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Objectives

What are the perfect discretizations?

they preserve and mimic mathematical properties of physical systems;

they are accurate on adaptive smooth and non-smooth grids;
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Objectives

What are the perfect discretizations?

they preserve and mimic mathematical properties of physical systems;

they are accurate on adaptive smooth and non-smooth grids;

they can be used for a wide family of grids and operators.
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Model diffusion problem

We consider the elliptic equation

� �� � � �� � �
	 �

in

�
subject to the homogeneous Dirichlet b.c.

�	 


on
� ���

The problem can be reformulated as a system of first order equations:

� � � � 	 ���� 	 � � � ��

For simplicity we assume that

�	 �

.
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Support operator method (1/2)

Consider the mathematical identity:

�
��� �� � � � ��� �

�
� � � � � ��� 	

� �
� ��� � � �

Local support-operators (SO) methodology (for
�� � & �� � �):

1. define degrees of freedom for variables � and

�
;

2. discretize the identity using accurate quadrature rules;

3. choose a discrete approximation to the divergence operator, the prime
operator

!"#

;

4. derive the discrete approximation of the gradient operator, the derived
operator

$% & !
, from the discrete Green formula:

'( ) � $% & ! � )+*-, 	 � ' !"# ( ) � � )+*/. �0 � ) � ( )21 3 4( ) � � ) �
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Support operator method (2/2)

Applications of the SO methodology include:

Electromagnetics: discrete operators

!" #

,

$% & !
,

56 % 7
and

56 % 7

mimic:

�� � 89 � :	 
 � 89 � : �� � �	 


� 8 9 � :; � < ��� 	 � 8 9 � : <� ; ��� � � �
� ; = < � � � � 

CFD: discrete operators

!" #

and
$% & !

mimic:

� �� � �?>@ A ��� 	 � � �� � A� > ��� � � � > � � A� � � � 

Gas dynamics, poroelasticity, magnetic diffusion, radiation diffusion, etc...
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Mimetic discretizations (1/8)
Step 1 (degrees of freedom for � and

�

).

BB
BB

BB
B

C C
C C

C C
C C

C C

D D D D D D D D D D D D

E� )F E � )HG � ( )GE� ) 3 � ( )3

E� )JI � ( )I
E� )HK � ( )K

� )F � � )HK � � � � � � ) 3 are defined at the cell center and edge mid-points.( )K � � � � � ( )3 are defined at mid-points of cell edges. They approximate the
normal components of

�
, e.g.

( )3 L ��� � 3 �
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Mimetic discretizations (2/8)
Steps 2 (discrete identity).

�
�� � � � ��� L � !"# ( ) � F � )F MON M

� �
� ��� � � L � )PG ( )G M  G M � � )QI ( )I M  I M � � ) 3 ( )3 M  3 M � � )PK ( )K M  K M

�
��� �� � � � ��� L ' ( ) � $% & ! � )+* ,SR

f
d

R

f

d

d

d

T

L

Bf

f The vectors can be recovered uniquely at
four vertices of quadrilateral N . Let

'( ) � T )+*-, R 	 U
V

W
XZY [

M\ XM � ) X� ] ) X
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Mimetic discretizations (2/8)
Steps 2 (discrete identity).
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Mimetic discretizations (3/8)
Steps 3 (prime operator).

The prime operator

! "#

follows from the Gauss the-
orem: � � � �	 :�_^a`b� `dc e

UMON M � � ��� � f � f
d

R

f

d

d

d

T

L

Bf

f

Center-point quadrature gives

� !"# ( ) � F	 UMON M g ( )G M  G M � ( )I M  I M � ( )3 M  3 M � ( )K M  K M h �
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Mimetic discretizations (4/8)
Step 4 (derived operator).

Replacing integrals in the Green formula by their approximations, we get

$% & ! � )	 ij [�
klkmklk�k

M  G M � � )HG � � )F �M  I M � � )HI � � )F �M  3 M � � ) 3 � � )F �M  K M � � )HK � � )F �
nlnmnln�n

where 0 i � ( ) � T ) 1 	 '( ) � T )o*p, R

and

( )	 � ( )G � ( )I � ( )3 � ( )K � q . The local discretization reads
!" # ( ) 	 � ) �( ) 	 � $% & ! � )�
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Mimetic discretizations (5/8)
Short summary.

matrix

rj [� s t Wu W

;

discrete divergence and gradient operators mimic essential properties of the
continuous operators (local mass conservation, Green formula);

discretization and continuity conditions are separated;

we do not assume anything about a grid structure, i.e. the discretization
method is applicable to both conformal and non-conformal meshes.
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Mimetic discretizations (6/8)

