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Abstract

In order to explore the validity of asymptotic models for water waves, we study in-
teractions of finite amplitude solitary waves of the Euler equations and their approx-
imate models, including the Korteweg-de Vries equation, the Boussinesq equations,
and the Green-Naghdi equations. To simulate fully nonlinear surface wave dynamics,
we present a new numerical scheme to solve a system of exact one-dimensional evo-
lution equations reduced from the Euler equations. Traveling wave solutions of this
new system are compared with those of the asymptotic models and the relationship
among the speed, amplitude and mass of solitary waves are examined. Two types of
interactions, head-on and overtaking collisions, of two solitary waves are described
in detail. ;From our numerical simulations, we conclude that the Green-Naghdi
equations much better describe the dynamics of solitary waves of finite amplitude
than the weakly nonlinear asymptotic models.

1 Introduction

We consider the evolution of strongly nonlinear long waves on the free surface in a ho-
mogeneous layer of an ideal fluid governed by the Euler equations. Two of important
approaches to this problem include solving the Euler equations via numerical methods,
and studying much simpler models derived from the original system under different ap-
proximations. The objective of this study is to combine the two approaches and explore
the validity of various approximate models by systematically comparing numerical solu-
tions of the Euler equations for interactions of finite amplitude solitary waves with those
of the approximate models.

*Present address: Dept. of Mathematical Sciences, Stevens Institute of Technology, Hoboken, NJ
07030
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Since the full system is often too complicated to analyze directly, it is quite common
to work with much simpler models to understand various physical processes of interest.
Various model equations have been proposed to approximate the original system under
different physical conditions (for example, see Choi, 1995). Under the assumption of
small wave amplitude and long wavelength, weakly nonlinear long wave models such as
the Korteweg-deVries (KdV) and the Boussinesq equations (Korteweg & de Vries 1895;
Boussinesq 1877) have made important contributions to both the physical understanding
of nonlinear wave phenomena and the development of mathematical theories (Scott et
al 1973). However the weakly nonlinear models cease to be valid for strongly nonlinear
regime e.g. they do not correctly describe the waves of large amplitude. Relaxing the
assumption of small amplitude, it has been shown that the higher-order nonlinear long
wave models such as the Green-Naghdi (GN) equations (Green & Naughdi 1976) can be
also derived from the Euler equations by using an asymptotic expansion method (Choi &
Camassa 1999a).

A number of numerical methods have been developed to solve the Euler equations.
Among them, the most widely used are the Fourier method and the boundary integral
method. Expressing the wave profile and the velocity potential as the Fourier series in
horizontal space, Fenton & Rienecker (1982) combined the fast Fourier transform with the
leap-frog scheme for the time evolution to numerically solve the problem. The boundary
integral method is based on parametrizing the free surface using the Lagrangian coordi-
nates and, by applying the Green’s theorem, the velocity potential is expressed in terms of
a distribution of singularities on the free surface. After the pioneering work by Longuet-
Higgins & Cokelet (1976), this method has been further developed by using various types
of singularities and discretizations for singular integrals in the sense of Cauchy principal
value.

The present numerical method to solve the Euler equations is different from these two
methods aforementioned. Combining the conformal mapping of the fluid region of interest
to a strip with the Hamiltonian structure of the Euler equations, Dyachenko, Zakharov &
Kuznetsov (1996) have derived a closed system of pseudo-differential evolution equations
for the free surface elevation and the velocity potential on the parameterized free surface.
This idea was further developed and tested by Choi & Camassa (1999b) for periodic
traveling waves. The new formulation provides a novel way of computing the evolution
of fully nonlinear surface waves in the sense that it does not require approximation of
complicated singular integrals and it is easy and straightforward to implement by using
the fast Fourier transformation.

