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Increase Predictiveness of
Simulations

by

Incorporating Physical Principles
into Algorithms
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Polyhedra in nature

What partition of the 3D space into cells of equal volumeminimizesthe surface

area of cell faces?

Kelvin (1887) tetrakaidecahedron Weaire-Phelan (1994)

– p. 6/62



Polyhedra in CFD

Images are courtesy of CD-Adapco

Simulations ofPolyhedral Meshescan be
10 times fasterthan onTetrahedral Meshes
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Polyhedra in AMR

faces
9

faces
9

Locally refined andNon-matchingmeshes
are thePolyhedral Meshes
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Problems: Mesh effects

Lee, S.H., Jenny, P., Tchelepi, H.A., Comput. Geosciences, 6, 2001.

Mesh Imprint in the Solution is the
Problem forStandard Methods
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Problems: Curved Faces

Log scale of permeability Vertical cut of a hexahedral mesh

Curved FacesResult inO(1) Error
in theStandard Methods
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Mimetic Methods

Mimic Important Properties of the
Physical and Mathematical Models
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Mimetic Methods
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Mimetic Methods preserve Linear Solutions
for Problems with

Tensor CoefficientsonNon-smooth Meshes.
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Mimetic Methods

Mimetic Methods work onPolyhedral Meshes
while Standard Methods Fail
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Mimetic Methods

Mesh generated by CUBIT

Model Diffusion Problem

% curved ||u − uh||L2 ‖u − uh‖∞

0.00 7.86e-4 1.79e-4

0.05 7.80e-4 1.62e-4

0.44 6.69e-4 1.54e-4

2.25 3.54e-4 1.59e-5

Mimetic Methods reduce Error in Velocity

10 times treating only2% of Curved Faces
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Mimetic Methods

In Multi-scale Framework,Mimetic Methods

allows to useArbitrary Coarse-Scale Meshes.
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Pressure equation

second order stationary PDE:

−div (K∇p) = b in Ω

p = 0 on ∂Ω

mixed formulation:

div~u = b

~u = −K∇p

integrating 1st equation over mesh elementE, we get

(

DIVuh
)

E
= bh

E ,
(

DIV uh
)

E
=

1

|E|

∑

f∈∂E

uh
f |f |.
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How to discretize the gradient?
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Mimetic philosophy

Continuum Problem Mimetic Method

div~u = b

~u = −K∇p

DIVuh = bh

uh = −GRADph

K∇ = −div∗

ker(K∇)=constants

GRAD = −DIV∗

ker(GRAD)=constants
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Mimetic finite difference method

K∇ = −div∗ ker(K∇) = constants

Four-step methodology:

1. Define degrees of freedom forph ∈ Qh anduh ∈ Xh

2. Discretize the divergence operator,DIV

3. Equip discrete spaces with inner products[· , ·]Q and[· , ·]X

4. Derivethe gradient operator,GRAD, from discrete Green’s formula

GRAD = −DIV∗ ker(GRAD) = constants
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Step 1: Degrees of freedom

ph is constant on elementE

ph
E be the degree of freedom associated withE
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Step 1: Degrees of freedom

uh is constant on faces of elementE

uh
f be the flux associated with facef
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Step 2: Primary operator

Divergence theorem:
∫

E

div ~u =

∮

∂E

~u · ~n

implies
(

DIV uh
)

E
=

1

|E|

∑

f∈∂E

uh
f |f |
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Step 3: Discrete Green formula

[ph, qh]Q =
∑

E∈Ωh

ph
E qh

E |E| ≈

∫

Ω

pq
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Step 3: Discrete Green formula

[ph, qh]Q =
∑

E∈Ωh

ph
E qh

E |E| ≈

∫

Ω

pq

[uh, vh]X =
∑

E∈Ωh

[uh, vh]E ≈
∑

E∈Ωh

∫

E

(K−1~u) · ~v
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Step 3: Discrete Green formula

[ph, qh]Q =
∑

E∈Ωh

ph
E qh

E |E| ≈

∫

Ω

pq

[uh, vh]X =
∑

E∈Ωh

[uh, vh]E ≈
∑

E∈Ωh

∫

E

(K−1~u) · ~v

[uh, vh]E =

kE
∑

i,j=1

ME,i,j uh
fi

vh
fj

whereME = ME
T > 0 andkE is the number of faces ofE (kE = 6 for a

cube)
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Step 4: Derived operator

The Green formula
∫

Ω

~u · K
−1(K∇)p = −

∫

Ω

p div ~u

The discrete Green formula

[uh, GRAD ph]X = −[ph, DIV uh]Q

definesthe gradient operator.
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Step 4: Derived operator

The discrete Green formula

[uh, GRAD ph]X = −[ph, DIV uh]Q

definesthe gradient operator such that wealwayshave

GRAD = −DIV∗

with respect to inner products inQ andX.
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More about mimetic philosophy