� �
� �� � � L � )vG ( )G M  G M � � )PI ( )I M  I M � � ) 3 ( )3 M  3 M � � )vK ( )K M  K M �

BB
BB

BB
B

C C
C C

C C
C C

C C

D D D D D D D D D D D D

wx yzcell N|{ E� ){ G � ( ){ G
C C

C C
C C

C C
C C

} } } } } } } } } } }

~ ~ ~ ~ ~ ~ ~ ~ ~

w x yzcell N XE ( ) X 3 � � ) X 3

The global discretization is achieved by imposing the continuity of fluxes
( ){ G 	 � ( ) X 3

and interface intensities � ){ G 	 � ) X 3 �
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Mimetic discretizations (6/8)
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Mimetic discretizations (7/8)
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Mimetic discretizations (8/8)
Stencils of a stiffness matrix for interface intensities.
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Numerical experiments (1/4)

The derived mimetic discretizations are exact for linear solutions.
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Numerical experiments (2/4)
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� � ��� �� #itr CPU,s

AMR grids

0 256 7.00e-2 8.18e-2 12 0.05

1 556 1.64e-2 3.42e-2 15 0.14

2 988 3.74e-3 1.74e-2 16 0.28

3 3952 9.96e-4 7.57e-3 16 1.33

4 15808 2.40e-4 3.79e-3 17 6.21

Uniform grids

0 256 7.00e-2 8.18e-2 12 0.05

1 1024 1.79e-2 3.40e-2 13 0.27

2 4096 3.91e-3 1.62e-2 14 1.25

3 16384 9.44e-4 7.30e-3 15 5.58

4 65536 2.32e-4 3.76e-3 17 25.3

� ����� � ��� ��� ���� � � ��� � ��� � � �Z� � � � �� � � ��� � � � �
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Numerical experiments (3/4)
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Spherically symmetric
problem in   � ¡ coor-
dinates with the exact
solution:

� �¢ �	 £ £¤
¥ ¦ 
 � ¢ §
¥ � ¢ W
V 


when

¢ 0 
� £
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� �¢ �	 U 
 U
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¨� £0 ¢ 0 U
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Numerical experiments (4/4)
Let us consider the diffusion problem with strong material discontinuity

' �* 	 U 
 


at

� � � 
¨� £ � § � �O© � 
� £ � §	 
� V £¨�

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The locally fitted grids were generated by Shengtai Li (T-7).
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SO and mixed FE methods (1/1)
A connection of the SO method with a mixed-hybrid FE method can be
used to proof convergence of mimetic discretizations.

The numerical experiments with highly heterogenous diffusion coefficients
have shown that the black-box multigrid method (AMG by K.Stüben and
J.Ruge) is more robust in the case of SO discretizations.

In the case of conformal quadrilateral meshes, the SO and FE methods
result (asymptotically) in the same discretization errors; however, the FE
method requires a very accurate quadrature rule for integrating
Raviart-Thomas finite elements. The methods are identical when these
finite elements are used to derive the quadrature rule

'( ) � T )*-, .
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SO and FD methods (1/1)
In collaboration with M.Pernice (CCS-3), the SO method was compared with the
FD method by R.Ewing, R.Lazarov, and P.Vassilevki (1991):

the FD method works on rectangular locally refined grids;

in the case of smooth solutions, the FD method results in larger error (left
picture) on irregular grid interfaces:
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SO and CV methods (1/1)
The control-volume mixed FE method by T.Russell (2001):

the method does not preserve the uniform flow on irregular grids;

the principle difficulty is the scalar product in a space of fluxes.

The control-volume method on general polygonal meshes by T.Palmer (2001):

the method is exact for linear solutions;

the method results in non-symmetric matrices.

The SO method on general polygonal meshes (200?):

the method is exact for linear solutions;

the method results in symmetric positive definite matrices.
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Conclusion
the convergence of mimetic discretizations for the linear diffusion equation
is optimal on locally refined meshes in both Cartesian and   � ¡ geometries
(2nd order on smooth meshes but only 1st order for fluxes on random grids);

the mimetic discretizations are closely connected with mixed-hybrid FE
discretizations and more preferable than the discretizations based on CV or
FD methods;

a reduced system for interface intensities has the SPD coefficient matrix and
can be efficiently solved with a PCG method;

the symmetry breaking in the   � ¡ coordinate system has to be analysed.
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