The paper is organized as follows. In the next section, we present a numerical scheme
to solve the new exact evolution equations. In §3, we review the derivation of model
equations: the KdV equation, the Boussinesq equations, and the GN equations, and show
the relationships between them. In §4, we compare our numerical solutions for solitary
waves with those for the models presented in §3. In §5, we study two-solitary wave
collisions and and discuss interaction processes in detail.
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2 Exact evolution equations

A two-dimensional ideal flow between the free surface at y = ((x,t) and the flat bottom

at y = —h, is governed by the Euler equations, written in terms of the velocity potential
®(x,y,1):
&,y + @y =0, —h<y<(, —oo<z< 00,
®, = ¢+ ¢, —o0 < x <00, y=_(x,1) (2.1)
®, + VO + gy =S+ Pr/p, —c <z <00, y=_{_(z,1) '
o, =0, —0<r<oo, y=-—h

where p is the fluid density, S = 0(,/(1 + ¢2)3/? is the surface tension, and Pg(z,t) is a
known external atmospheric pressure.

Following the work by Dyachenko et al (1996) and Choi & Camassa (1999b), let
z(€,m,t) = x(&,n,t) + iy(€,m,t) be an analytic function in the horizontal strip —h <
n < 0, where z — £ is periodic in £ with the period [/, such that z maps the rectangle of
—1/2 < € <1/2, —h < 1 < 0 onto the fluid domain. The mapping function is assumed
to satisfy y(&,0,t) = ((z(£,0,t),t) and y(&, —h,t) = —h for any & € [—1/2,1/2]. Tt follows
from the Cauchy-Riemann equations that the parametrized functions x(§,n,t), y(&,n,t),
o(&,n,t) = &(x(&,n,t),y(€,m,t),t) and its harmonic conjugate (&, n,t) are related by
Fourier multiplier transforms (Choi & Camassa 1999b) in the sense that, if the Fourier
series of y(&,0,t) and ¢(&,0,t) are given by

y(£,0,t) = ap+ Y _ [ay cos(2mké /1) + by sin(2mke /1)),
k=1

»(&,0,t) = ag + [ak cos(2mkE /1) + By sin(27rk§/l)},

]2

=~
Il

1

then, for any 1 € [—h, 0], we have

y(&,n,t) = aoi_—; hn + ag + Z Sh[ak cos(2mkE /1) + by sin(2mkE/1)],
k=1
(€, n,t) = %77 + g + Z Sh o cos(2mkE /1) + By sin(2mkE /)],
k=1
o (2.2)
(&, t) = %o 2_ hf + x0 + ZC’h [ag sin(2mkE /1) — by, cos(2mkE /1)],
k=1

B(Em,t) = Z€ + 60+ Y Ci [ sin(2mke/1) — B cos(2mke/1)],
k=1
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for Sy, = sinh [27k(n + h) /1] /sinh(27kh/l) and Cj, = cosh |27k (n + k) /1] /sinh(27kh/1).
In (2.2), h and oy are functions of time such that h = ag + h and oy = ch for constant ¢
to be fixed from the initial condition. Then x; and ¢; are periodic functions of &.

On the free surface at n = 0, we obtain, from (2.2), the following relations

re=14+Tye,  dg=c+Te,

to give
r=§+zo+ Ty, p=cE+ oo+ T,

where zy and ¢y are functions of time to be determined and 7" is the Fourier multiplier
operator defined by

T[y) = S coth(2mkh/1) [ sin(2rhe /1) — by cos(2mhé /)]

which we call as the T-transform. For deep water (h — o0), this becomes the Hilbert
transformation. By substituting the expressions for x, y, ¢ and ¥ at n = 0 into the bound-
ary conditions at the free surface in (2.1), we obtain the following evolution equations

xp = —x¢ T [%] + e <%> )
Y = —T¢ (%) —ye T [%] ; (2.3)

b+ 0T | %] + o1 (6 - 2) 4w =5~ Pelp

for J = a7 + y? and the surface tension S = o (yeewe — yewee)/J**. These are the exact
parametric equations governing the surface waves in water of finite depth. Since x and y
are related by the Cauchy-Riemann relationship, it seems to be sufficient to choose one
of the first two equations with the third equation in (2.3) to solve the system but we still
need all of them in our numerical scheme to determine both xy(t) and ay(t) from the first
two equations.

To numerically solve the equations (2.3), we use a higher-order adaptive predictor-
corrector scheme for time, i.e. the Adams-Bashforth scheme as the predictor and the
Adams-Moulton method as the corrector. At each time step, we express the solution
(x,y, ¢,1) as the discrete Fourier series with respect to variable £ and use the fast Fourier
transform (Staley 1999) to compute the solution, its derivatives and T-transform.