In electromagnetics wemimic:

div curl = 0, curl grad = 0
∫

Ω

curl ~E · ~H =

∫

Ω

curl ~H · ~E

In CFD wemimic:
∫

Ω

grad ~u : T = −

∫

Ω

div T · ~u
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More about mimetic philosophy

Tensor viscosity methods:

ρ
∂u

∂t
= −∇p + div(µ∇u)

Theprimaryoperator is gradient.
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Solution method

The discrete problem is

uh = −GRAD ph

DIVuh = bh

Solution method is to introduce copies of face-fluxes and
obvious constraints:

uh
f,l = −uh

f,r

D
D
D
D
D
D
D

�
�
�
�
�
�
�
�
��

   
   

   
   

El •uh
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Er•uh
f,r
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Solution method
Formulas forGRAD, DIV, and the KKT theory give











MX BT CT

B 0 0

C 0 0





















u

p

λ











=











0

b

0











whereλ is the vector of Lagrange multipliers and





MX BT

B 0





is block diagonal. Elimination ofu andp gives

Sλ = g, S = S
T > 0.
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Solution method

Sλ = g, S = S
T > 0

"Multigrid is ready for real
problems!"
(D. Moulton, T-7)
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Example 1: Polygonal meshes

p(x, y) = x3y2 + x sin(2πxy) sin(2πy), K =





(x + 1)2 + y2 −xy

−xy (x + 1)2




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Example 1: Polygonal meshes

p(x, y) = x3y2 + x sin(2πxy) sin(2πy), K =





(x + 1)2 + y2 −xy
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Example 2: Non-matching meshes
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K1 = 1, K2 = 106

aspect ratio variations:

167 < max
cells

maxk ℓk

mink ℓk
< 2024.

exact solution is

p(x, y) =

8

<

:

7

16
−

K2

12K1

+
2K2

3K1

y3, y < 0.5,

y − y4, y ≥ 0.5.
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Example 3: AMR meshes
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we have degenerate polygons with 5, 6 and 7 edges.
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Mimetic Methods
2-nd order accurate for pressure

and1-storder accurate for velocity

onarbitrary meshesand for problems

with discontinuous tensorcoefficients
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Key element of the MFD method

is the inner product

[uh, vh]E ≈

∫

E

(K−1~u) · ~v
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Mimic octopus
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Key element of the MFD method

is the inner product

[uh, vh]E ≈

∫

E

(K−1~u) · ~v
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Stability

There exist positive constantsc andC such that

c

∫

E

|~v|2 ≤

∫

E

(K−1~v) · ~v ≤ C

∫

E

|~v|2

Wemimic it by requiring that

c|E|vT v ≤ vT
MEv ≤ C|E|vT v ∀v
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Consistency

Integration by parts formula is

∫

E

K
−1
E (KE∇p1) · ~v = −

∫

E

p1div~v +
∑

f∈∂E

∫

f

p1(~v · ~nf)

Wemimic it by requiring that forany linearp1:

(vh)T
MEu1 ≡ −(DIVvh)E

∫

E

p1 +
∑

f∈∂E

vh
f

∫

f

p1

whereu1 = (KE∇p1)I andvh is arbitrary.
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Consistency

(vh)T
ME u1 ≡ −(DIVvh)E

∫

E

p1 +
∑

f∈∂E

vh
f

∫

f

p1

Sincevh is arbitrary, we get thematrix equation:

ME u1(p1) = r(p1) ∀p1,

or, equivalently, MEN = R, where

N = [u1(x),u1(y)], R = [r(x), r(y)].
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Illustration of N and R

~n3

(x4, y4)(x0, y0)
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


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
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
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
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




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










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|ℓ3|(x3 − x0) |ℓ3|(y3 − y0)
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












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Cute lemma

Lemma.
N

T
R = R

T
N = |E|KE.

Proof.

|E|(KE)1,1 =

∫

E

(KE∇x) · ∇(x − x0)

=

∫

∂E

(KE∇x · ~n)(x − x0) =
∑

i

(u1(x))i

∫

fi

(x − x0)

=
∑

i

(u1(x))i|ℓi|(xi − x0) =
∑

i

Ni,1Ri,1 = (NT
R)1,1

Similarly,

|E|(KE)2,1 =

∫

E

KE∇y · ∇(x − x0) =

∫

∂E

(KE∇y · ~n)(x − x0) = (NT
R)2,1
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Family of solutions

Theorem. Let columns ofC spanker(NT ), i.e.

N
T

C = 0 and C
T

N = 0.

Let U be an SPD matrix. Then,

ME =
1

|E|
R K

−1
E R

T + C U C
T

is the SPD matrix and solves

MEN = R.
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KKT theory requires onlyM−1
E
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Derivation of M
−1
E

Theorem. Let columns ofD spanker(RT ), i.e.

R
T

D = 0 and D
T

R = 0.

