell c.

Using formula (34) we can rewrite expression (32) as
followsI

o~c
U � nþ~c dS ¼

I
oc

U � nþc dS �
X

f2F ðcÞ
signfnf � nþc ðf Þg �Ff .

ð35Þ
4.2.4. Conservative swept region quadrature

Considerations in previous Sections 4.2.1, 4.2.2, and
4.2.3 suggest the following conservative swept region
quadrature for computation of mass of new cell

m̂ð~cÞ ¼ mðcÞ �
X

f2F ðcÞ
signfnf � nþc ðf ÞgcFf ; ð36Þ

where m̂ð~cÞ is approximation of the mass of the new cell,
and cFf are approximate mass fluxes, whose computation
is explained later in this section. Clearly this formula guar-
antees conservation of mass because it is in flux form (note
that signs of nf � nþc ðf Þ are opposite to each other for left
and right cells for given face f).

Approximate mass flux is computed using linear recon-
struction on the old mesh as follows:

cFf ¼
Z

Rf

gf ðrÞdV ; ð37Þ

where

gf ðrÞ ¼
gcL
ðrÞ; V ðRf ÞP 0;

gcR
ðrÞ; V ðRf Þ < 0.

(
ð38Þ

The volume integral of linear function in formula (37) is
understood in the sense of corresponding surface integral
as explained in the Section 4.2.1.

The meaning of formulas (37) and (38) is that the flux
corresponding to face f is computed from reconstruction
in the left or right cell depending on the sign of the signed
volume of the swept region Rf. In other words, the flux is
computed from the cell containing ‘‘most’’ of the swept
region.
In the appendix, we explain how to analytically compute
surface integrals of the form

H
ocU � ndS over polyhedra

when the components of vector U are polynomial functions.
The new mean value of function g is computed as

follows:

�gð~cÞ ¼ m̂ð~cÞ
V ð~cÞ . ð39Þ

Analysis of the accuracy of swept region integration can be
performed similar to the 2D case as presented in [27]. For a
smooth function it can be shown that �gð~cÞ is second-order
accurate and is exact if g(r) is a global linear function.

As it was noticed before, the local bounds for �gð~cÞ can
be violated due to approximate character of the swept
region integration. So the third stage is necessary to enforce
local bound preservation.

4.3. Stage 3—Repair

The goal of the repair stage is to conservatively redis-
tribute mass in such a way that mean values on the new
mesh satisfy local bounds as stated in (14).

Here we demonstrate how repair works when the lower
bound is violated

�gð~cÞ < �gmin
~c ; ð40Þ

the upper bound is handled similarly. At first we compute
the mass, which is needed in the cell ~c to bring the mean
value back to the lower bound

dmneeded
~c ¼ ðgmin

c � �gð~cÞÞV ð~cÞ. ð41Þ
Because our method has to be conservative, this needed
mass has to be taken from neighboring cells. We start the
search for the mass in the immediate neighborhood. First
we need to check how much total mass can be taken from
all cells in the neighborhood without violating their lower
bound. Therefore for each cell in the neighborhood we
compute available mass

dmavail
~c0 ¼ max ð�gð~c0Þ � �gmin

~c0 ÞV ð~cÞ; 0
� �

; ð42Þ
which can safely be taken from the cell without violating
the local bound also. The total available mass in the neigh-
borhood is

dmavail
CðcÞ ¼

X
c02CðcÞ

dmavail
~c0 . ð43Þ

If there is not enough available mass ðdmavail
CðcÞ < dmneeded

~c Þ,
we extend the stencil and look for the available mass in
cells which are neighbors of the neighbors. If there is
enough mass available, we perform the repair. We bring
the value in the cell ~c to its lower bound

m0ð~cÞ ¼ �gmin
~c V ð~cÞ ð44Þ

and we take the mass from the neighborhood cells propor-
tionally to the mass available in these cells

m0ð~c0Þ ¼ mð~c0Þ � dmavail
~c0

dmavail
Cð~cÞ

dmneeded
~c . ð45Þ
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In [22] we proved that this algorithm succeeds in a finite
number of steps and the repair stage corrects all local
bound violations.

There are other variants of repair algorithm that can be
found in [34,23].