In the absence of surface tension and atmospheric external pressure, the surface wave
problem possesses nine one-parameter symmetry groups (Benjamin and Olver 1982), from
which eight conserved quantities can be found. In order to check the accuracy of our
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numerical scheme, we compute the following three conserved quantities: conservation of
mass
12
JRIGEGES
—1/2
conservation of the horizontal momentum
1/2
Pe(&)y(E) de,

—1/2

and conservation of energy

1/2
[, (6e€©) + suerzc©) e
where we express the conserved quantities using the parametrized formulation defined
in the interval [—[/2,1/2]. The absolute error of these conserved quantities is usually at
the order of 107* and the relative error is O(1073). To deal with the aliasing due to
the full nonlinearity of the problem and numerical errors, we have introduced artificial
damping terms into the three equations in (2.3), such as v A& zge, v AL yee and v A ¢y,
respectively, where A is the spatial step size satisfying |A¢| < 0.12 and v is usually
chosen in the range between 0.01 and 0.05.

3 Approximate model equations

We consider the model equations for nonlinear long waves in shallow water: the KdV,
Boussinesq and GN equations. Here we briefly sketch the derivation by assuming the
typical wavelength [ is much greater than the water depth h and check the domain of
validity of these models.

By substituting z = IX, y = h(Y — 1), t =T /cy, ¢ = h(H — 1), ® = ¢yl + cit and
¢z = gh into the water wave equations (2.1) with & = Pr = 0, we obtain the following
dimensionless equations

Eoxx + vy =0, 0<Y <H,
Eor+ 3@k +¢y) +E€H =0, Y =H,
EHr + €Hxpx = @y, Y =~H,
(py:(), YZO,

where ¢ = h/l. For small ¢ < 1 for long waves, the velocity potential ¢, satisfying the
Laplace equation and the bottom boundary condition at ¥ = 0, takes the asymptotic
expansion of

(3.1)

_ 0 (_1)k€2ky2k anf<X, T)
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Substituting the expansion for ¢ in (3.1) into the free surface boundary conditions at
Y = H yields the following equations for H and w = f,

2
Hy o+ (Hu)x = S(HYwxx)x +O(),
2

€
wr +wwx + Hxy = g[HZCUJXT'FwaX —’LU%() X +O(€4).

(3.2)

By using px = w — €€H?*wxx/2 + 0(64), the depth-mean horizontal velocity u can be
found as

2H2
C wxx +O0(eY) (3.3)

1 [H
uzﬁ/o oxdY =w —

and the system (3.2) can be rewritten, in terms of H and u, as

Hr+ (Hu)x =0,
€2 (3.4)
ur +uux + Hy = — [H3(uXT +uuxx — ug()] +O(eh,
3H X
where we have used, from (3.3), w = u+ e2H?uxx /6 + O(e*). System (3.4) was originally
derived by Green & Naghdi (1976) by using the so-called ‘direct-sheet’ theory but here
we show the same system can be derived by an asymptotic expansion method. The
method used here to derive the GN equations is analogous to that of Whitham (1974) for
the Boussinesq equations and an alternative can be found in Choi & Camassa (1999a).
Notice that the first equation in the above system is exact, while the second equation
from conservation of momentum contains an error of O(e*). Since we have imposed no
assumption on wave amplitude, the GN equations should behave as good as the Euler
equations even for large amplitude waves as long as the long-wave approximation is valid.
When we use the horizontal velocity defined at a certain depth instead of the depth mean
velocity u in (3.4), we have other forms of equations, (for example, the system by Wei et
al 1995), which are all asymptotically equivalent to (3.4).
Substituting H = 1 + o and u = aii for a = a/h into the GN equations (3.4) leads,
after dropping O(ae?) for weakly nonlinear waves, to the Boussinesq equations:

Cr+ [(1 + af)a] =0,
X
. &2 (3.5)
ur + oty + (x = gﬂXXT-
The KdV equation can be derived from the Boussinesq system (3.5) by the assumption of
uni-directional waves as shown by Whitham (1974).
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In dimensional variables, we can rewrite the GN equations (3.4) as

77t+(un)w:0a n:h—{_Ca

1 d 3.6
Ut + Uy + GT)y = % [UQE(UU:U)La ( )
where we have used d(nu;)/dt = (nuy); + u(nuy),. We can also rewrite, in dimensional
forms, the Boussinesq equations (3.5) as

G+ [(h+Cu) =0, (3.7
h2
Ut+UUg;+ng = ?u.mvta
and the KdV equation as
300 C0h2
x a7 6z — Szzz — Y, 3.8
Gt coGot+ 5 Gl + =G 0 (3.8)

where ¢y = \/gh.