Let Ũ be an SPD matrix. Then,

M
−1
E =

1

|E|
N K

−1
E N

T + D Ũ D
T

is the SPD matrix and solves

M
−1
E R = N.
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Implementation issues

M
−1
E =

1

|E|
N K

−1
E N

T + D Ũ D
T

Let R̃ obtained by orthonormalizing columns ofR,

Ũ = ũ I, and ũ =
trace(K−1

E )

|E|
.

Then,

M
−1
E =

1

|E|
N K

−1
E N

T + ũ(I − R̃R̃
T )

computing ofM−1
E requires(2d + 1)k2

E + 4d2kE ops.
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Mimetic Methods
work on

Generalized Polyhedral Meshes
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Example 1: Standard method fail
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MFE: velocity
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Example 2: Treating curved faces

68% of interior mesh

faces are non-planar
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Examples 3: Twisted meshes

663 polyhedrons with upto 23 faces

numerical results:
feature top bottom

CN (min) 1.002 1.009

CN (max) 2.500 115.0

CN (avg) 1.316 2.194

‖p − ph‖Q 8.39e-3 1.76e-2

‖u − uh‖X 9.20e-2 2.20e-1

‖p − ph‖∞ 1.68e-2 2.95e-2

‖u − uh‖∞ 2.43e-1 5.70e-1
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Implementation issues
the mesh facef is calledstrongly curved if

|~n − ~Nf | > σ|f |1/2 ~Nf =
1

|f |

∫

f

~n.
~Nf

~af,1
~af,2

On curved faces, we use 3 d.o.f.:

uh
f · ~Nf =

1

|f |

∫

f

~u · ~n

and

uh
f · ~af,i =

1

|f |

∫

f

~u · ~af,i i = 1, 2.

on moderately curved faces: on strongly curved faces:

uh
E1,f · ~Nf = uh

E2,f · ~Nf uh
E1,f = uh

E2,f
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Implementation issues

matricesME andM
−1

E are generated as before using extension of the cute

lemma to curved faces.

each moderately curved face introduce 2 interface velocityunknowns:

ME =





M11

E M12

E

M21

E M22

E





(internal d.o.f.)

solver requires only
(

M11

E − M12

E

[

M22

E

]−1
M21

E

)−1

which is the first

diagonal block ofM−1

E !
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Concluding remarks

Mimetic methodsmimic important properties of the
physical and mathematical models.

MMs are much less sensitive to mesh
non-smoothness than the standard methods.

MMs work on polyhedral meshes while standard
methods fails.

MMs are inexpensive and easy to implement.

Solid mathematical theory ofMMs does exists and
grows.
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High-order Mimetic Methods

(with PhD studentVitaliy Gyrya , PennState)
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Introducing velocity moments

~u 99K {u0
e, u1

e} ≈

{∫

e

(~u · ~ne) ds,

∫

e

s (~u · ~ne) ds

}
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Mimicking again...

Integration by parts formula is
∫

E

∇p2 · ~v = −

∫

E

p2div~v +
∑

f∈∂E

∫

f

p2(~v · ~nf)

Wemimic it by requiring that forany quadraticp2:

(vh)T
ME u2 ≡ −(DIVvh)E

∫

E

p2 +
∑

f∈∂E

Qf(p
2, vh

f )

whereu2 = (KE∇p2)I andQf is a quadrature.
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Illustrating example

Low-order MFD: ||p − ph||L2 ∼ h2, ||u − uh||L2 ∼ h1

High-order MFD: ||p − ph||L2 ∼ h2, ||u − uh||L2 ∼ h2
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MPFA-type Mimetic Methods

(with Ivan Yotov, University of Pittsburgh)
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Local flux formula

[uh, vh]E =
∑

c∈E

[uh, vh]E,c,

TheKey Assumptionis that
only velocities unknowns on facets of cornerc are

involved in[·, ·]E,c
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MPFA-MFD vs MPFA

MPFA-MFD results in symmetric discretizations on
simplicial meshes for full permeability tensors.

MPFA-MFD produces a family of discretization
methods.

Theoretical analysis becomes possible with
previously developed techniques.

On general non-smooth and non-simplicial meshes
both MPFA-MFD and MPFA result in
non-symmetric schemes.
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Illustrative example

1/h ||p − ph||L2 ||p − ph||∞ ||u − uh||L2 ||u − uh||∞

8 1.14e-2 4.06e-2 2.94e-1 2.67e-0

16 2.93e-3 1.18e-2 1.24e-1 1.14e-0

32 7.13e-4 3.23e-3 5.97e-2 5.12e-1

64 1.77e-4 9.49e-4 3.01e-2 3.56e-1

128 4.48e-5 2.58e-4 1.52e-2 1.98e-1

Rate 2.00 1.82 1.06 0.92
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Concluding remarks

Mimetic methodsmimic important properties of the
physical and mathematical models.

MMs are much less sensitive to mesh
non-smoothness than the standard methods.

MMs work on polyhedral meshes while standard
methods fails.

MMs are inexpensive and easy to implement.

Solid mathematical theory ofMMs does exist and
grows.
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