5. Numerical tests

Our remapping algorithm is intended to be coupled with
a rezoner, and used in the context of ALE simulations.
However it is instructive to test it in a simpler environment,
where there are no partial differential equations, nor any
Lagrangian algorithm. We will test the remapper in the
context of interpolation. That is, we will choose an under-
lying function, prescribe a grid motion, and compare the
exact integrals of this function on the new grids to the
numerical simulations.

For completeness, we also present comparison of the
results of our remapping method with the results obtained
by variants of the method where we use reconstruction with
unlimited slopes and do not perform repair.

5.1. Cyclic remapping

Here we assume that we have a sequence of grids fcgn
k ,

k = 1, . . . ,kmax, n = 0, . . . ,nmax, where the subscript k is
index which identifies a cell on the grid and the superscript
identifies a particular grid. It is convenient to think of the
index n as representing a fictitious time tn, which is a
parameter to define the grid motion. We begin with a test
function g(r) and compute its mean values on grid fcg0

k ,
remap the mean values of the function from grid fcg0

k to
grid fcg1

k , and then remap the resulting values from grid
fcg1

k to grid fcg2
k , etc. This allows us to look at the

cumulative effects of many remappings.
Let us note that in our real calculations, instead of com-

puting integral averages over cells we just compute its value
at the center of mass, which is equal to the integral average
with second-order accuracy for smooth function g(r).
Fig. 8. RJM mesh smoothing and color map for linear function (46): (a) top v
color map of linear function, (b) the same view of the meshes after 180 appli
function after 18 remappings.
5.2. Reference-Jacobian movement of polyhedral mesh

In first series of experiments we use meshes obtained by
using Reference Jacobian Matrix (RJM) method [13,21].
Recall that the goal of the RJM method is to produce mesh
which as close as possible to Lagrangian mesh but
smoother.

In our experiments we start with a twisted polyhedral
mesh consisting of about 700 various polyhedra in unit
sphere with its center at the origin, Fig. 8(a). The next mesh
is obtained by 10 consecutive application of RJM method.
The mesh resulting from 180 consecutive applications of
RJM algorithm is presented in Fig. 8(b). As result we have
19 meshes (original twisted mesh and 18 smoothed ones).
Our cycling remapping consists of consecutive remapping
(in 18 steps) from the mesh presented in Fig. 8(a) to the
mesh presented in Fig. 8(b) and then another 18 steps in
reverse, back to the original mesh.

5.2.1. Linear function

The first function is the linear function

gðx; y; zÞ ¼ 1þ 3xþ y þ 2z. ð46Þ

Our numerical experiment confirms that our algorithm is
exact for linear function. In Fig. 8 we present a color
map for linear function on the original mesh and the 18-
th mesh (maximal smoothing) in the sequence of meshes.

5.2.2. Smooth sine function
The second function, which we use for the verification of

algorithm properties, is the smooth sine function defined as
follows

gðx; y; zÞ ¼ 1þ sinðpxÞ sinðpyÞ sinðpzÞ. ð47Þ
In Fig. 9(a), we present the color map for sine function
g(x,y,z) on the original mesh, where values are computed
from using Eq. (47) (initial data). In the Fig. 9(b), we pres-
ent the color map for results of cycling remapping (36
remapping) on a final mesh which coincides with initial
iew of the meshes in unit sphere whose centers are below plane z = 0 and
cations of RJM method—18th mesh in sequence and color map of linear



Table 1
The L1 and Lmax errors and global final extrema of the smooth sine
function

L1 Lmax gmin gmax

Unlimited, no repair 4.68E�2 2.02E�1 2.74E�2 1.99E0
Unlimited, repair 4.70E�2 2.02E�1 7.30E�2 1.96E0
BJ limiter, no repair 4.83E�2 2.24E�1 7.30E�2 1.93E0
BJ limiter, repair 4.83E�2 2.24E�1 7.30E�2 1.93E0

Fig. 9. Remapping of the smooth sine function. Color map of initial data (a); and result of cycling remapping on the original mesh. For visualization
purposes we have removed cells, which have their centroids inside the box h�0.32,1i3.

Table 2
L1 and Lmax errors and global final extrema of the discontinuous color
function

L1 Lmax gmin gmax

Unlimited, no repair 7.99E�2 5.69E�1 �4.37E�2 1.10E0
Unlimited, repair 7.01E�2 5.76E�1 0.00E0 1.00E0
BJ limiter, no repair 8.13E�2 6.29E�1 0.00E0 9.87E�1
BJ limiter, repair 8.13E�2 6.29E�1 0.00E0 9.87E�1
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mesh. The result of the remapping process presented in
Fig. 9(b) (as well as all remapping results presented in all
the other Figures), is obtained by method with limited
slopes using Barth–Jespersen limiter and repair.