4 Solitary wave solutions

Here we compare solitary waves of the Euler equations with those of the three model
equations considered in the preceding section. While we have to find solitary wave solu-
tions numerically for the Euler and Boussinesq equations, we have explicit solutions for
the KdV and GN equations given by

2h(c — ¢p) 3(c—co) (x — ct)

= sech? ,
Crav @ s h
Con = —c soch? 3(c2 = @) (z — ct)

2ch ’

respectively, for given wave speed c.

4.1 Numerical methods

The existence of solitary waves and their properties have been studied extensively. By
using the KdV scaling, Friedrichs & Hyers (1954) and Beale (1977) proved the existence
of solitary waves in the weakly nonlinear regime where the Froude number F' = c¢/+/gh
is greater than but close to one and the solitary waves of the KdV equation approximate
those of the Euler equations. Amick & Toland (1981) later showed the existence of solitary
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waves as the limit of periodic waves even beyond the weakly nonlinear regime. Based on
their results, we numerically find periodic waves of long wavelength as approximations to
solitary waves of the Euler equations.

We look for travelling waves of the form

r=E+T(E—ct), y=yE—ct), ¢=0(E—ct)+d(—ct), v=19(E—ct),

where (= Ty), y, ¥ and ¢ are periodic functions of s = & — ¢t with the period ! and
§ is a constant to be determined. Here we assume that y and ¢ satisfy the boundary
condition y(l/2) = &g (Z/Q) + 6 =0, and y is even and symmetric with respect to s = 0.
As | — o0, y converges to a solitary wave decaying to zero at infinity (Amick & Toland
1981). Substituting the travelling waves into the kinematic equation y,x¢ — z4ye = —
(Choi & Camassa 1999b), we obtain cys = 1)s. Then by using the fact that Z and ¢ are
harmonic conjugates of y and 1), respectively, we have that ¢,(s) = c(i"s(s) — T (l/2)),
i.e. § = —ci;(1/2). Substituting these relations into the third equation of (2.3) under
the condition that the surface tension S and the external pressure Pg are negligible, we
obtain the equation for the free surface at n =0

2 2 _ x? (l/ 2)
Tet Y =75, 73
1 —2gy/c
which can be reduced to, after substituting s = h¢, © = h#, n = hf) and y = hj, the
following dimensionless equation

71— 2ghg/c 7 (41)

For simplicity, we will drop the accent”. Because the Euler equations have a one-parameter
scaling symmetry group (Az, Ay, A3t )\%qﬁ) (Benjamin & Olver 1982) for any A > 0, with-
out loss of generality, we set A = 1 throughout our numerical scheme described below.

Let w and 6 be real-valued functions such that z; = z¢ + 1y, = e+ and, since 2
is an analytic function of £ + in, w and 0 satisfy the Cauchy-Riemann equations. After
using the KdV scaling (Friedrichs & Hyers 1954) £* = a, 0* = =20 and w* = a"*w, the
equation for the free surface given by (4.1) can be rewritten as

le“2 (3“’_2’”“/2)_1) sina®9 atn=0, (4.2)

w g
3 a3

where e** = ¢2/(gh) and we have dropped the asterisks again for simplicity. ;From the
Cauchy-Riemann relations, the exponent in (4.2) at n = 0 can be found as

3w — 2w(l/2) = 3T,[0] — 2TL[0(1/2)]+ < w > = M,[4], (4.3)
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where T,[0] is the scaled T-transform, in complex form, given by

T,[0] = —ia Y coth(2mak /1) cye® e/,

k#0

and < w > is the average value of w over its period defined by

1 1 a’T,0 3

<w>=—-=log |- [ €’ cos(a’h)dE| .

