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Abstract. We present an ordinary differential equation mathematical model for the spread of
malaria in human and mosquito populations. Susceptible humans can be infected when they are
bitten by an infectious mosquito. They then progress through the exposed, infectious and recovered
classes, before re-entering the susceptible class. Susceptible mosquitoes can become infected when
they bite infectious or recovered humans, and once infected they move through the exposed and
infectious classes. Both species follow a logistic population model, with humans having immigration
and disease-induced death. We define a reproductive number, R0, for the number of secondary cases
that one infected individual will cause through the duration of the infectious period. We find the
disease-free equilibrium is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.
We prove the existence of at least one endemic equilibrium point for all R0 > 1. In the absence of
disease-induced death, we prove the transcritical bifurcation at R0 = 1 is supercritical (forward).
Numerical simulations show that for larger values of the disease-induced death rate, a subcritical
(backward) bifurcation is possible at R0 = 1.

1. Introduction. Malaria is an infectious disease caused by the Plasmodium
parasite and transmitted between humans through the bite of the female Anopheles
mosquito. An estimated 40% of the world’s population live in malaria endemic areas.
It kills about 1 to 3 million people a year, 75% of whom are African children. The inci-
dence of malaria has been growing recently due to increasing parasite drug-resistance
and mosquito insecticide-resistance. Therefore, it is important to understand the im-
portant parameters in the transmission of the disease and develop effective solution
strategies for its prevention and control.

Mathematical modeling of malaria began in 1911 with Ross’s model [25] and ma-
jor extensions are described in MacDonald’s 1957 book [20]. The first models were
two-dimensional with one variable representing humans and the other representing
mosquitoes. An important addition to the malaria models was the inclusion of ac-
quired immunity proposed by Dietz, Molineaux, and Thomas [11]. Further work on
acquired immunity in malaria has been conducted by Aron [2] and Bailey [5]. Ander-
son and May [1], Aron and May [3], Koella [15] and Nedelman [21] have written some
good reviews on the mathematical modeling of malaria. Some recent papers have also
included environmental effects [19], [27] and [28]; the spread of resistance to drugs [4]
and [16]; and the evolution of immunity [17].

Recently, Ngwa and Shu [23] and Ngwa [22] proposed an ordinary differential
equation (ODE) compartmental model for the spread of malaria with a Suscep-
tible-Exposed-Infectious-Recovered-Susceptible (SEIRS) pattern for humans and a
Susceptible-Exposed-Infectious (SEI) pattern for mosquitoes. In a PhD dissertation,
Chitnis [7] analyzed a similar model for malaria transmission. In this paper we extend
the Chitnis model.
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Fig. 1.1. Susceptible humans, Sh, can be infected when they are bitten by infectious mosquitoes.
They then progress through the exposed, Eh, infectious, Ih, and recovered, Rh, classes, before re-
entering the susceptible class. Susceptible mosquitoes, Sv, can become infected when they bite in-
fectious or recovered humans. The infected mosquitoes then move through the exposed, Ev, and
infectious, Iv, classes. Both species follow a logistic population model, with humans having ad-
ditional immigration and disease-induced death. Birth, death, and migration into and out of the
population are not shown in the figure.

The new model (Figure 1.1) divides the human population into 4 classes: sus-
ceptible, Sh, exposed, Eh, infectious, Ih, and recovered (immune), Rh. People enter
the susceptible class, either through birth (at a constant per capita rate) or through
immigration (at a constant rate). When an infectious mosquito bites a susceptible
human, there is some finite probability that the parasite (in the form of sporozoites)
will be passed on to the human and the person will move to the exposed class. The
parasite then travels to the liver where it develops into its next life stage. After
a certain period of time, the parasite (in the form of merozoites) enters the blood
stream, usually signaling the clinical onset of malaria. In our model, people from the
exposed class enter the infectious class at a rate that is the reciprocal of the duration
of the latent period. After some time, the infectious humans recover and move to the
recovered class. The recovered humans have some immunity to the disease and do
not get clinically ill, but they still harbour low levels of parasite in their blood stream
and can pass the infection to mosquitoes. After some period of time, they lose their
immunity and return to the susceptible class. Humans leave the population through
a density-dependent per capita emigration and natural death rate, and through a per
capita disease-induced death rate.