In Table 1, we present the errors for different methods
with respect to slopes reconstruction methods as well as
using or not using repair. As we can see, there are no big
differences in the errors, but the limited version with repair
stage has the advantage of local-bound preservation, which
is not guaranteed by other methods. In two last column we
also present minimal and maximal values of the discrete
functions after remapping. In this particular example of
smooth sine function, repair works only when we are using
unlimited slopes.
Fig. 10. Color map for discontinuous color function: (a) initial
5.2.3. Discontinuous color function
To show the ability of the algorithm to deal with the dis-

continuous function, we present here the example of color
function, which has the value 1 inside a spherical region of
radius 1/4, and the value of zero outside of this region. In
Fig. 10, we present the color map for the initial and
remapped discrete functions.

In Table 2, we present the errors for different methods.
We can see again, that the values of the errors are compa-
rable. The discontinuous behavior of the function causes
many repairs in the case of unlimited reconstruction, which
almost doubles the computational time when compared
with the Barth–Jespersen limited reconstruction. When
using the unlimited variants, the local bound preservation
condition is not satisfied. This example clearly shows the
importance of the limiting process and the repair stage.
discrete function; (b) discrete function after 36 remapping.
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5.3. Sine movement of cubic mesh

To demonstrate convergence properties of our algo-
rithm we consider movement of originally cubic meshes
in h0,1i3. In this case we easily can refine the mesh.

For this type of a mesh, we introduce a ‘‘sine move-
ment’’ where the position of the kth node is computed as:

xn
k ¼ x0

k þ aðtnÞ sinð2px0
kÞ sinð2py0

kÞ sinð2pz0
kÞ; ð48Þ

yn
k ¼ y0

k þ aðtnÞ sinð2px0
kÞ sinð2py0

kÞ sinð2pz0
kÞ; ð49Þ

zn
k ¼ z0

k þ aðtnÞ sinð2px0
kÞ sinð2py0

kÞ sinð2pz0
kÞ; ð50Þ

the coefficient a(t) is defined as follows:

aðtÞ ¼
t=5 for t 6 1=2;

ð1� tÞ=5 for t > 1=2

	
ð51Þ

and tn has the meaning of the fictitious time in the nth
remapping step, tn = n/nmax. Note that at tnmax ¼ 1 mesh
returns to its initial position.
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Fig. 11. Sine movement of logically rectangular mesh. The fragment of
the mesh, obtained by removing some cells at tn = 1/2, is shown.

Fig. 12. Remapping of the smooth sine function: (a) orig
The mesh at time tn = 1/2 is presented the Fig. 11. We
want to note here that cells obtained by such movement
are generalized hexahedra with non-flat faces.

5.3.1. Smooth sine function

Because the computational domain is the unit cube, we
use the following sine function

gðx; y; zÞ ¼ 1þ sinð2pxÞ sinð2pyÞ sinð2pzÞ.
The original discrete function and result of remapping on
initial mesh is shown in Fig. 12.

The order of convergence is demonstrated in Table 3,
where we present L1 and Lmax norms of the errors. Note
that number of time steps increases when we increase the
resolution. It is needed to guarantee that two consecutive
meshes are close to each other. This table suggests that
algorithm is at least second-order accurate in L1 norm
for this example.

5.3.2. Discontinuous color function

Here we present results for discontinuous color func-
tion. Color maps are presented in Fig. 13 and convergence
study is presented in Table 4. We present only L1 in this
case. The algorithm preserves local extremes and Table 4
suggests that convergence rate is first-order for this discon-
tinuous function.
inal discrete function; (b) remapped discrete function.

Table 3
Numerical errors of the smooth sine function for sine movement of the
mesh

Size of grid nmax L1 error Lmax error

103 10 4.06E�2 2.92E�1
203 20 7.70E�3 8.98E�2
403 40 1.15E�3 3.78E�2
803 80 1.65E�4 1.49E�2

1603 160 2.25E�5 5.55E�3



Fig. 13. Remapping of the discontinuous color function: (a) original discrete function; (b) remapped discrete function.