a? L Jo
By using (4.3), equation (4.2) can be written in the following form

|1 a2 (o)

flol=60—-(G-1)" [56 (male1-1) sin(a®0) — 9] =0, (4.4)

where the operator G[f] is defined by

Gl0] = a ) _ Kl coth(2mak/1) cye®™*</! .
k#£0

In order to solve (4.4) by using the Newton’s method, we replace 6 by 6, + v,, where 0,
is the result from the previous iteration and v, is the correction, and we linearize (4.4)
with respect to v, to have fy[0,] v, = —f[0,], where fy is the functional derivative of f
with respect to 6, given by

1 - M, 2 _
folbn] vn = v — (G=1)"1 {—ea (Ma[6:]-1) sin(a’d),) d +eé (Malon]-1) cos(a®0,) — 1| vy, .

a 69n
After we compute fy modulus its kernel, still denoted by fy, as an NxN matrix using
the Fast Fourier Transform for N Fourier modes, we solve v, = —f, '[0,] f(6,) iteratively

until v, is small enough.

Based on the fact that travelling waves of the KdV equation are close approximations
to those of the Euler equations for small amplitude waves (Friedrichs & Hyers 1954; Beale
1977), we use cnoidal wave solutions of the KdV equation as the initial guess to find
traveling wave solutions of (4.2) for sufficiently small ¢ > 0. Starting from the weakly
nonlinear regime, we gradually increase the parameter a (or, equivalently, increasing the
speed c¢), and use solutions for smaller waves as new initial guesses to compute higher
amplitude waves as a fixed point problem. In the weakly nonlinear regime, it takes
only six iterations for this scheme to reduce the error to sup |01 — 6,] < 107" and
sup | f(6,)] < 10713,

By using the method described here, we are able to compute solitary waves of the Eu-
ler equations with the Froude number up to F' = 1.27. Beyond F = 1.27, the numerical
computation of solitary waves shows high frequency disturbances due to the sharp steep-
ening of wave slope and requires us to increase the number of Fourier modes to reduce
numerical errors. Since it is not our objective to compute the highest solitary wave which
is known to have the discontinuity of wave slope, we allow the largest number of Fourier
modes to be N = 2! beyond which the computation is too expensive.
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4.2 Numerical results
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Figure 1: Comparison of solitary wave profiles at the Froude numbers of F' =1.0838, 1.2012
and 1.2691; Euler (solid curve), GN (dash-dotted curve), Boussinesq (dashed curve), and
KdV (dotted curve).

In figure 1, we compare wave profiles of various models for three different Froude
numbers F' = ¢/\/gh =1.0838, 1.2012, 1.2691. When the Froude number F is close to 1,
say 1 < F' < 1.1, solitary wave solutions of the KdV, Boussinesq and GN Equations are
very close to those of the Euler equations, as expected. However, as F' further increases,
solitary waves of the KAV equation start to deviate from those of the Euler equations
and, in particular, the wave amplitude is too small, implying the KdV solitary waves are
moving too fast for given wave amplitude. For the GN and Boussinesq equations, it is
really difficult to tell which model is better than the other by just comparing wave profiles;
see wave profiles for F' = 1.2012 and F' = 1.2691. The Boussinesq equations seem to have
solitary wave profiles closer to the Euler equations in terms of their width. For higher
Froude numbers, solitary waves of the GN equations are a little too wide compared with



4 SOLITARY WAVE SOLUTIONS 11

2.4

22+ 2 R

141

1.2

0.6

I I I
1 1.05 11 1.15 1.2 1.25 13

Froude number

Figure 2: Froude number F' versus mass of solitary wave M; Euler (solid curve), GN (dash-
dotted curve), Boussinesq (dashed curve), KdV (dotted curve) and Longuet-Higgins &
Fenton (circle). The GN equations show much better agreement with the Euler equations
than the weakly nonlinear models.

those of the Euler equations.

To make more quantitative comparisons, we measure the scaled mass of solitary waves
defined by M = [, ndx/h* and the scaled wave amplitude a/h for varying Froude number.
In order to verify our numerical solutions for the Euler equations, we also compare our
solutions with those by Longuet-Higgins (1974) and Longuet-Higgins & Fenton (1974). As
shown in figures 2 and 3, our computations of the dimensionless mass M and amplitude
a/h for the Euler equations differ from Longuet-Higgins and Fenton’s data only by 0.16%
and 0.35%, respectively, and this excellent agreement validates our numerical solutions.