We divide the mosquito population into 3 classes: susceptible, Sv, exposed, Ev,
and infectious, Iv. Female mosquitoes (we do not include male mosquitoes in our
model because only female mosquitoes bite animals for blood meals) enter the sus-
ceptible class through birth. The parasite (in the form of gametocytes) enters the
mosquito, with some probability, when the mosquito bites an infectious human or a
recovered human (the probability of transmission of infection from a recovered human
is much lower than that from an infectious human); and the mosquito moves from
the susceptible to the exposed class. After some period of time, dependent on the
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ambient temperature and humidity, the parasite develops into sporozoites and enters
the mosquito’s salivary glands; and the mosquito moves from the exposed class to
the infectious class. The mosquito remains infectious for life. Mosquitoes leave the
population through a per capita density-dependent natural death rate.

The extension of the Ngwa and Shu model [23], includes human immigration,
excludes direct human recovery from the infectious to the susceptible class, and gen-
eralizes the mosquito biting rate so that it applies to wider ranges of populations.
In [23], the total number of mosquito bites on humans depends only on the number
of mosquitoes, while in our model, the total number of bites depends on both the
human and mosquito population sizes. Human migration is present throughout the
world and plays a large role in the epidemiology of diseases, including malaria. In
many parts of the developing world, there is rapid urbanization as many people leave
rural areas and migrate to cities in search of employment. We include this move-
ment as a constant immigration rate into the susceptible class. We do not include
immigration of infectious humans as we assume that most people who are sick will
not travel. We also exclude the movement of exposed humans because, given the
short time of the exposed stage, the number of exposed people is small. We make the
simplifying assumption that there is no immigration of recovered humans. We also
exclude the direct infectious-to-susceptible recovery that the model of Ngwa and Shu
[23] contains. This is a realistic simplifying assumption because most people show
some period of immunity before becoming susceptible again. As our model includes
an exponential distribution of movement from the recovered to the susceptible class,
it will include the quick return to susceptibility of some individuals. The model in
Chitnis [7] is the same as the model in this paper except for the mosquito biting rate,
which is the same as in [23].

We first describe the mathematical model including the definition of a domain
where the model is mathematically and epidemiologically well-posed. Next, we prove
the existence and stability of a disease-free equilibrium point, define the reproductive
number and describe the existence and stability of the endemic equilibrium point(s).

2. Malaria Model. The state variables (Table 2.1) and parameters (Table 2.2)
for the malaria model (Figure 1.1) satisfy the equations in (2.1). All parameters
are strictly positive with the exception of the disease-induced death rate, δh, which
is nonnegative. The mosquito birth rate is greater than the density-independent
mosquito death rate: ψv > µ1v, ensuring that we have a stable positive mosquito
population.

Table 2.1

The state variables for the malaria model (2.1).

Sh: Number of susceptible humans
Eh: Number of exposed humans
Ih: Number of infectious humans
Rh: Number of recovered (immune and asymptomatic, but slightly infectious)

humans
Sv: Number of susceptible mosquitoes
Ev: Number of exposed mosquitoes
Iv: Number of infectious mosquitoes
Nh: Total human population
Nv: Total mosquito population
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Table 2.2

The parameters for the malaria model (2.1) and their dimensions.

Λh: Immigration rate of humans. Humans × Time−1.
ψh: Per capita birth rate of humans. Time−1.
ψv: Per capita birth rate of mosquitoes. Time−1.
σv: Number of times one mosquito would want to bite humans per unit time,

if humans were freely available. This is a function of the mosquito’s
gonotrophic cycle (the amount of time a mosquito requires to produce eggs)
and its anthropophilic rate (its preference for human blood). Time−1.

σh: The maximum number of mosquito bites a human can have per unit time.
This is a function of the human’s exposed surface area. Time−1.

βhv: Probability of transmission of infection from an infectious mosquito to a
susceptible human given that a contact between the two occurs. Dimen-
sionless.

βvh: Probability of transmission of infection from an infectious human to a sus-
ceptible mosquito given that a contact between the two occurs. Dimension-
less.

β̃vh: Probability of transmission of infection from a recovered (asymptomatic
carrier) human to a susceptible mosquito given that a contact between the
two occurs. Dimensionless.