Table 4
Numerical errors of the color function over for sine movement of the mesh

Size of grid nmax L1 error

103 10 2.27E�2
203 20 1.96E�2
403 40 1.20E�2
803 80 7.46E�3

1603 160 4.58E�3

Table 5
Numerical errors of the smooth sine function over a series of randomly
moving grids

Size of grid nmax L1 error Lmax error

103 10 3.93E�2 1.41E�1
203 20 9.07E�3 6.45E�2
403 40 1.64E�3 2.56E�2
803 80 2.79E�4 9.86E�3

1603 160 4.97E�5 3.73E�3

Table 6
Numerical errors of the color function over a series of randomly moving
grids

Size of grid nmax L1 error

103 10 3.20E�2
203 20 2.59E�2
403 40 1.57E�2
803 80 9.60E�3

1603 160 5.76E�3

R. Garimella et al. / Computers & Fluids 36 (2007) 224–237 235
5.4. Random mesh movement

The last series of calculations is performs for so-called
random mesh movement. In every time step, the new mesh
is obtained from the original orthogonal cubical mesh by
small random movement of all nodes. By small, we mean,
that the node cannot move more than a half of the length
of the edge of the cubical mesh.

We present convergence analysis for the smooth sine
function (Table 5) and the discontinuous color function
(Table 6). The numerical errors in this case have the same
qualitative behavior as for the other types of mesh
movement.
6. Conclusion

It this paper, we have constructed an algorithm for effi-
cient linearity and bound preserving conservative inter-
polation (remapping) on generalized polyhedral meshes.
We have presented a series of numerical examples to verify
the theoretical properties of our algorithm and demon-
strate its performance.
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Appendix A. Integration of polynomial function over

arbitrary polyhedron

In this Appendix, we briefly discuss the problem of inte-
gration of a linear function over an arbitrary polyhedron,
which is needed for the computation of cell volumes V(c 0)
17, coordinates of centroids of cells a(c) (16), and integrals
Ic
a in the functional (18). This algorithm is also used for the

computation of the volumes of the swept regions, (30), and
mass fluxes, (37). Our presentation is based on the results
from [30].

Let us first demonstrate the integration procedure on the
example of the computation of the cell volume. The cell
volume can be written in the form

V ðcÞ ¼
Z

c
1dV ¼

Z
c

divU1 dV

¼
I

oc
U1 � nþc dS; U1 ¼

1

3
� ðx; y; zÞT: ðA:1Þ

The surface integral can be represented as sum of the
face integrals, which in turn are sums of integrals over cor-
responding triangles. Therefore, the previous expression
for volume can be rewritten as follows:

V ðcÞ ¼ 1

3

X
f2F ðcÞ

X
D2T ðf Þ

X
j¼x;y;z

nþ;jc ðDÞ
Z

D
jdS; ðA:2Þ

where nþ;xc ; nþ;yc ; nþ;zc , are components of the normal nþc ðDÞ
to triangle D, whose orientation is consistent with outward
normal to boundary of cell c.

To evaluate the integrals
R

D jdS; j ¼ x; y; z, we project
each triangle to one of the coordinate plane as described
in [30]. Suppose, that triangle D belongs to the plane
nþ;xc ðDÞxþ nþ;yc ðDÞy þ nþ;zc ðDÞzþ x ¼ 0, where x ¼ �nþc � p
and p is arbitrary point in the plane (for example, one of
the vertices of the triangle). To reduce the error of compu-
tations, for the given triangle D we choose a � b � c as
right-handed permutation of x � y � z coordinates, such
that jnþ;cc j is maximized. If we denote projection of triangle
D to (a,b) plane by PD, then integrals over D can be
reduced to integrals over PD as follows:Z

D
adS ¼ jnþ;cc j

�1JPD
a ;

Z
D

bdS ¼ jnþ;cc j
�1JPD

b ;Z
D

cdS ¼ �jnþ;cc j
�1ðnþ;cc Þ

�1ðnþ;ac JPD
a þ nþb

c JPD
b þ xJPD

1 Þ;

ðA:3Þ
where the integral JPD

g is defined as JPD
g ¼

R
PD

g dadb.
Finally, Green’s Theorem in (a,b) plane is used to

reduce integrals
R

PD
g dadb of polynomial function g to

1D integrals over the edges.
Computation of integrals of arbitrary linear functions

follows the same path. The only difference is that at the final
stage one needs to compute 1D integrals of higher degree
polynomial function, which still can be done explicitly.
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