As shown in figure 2, for the Froude number close to 1 (1 < F' < 1.1), the mass of
solitary wave of the three model equations agrees well with that of the Euler equations.
However, as F' continues to increase (1.1 < F < 1.2), the weakly nonlinear models such
as the KdV and Boussinesq equations cease to be valid, while the strongly nonlinear
long wave model (GN) shows much better agreement as long as the mass is concerned.
For waves of the Froude number equal to 1.2 or higher, solitary wave solutions from
the GN equations are also as poor as other models. Recalling that no assumption on
wave amplitude has been imposed in the derivation, the wider range of validity of the
GN equations can be easily understood but it still remains to be explained why the GN
equations are no longer valid beyond the Froude number around 1.2. At this point, it
is worth mentioning that the Froude number for the maximum wave is known to be
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Figure 3: Froude number F' versus wave amplitude a/h; Euler (solid curve), GN (dash-
dotted curve), Boussinesq (dashed curve), KdV (dotted curve) and Longuet-Higgins &
Fenton (circle). Notice that the KdV solitary wave of given wave amplitude is moving too
fast.

F = 1.286 (Longuet-Higgins & Fentons 1974). As the Froude number approaches this
value, the wave slope becomes steeper and the discontinuity in slope finally forms. In this
case the long wave approximation to derive any shallow water models is no longer valid
and this is why the GN solitary waves of large amplitude near the maximum height differ
from the Euler solitary waves. For a system of two fluids, Choi & Camassa (1999a) studied
the coupled GN equations describing strongly nonlinear long waves at the interface. At
the maximum wave amplitude, instead of having the slope discontinuity, internal solitary
wave was shown to become a front varying smoothly from one level to another. Therefore,
contrary to the case of surface gravity waves, the coupled GN equations for internal gravity
waves are valid even for very large solitary waves.

As shown in figure 3, for given Froude numbers, the wave amplitude of the KdV
equation is much smaller than that of the Euler equations, while the GN equations well
predict the wave amplitude for F' < 1.2. Another weakly nonlinear model, the Boussinesq
equations, seems to be much better than the KdV equation but it still over-predicts
wave amplitude for the whole range of Froude number. In conclusion, based on the
comparison between solitary wave solutions of different models, the GN equations show
better agreement with the Euler equations than the weakly nonlinear models.
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Figure 4: Head-on collision of two-solitary waves of the Euler equations (solid curve),
the GN Equations (dash-dotted curve) and the Boussinesq Equations (dashed curve),
respectively, with the Froude numbers of F' = 1.084 and F' = 1.172.

5 Interaction of two solitary waves

So far we have considered only steady, or time-independent, solutions and we will inves-
tigate the dynamical properties of solitary waves of different models in this section. The
interaction processes between two solitary waves are examined in detail for both head-on
and overtaking collisions. Throughout this section, time ¢ is non-dimensionalized by h/c.

For the case of head-on collision, we superpose two different solitary waves propagating
in the opposite directions. The Froude numbers of two solitary waves in figures 4 are
F = 1172 and F = 1.084. In order to match wave speeds, we choose different wave
amplitudes for solitary waves of different models: initially, the amplitudes of the larger
waves are Ap/h = 0.3847, Ag/h = 0.3727 and Ag/h = 0.3991 and those of the smaller
waves are a./h = 0.1765, a,/h = 0.1744 and a,/h = 0.1801 for the Euler, GN and
Boussinesq equations, respectively. Notice that the amplitudes of the larger waves are
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Figure 5: Trailing tails after the head-on collision shown in figure 4 at ¢ = 62.7; Euler
(solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve). Notice that the
GN equations well-capture small trailing waves after head-on collision.