νh: Per capita rate of progression of humans from the exposed state to the
infectious state. 1/νh is the average duration of the latent period. Time−1.

νv: Per capita rate of progression of mosquitoes from the exposed state to the
infectious state. 1/νv is the average duration of the latent period. Time−1.

γh: Per capita recovery rate for humans from the infectious state to the recov-
ered state. 1/γh is the average duration of the infectious period. Time−1.

δh: Per capita disease-induced death rate for humans. Time−1.
ρh: Per capita rate of loss of immunity for humans. 1/ρh is the average duration

of the immune period. Time−1.
µ1h: Density independent part of the death (and emigration) rate for humans.

Time−1.
µ2h: Density dependent part of the death (and emigration) rate for humans.

Humans−1 × Time−1.
µ1v: Density independent part of the death rate for mosquitoes. Time−1.
µ2v: Density dependent part of the death rate for mosquitoes. Mosquitoes−1 ×

Time−1.

dSh

dt
= Λh + ψhNh + ρhRh − λh(t)Sh − fh(Nh)Sh (2.1a)

dEh

dt
= λh(t)Sh − νhEh − fh(Nh)Eh (2.1b)

dIh
dt

= νhEh − γhIh − fh(Nh)Ih − δhIh (2.1c)

dRh

dt
= γhIh − ρhRh − fh(Nh)Rh (2.1d)

dSv

dt
= ψvNv − λv(t)Sv − fv(Nv)Sv (2.1e)

dEv

dt
= λv(t)Sv − νvEv − fv(Nv)Ev (2.1f)

dIv
dt

= νvEv − fv(Nv)Iv (2.1g)
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where fh(Nh) = µ1h+µ2hNh is the per capita density-dependent death and emigration
rate for humans and fv(Nv) = µ1v +µ2vNv is the per capita density-dependent death
rate for mosquitoes. The total population sizes are Nh = Sh + Eh + Ih + Rh and
Nv = Sv + Ev + Iv with

dNh

dt
= Λh + ψhNh − fh(Nh)Nh − δhIh (2.2a)

dNv

dt
= ψvNv − fv(Nv)Nv (2.2b)

and the infection rates are

λh = bh(Nh, Nv) · βhv · Iv
Nv

and λv = bv(Nh, Nv) ·
(

βvh · Ih
Nh

+ β̃vh · Rh

Nh

)

. (2.3)

We define the force of infection from mosquitoes to humans, λh, as the product of the
number of mosquito bites that one human has per unit time, bh, the probability of
disease transmission from the mosquito to the human, βhv, and the probability that
the mosquito is infectious, Iv/Nv. We define the force of infection from humans to
mosquitoes, λv, as the sum of the force of infection from infectious humans and from
recovered humans. These are defined as the number of human bites one mosquito
has per unit time, bv; the probability of disease transmission from the human to the
mosquito, βvh and β̃vh; and the probability that the human is infectious or recovered,
Ih/Nh and Rh/Nh. Here, we model the total number of mosquito bites on humans as

b = b(Nh, Nv) =
σvNvσhNh

σvNv + σhNh

=
σvσh

σv(Nv/Nh) + σh

Nv (2.4)

so that the total number of mosquito-human contacts depends on the populations of
both species. We define bh = bh(Nh, Nv) = b(Nh, Nv)/Nh as the number of bites per
human per unit time, and bv = bv(Nh, Nv) = b(Nh, Nv)/Nv as the number of bites per
mosquito per unit time. In the limit that the mosquito population goes to zero or the
human population goes to infinity, the model reduces to that in Chitnis [7], and has
the same mosquito-human interaction as Ngwa and Shu [23] and the Ross-Macdonald
model (as described by Anderson and May [1]) where the total number of bites is
limited by the mosquito population. The number of bites per mosquito is then σv

(denoted by σvh in [7]) and the number of bites per human is σvNv/Nh. We show a
summary of the model of mosquito-human interactions and its limits in Table 2.3.

Table 2.3

Number of mosquito bites on humans in the malaria transmission model (2.1) and its limiting
cases with population changes.