1
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Figure 6: Final wave profiles for F' = 1.084 and F' = 1.172 after the head-on collision
shown in figure 4; Euler (solid curve), GN (dash-dotted curve) and Boussinesq (dashed
curve). After the head-on collision, the GN solitary waves are in phase with the Euler
solitary waves, while the Boussinesq equations underpredict the phase shift.
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Figure 7: Head-on collision of two-solitary waves of the Euler equations (solid curve), the
GN equations (dash-dotted curve) and Boussinesq equations (dashed curve), respectively,
with the Froude numbers F' = 1.172 and F' = 1.201.

beyond the weakly nonlinear regime. As shown in figure 4, two solitary waves merge and
form a single peak at ¢ = 25.9 with amplitudes of Ag/h = 0.5991, Az/h = 0.5802 and
Ap/h = 0.6052. The resultant height of the peak is always greater than the sum of two
wave amplitudes. They all shed off dispersive waves behind them after the collision and the
amplitudes of both waves slightly decrease. At t = 62.7, the larger waves have amplitudes
of Ag/h =0.3828, Ag/h = 0.3717 and Ag/h = 0.3989, the smaller waves have amplitudes
of a./h = 0.1748, az/h = 0.1725 and a,/h = 0.1800. The comparison of dispersive tails
after collision is shown in figure 5 and this shows that the GN equations maintain a higher
degree of accuracy to approximate the Euler equations than the Boussinesq equations. It
is surprising that this approximate model well captures small structures like trailing waves
in terms of both phase and amplitude. It is well-known that both waves after the head-on
collision are retarded from their own pathlines and this phase shift is the salient feature
of nonlinear interaction. The decay of kinetic energy by the retardation upon merging is
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Figure 8: Trailing tails after the head-on collision shown in figure 7 at ¢ = 62.7; Euler

(solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve).

Figure 9: Final wave profiles for F' = 1.172 and F' = 1.201 in the head-on collision shown
in figure 7; Euler (solid curve), GN (dash-dotted curve) and Boussinesq (dashed curve).
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Figure 10: Overtaking collision of two solitary waves of the Euler equations (solid curve),
the GN equations (dash-dotted curve), the Boussinesq equations (dashed curve) and the
KdV equation (dotted curve), respectively, with F' = 1.156 and F' = 1.0904. Unlike the
head-on collision, all solitary waves radiate much less trailing tails after their interactions.

compensated by the increase of potential energy, or the increase of the peak height (Wu
1995). (From the weakly nonlinear analysis (Wu 1995), the phase shift of one wave is
known to be proportional to the square root of amplitude of the other wave, more precisely
Az /h = (amplitude/3)!/2. This phase shift is too small to accurately measure from our
numerical solutions but the finite amplitude effect on the phase shift can be identified
from the relative positions of different solitary waves. As shown in figure 6, the weakly
nonlinear model (Boussinesq equations) underpredicts the phase shift after the collision,
while the GN equations are in good agreement in phase with the Euler equations. This
property becomes more noticeable when we conduct similar simulations for even higher
amplitude waves, as shown in figures 7, 8 and 9. In this simulation, we choose two solitary
waves whose Froude numbers are F' = 1.172 and F' = 1.201. The similar observations
for dispersive tails and phase shifts can be made as before. ;From our numerical results,
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Figure 11: Comparison of solitary wave profiles with F' = 1.156 and F' = 1.0904 after
the overtaking collision, shown in figure 10; Euler (solid curve), GN (dash-dotted curve),
Boussinesq (dashed curve) and the KdV equation (dotted curve), respectively.

we can conclude that the strong nonlinearity in the GN and Euler equations induces the
larger phase shift. ; From the two simulations for head-on collision, we can see that solitary
waves of these three systems are not solitons, 7.e. they do not maintain the same shape
after interactions, and dispersive tails become larger as solitary wave amplitudes increase.