Number of bites Number of bites Total number
per human, bh per mosquito, bv of bites, b

General σvNvσh

σvNv + σhNh

σvσhNh

σvNv + σhNh

σvNvσhNh

σvNv + σhNhModel
As Nh → ∞ σvNv

Nh

σv σvNvor Nv → 0
As Nh → 0

σh

σhNh

Nv

σhNhor Nv → ∞
5



To simplify the analysis of the malaria model (2.1), we work with fractional
quantities instead of actual populations by scaling the population of each class by the
total species population. We let:

eh =
Eh

Nh

, ih =
Ih
Nh

, rh =
Rh

Nh

, ev =
Ev

Nv

, and iv =
Iv
Nv

(2.5)

with

Sh = shNh = (1 − eh − ih − rh)Nh and Sv = svNv = (1 − ev − iv)Nv. (2.6)

Differentiating the scaling equations (2.5) and solving for the derivatives of the scaled
variables, we obtain

deh

dt
=

1

Nh

[

dEh

dt
− eh

dNh

dt

]

and
dev

dt
=

1

Nv

[

dEv

dt
− ev

dNv

dt

]

(2.7)

and so on for the other variables.
This creates a new seven-dimensional system of equations with two dimensions for

the two total population variables, Nh and Nv, and five dimensions for the fractional
population variables with disease, eh, ih, rh, ev, and iv:

deh

dt
=

(

σvσhNvβhviv
σvNv + σhNh

)

(1 − eh − ih − rh) −
(

νh + ψh +
Λh

Nh

)

eh + δhiheh (2.8a)

dih
dt

= νheh −
(

γh + δh + ψh +
Λh

Nh

)

ih + δhi
2
h (2.8b)

drh
dt

= γhih −
(

ρh + ψh +
Λh

Nh

)

rh + δhihrh (2.8c)

dNh

dt
= Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh (2.8d)

dev

dt
=

(

σvσhNh

σvNv + σhNh

)

(

βvhih + β̃vhrh

)

(1 − ev − iv) − (νv + ψv)ev (2.8e)

div
dt

= νvev − ψviv (2.8f)

dNv

dt
= ψvNv − (µ1v + µ2vNv)Nv (2.8g)

The model (2.8) is epidemiologically and mathematically well-posed in the domain,

D =
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This domain, D, is valid epidemiologically as the fractional populations, eh, ih, rh, ev,
and iv are all nonnegative and have sums over their species type that are less than or
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equal to 1. The human and mosquito populations, Nh andNv, are positive. We use the
notation f ′ to denote df/dt. We denote points in D by x = (eh, ih, rh, Nh, ev, iv, Nv).

Theorem 2.1. Assuming that the initial conditions lie in D, the system of
equations for the malaria model (2.8) has a unique solution that exists and remains
in D for all time t ≥ 0.

Proof. The right hand side of (2.8) is continuous with continuous partial deriva-
tives in D, so (2.8) has a unique solution. We now show that D is forward-invariant.
We can see from (2.8) that if eh = 0, then e′h ≥ 0; if ih = 0, then i′h ≥ 0; if rh = 0,
then r′h ≥ 0; if ev = 0, then e′v ≥ 0; and if iv = 0, then i′v ≥ 0. It is also true that if
eh + ih + rh = 1 then e′h + i′h + r′h < 0; and if ev + iv = 1 then e′v + i′v < 0. Finally,
we note that if Nh = 0, then N ′

h > 0 and if Nv = 0, then N ′

v = 0. If Nh > 0 at time
t = 0, then Nh > 0 for all t > 0. Similarly, if Nv > 0 at time t = 0, then Nv > 0 for
all t > 0. Therefore, none of the orbits can leave D and a unique solution exists for
all time.

3. Disease-Free Equilibrium Point and Reproductive Number.

3.1. Existence of the Disease-Free Equilibrium Point. Disease-free equi-
librium points are steady state solutions where there is no disease. We define the
“diseased” classes as the human or mosquito populations that are either exposed,
infectious or recovered; that is, eh, ih, rh, ev, and iv. We denote the positive orthant
in R

7 by R
7
+ and the boundary of R

7
+ by ∂R

7
+. The positive equilibrium human and

mosquito population values, in the absence of disease, for (2.8) are

N∗

h =
(ψh − µ1h) +

√

(ψh − µ1h)2 + 4µ2hΛh

2µ2h

and N∗

v =
ψv − µ1v

µ2v

(3.1)

Theorem 3.1. The malaria model (2.8) has exactly one equilibrium point, xdfe =
(0, 0, 0, N∗

h , 0, 0, N
∗

v ), with no disease in the population (on D ∩ ∂R
7
+).