Next we study overtaking-collision of two solitary waves of the KdV equation and
other three bi-directional equations. Figure 10 shows the overtaking collision between two
solitary waves with the Froude numbers of F' = 1.156 and F' = 1.09 in a frame moving
with the speed F' = 1.123. Initially, the amplitudes of the larger waves are Ax /h = 0.3114,
Ag/h = 0.3441, Ag/h = 0.3356 and Ap/h = 0.3561, and the amplitude of the smaller
waves are ay/h = 0.1808, a./h = 0.1911, a,/h = 0.1889 and a,/h = 0.1952 for the
KdV, Euler, GN and Boussinesq equations, respectively. Unlike the head-on collision
case, all solitary waves radiate much less trailing tails after their interactions. The wave
amplitude remains almost unchanged after interaction except the KdV solitons, which
exactly preserve their entities except phase shifts. It is interesting to observe that, during
the interaction of two solitary waves shown in figure 10, they never merge into a single
peak. Instead there is always a gap between their peaks and their amplitudes gradually
change in time: the larger amplitude decreases while the smaller amplitude is increasing.
This phenomenon was explained earlier by Wu (1995) for the Boussinesq equations, who
showed that there exists a critical ratio between two wave amplitudes, which is 3. Above
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Figure 12: Overtaking collision of two solitary waves of the Euler equations (solid curve),
the GN Equations (dash-dotted curve), the Boussinesq Equations (dashed curve) and
the KdV equation (dotted curve), respectively, with the Froude numbers F' = 1.172 and
F=1.024.

this ratio, two solitary waves merge together to form a single peak; two wave crests remain
separated throughout interactions below this ratio. The amplitude ratio in the simulation
shown in figure 10 is less than 3 and two solitary waves never merge. It is also known that
a larger solitary wave overtaking a smaller one experiences a forward phase shift, while the
smaller one suffers a backward phase shift. The height at the center of mass is known to
be the difference of two wave amplitudes. In figure 11, it is shown that the larger waves of
the GN and Euler equations move slightly more forward implying larger phase shifts than
those of the weakly nonlinear models, while the smaller waves of all models are almost in
phase.

In figure 12, we show two solitary-wave interactions with the Froude numbers F' =
1.172 and F' = 1.024. The simulation was performed in a frame moving with the speed
equal to F' = 1.098. Their amplitude ratio is about 7.8. In this case the larger wave merges
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Figure 13: Comparison of solitary wave profiles of the Froude numbers F' = 1.172 and F' =
1.024 after the overtaking collision shown in figure 12; Euler (solid curve), GN (dash-dotted
curve), Boussinesq (dashed curve) and the KdV equation (dotted curve), respectively.
Notice that, for overtaking collision, all three model equations well approximate the Euler
equations.

with the smaller wave to form a single peak during the interaction. The amplitude of the
peak is about Ag/h = 0.3208, smaller than that of the larger wave, Ag/h = 0.3847, as the
weakly nonlinear theory predicts. As shown in figure 13, both larger and smaller solitary
waves of all models are almost in phase after overtaking collision, except a slightly larger
phase shift in the smaller solitary wave of the Euler equations. In both simulations for the
overtaking case, we observe that solitary waves of the four systems have slightly different
phase shift after interactions, and all three model equations well approximate the Euler
equations.

6 Conclusion

It is a great challenge to solve the Euler equations for free surface problems due to their
highly nonlinear character that the shape of the boundary is unknown a priori. As
demonstrated in the simulations of two solitary wave interactions, the system of exact
one-dimensional evolution equations (2.3) has provided a relatively easy numerical for-
mulation compared with the boundary integral method. As mentioned in §2, we have
monitored three conserved quantities, mass, horizontal momentum and energy, of the Eu-
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ler equations in our simulations. The relative error of these conserved quantities is about
0.43% even for long simulations over dimensionless time ¢ = 1700 and our numerical
scheme is very reliable. Although we have considered only solitary waves, the new formu-
lation for surface gravity-capillary waves introduced in §2 is still valid to periodic waves
of arbitrary wavelength, and the scheme has a capacity to simulate long time behavior of
wave propagations numerically.

Comparing interaction processes between two solitary waves, we have demonstrated
that the correct dynamical properties of solitary waves can be captured only by the
strongly nonlinear model such as the GN equations, in particular, for the interaction
of bi-directional waves. Steady solitary wave solutions of the weakly nonlinear Boussi-
nesq equations in §4.2 seems to be a good approximation to exact solutions of the Euler
equations but their dynamics are quite different from strongly nonlinear models such as
the GN or Euler equations, as shown in §5. This may be explained by the fact that the
GN equations are a higher order nonlinear approximation to the Euler equations than the
other weakly nonlinear models shown in §3.

. From our numerical simulations, we conclude that the GN equations possess a wider
range of validity than any weakly nonlinear asymptotic models considered in this paper.
We believe that this system can be successfully applied to more realistic physical problems
in the coastal area with uneven bottom topography.
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