Proof. We need to show that xdfe is an equilibrium point of (2.8); and that there
are no other equilibrium points on D ∩ ∂R

7
+. Substituting xdfe into (2.8) shows all

derivatives equal to zero, so xdfe is an equilibrium point. We know from Lemma A.1
that on D ∩ ∂R

7
+, eh = ih = rh = ev = iv = 0. For ih = 0, the only equilibrium point

for Nh from (2.8d) is N∗

h ; and the only equilibrium point for Nv in D from (2.8g) is
N∗

v . Thus, the only equilibrium point on D ∩ ∂R
7
+ is xdfe.

3.2. Reproductive Number. We use the next generation operator approach,
as described by Diekmann et al. in [10] to define the reproductive number, R0, as
the number of secondary infections that one infectious individual would create over
the duration of the infectious period provided that everyone else is susceptible. We
define the next generation operator, K, which provides the number of secondary
infections in humans and mosquitoes caused by one generation of infectious humans
and mosquitoes, as

K =

(

0 Khv

Kvh 0

)

(3.2)

where
Khv: The number of humans that one mosquito infects through its infectious

lifetime, assuming all humans are susceptible.
Kvh: The number of mosquitoes that one human infects through the duration of

the infectious period, assuming all mosquitoes are susceptible.
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Using the ideas of Hyman and Li [14], we define Khv and Kvh as a product of
the probability of surviving till the infectious state, the number of contacts per unit
time, the probability of transmission per contact and the duration of the infectious
period:

Khv =

(

νv

νv + µ1v + µ2vN∗

v

)

· b∗v · βhv ·
(

1

µ1v + µ2vN∗

v

)

(3.3a)

Kvh =

(

νh

νh + µ1h + µ2hN∗

h

)

· b∗h · βvh ·
(

1

γh + δh + µ1h + µ2hN∗

h

)

(3.3b)

+

(

νh

νh + µ1h + µ2hN∗

h

· γh

γh + δh + µ1h + µ2hN∗

h

)

· b∗h · β̃vh ·
(

1

ρh + µ1h + µ2hN∗

h

)

.

In (3.3a), νv/(νv + µ1v + µ2vN
∗

v ) is the probability that a mosquito will survive the
exposed state to become infectious1; b∗v = bv(N∗

h , N
∗

v ) is the number of contacts that
one mosquito has with humans per unit time; and 1/(µ1v + µ2vN

∗

v ) is the average
duration of the infectious lifetime of the mosquito. In (3.3b), the total number of
mosquitoes infected by one human is the sum of the new infections from the infectious
and from the recovered states of the human; νh/(νh +µ1h +µ2hN

∗

h) is the probability
that a human will survive the exposed state to become infectious; γh/(γh +δh +µ1h +
µ2hN

∗

h) is the probability that the human will then survive the infectious state to
move to the recovered state; b∗h = bh(N∗

h , N
∗

v ) is the number of contacts that one
human has with mosquitoes per unit time; 1/(γh + δh + µ1h + µ2hN

∗

h) is the average
duration of the infectious period of a human; and 1/(ρh +µ1h +µ2hN

∗

h) is the average
duration of the recovered period of a human.

We define R0 as the spectral radius of the next generation operator, K, i.e.,
R2

0 = KvhKhv. Then, R2
0 is the number of humans that one infectious human will

infect, through a generation of infections in mosquitoes, assuming that previously all
other humans and mosquitoes were susceptible.

Definition 3.2. We define the reproductive number, R0, as

R0 =
√

KvhKhv (3.4)

where Kvh and Khv are defined in (3.3).
The original definition of the reproductive number of the Ross-Macdonald model,

[1] and [3], and the Ngwa and Shu model [23], is equivalent to the square of this R0.
They ([1], [3], and [23]) use the traditional definition of the reproductive number which
approximates the number of secondary infections in humans caused by one infected
human, while the R0 in Definition 3.2 is consistent with the definition given by the
next generation operator approach [10] which approximates the number of secondary
infections due to one infected individual (be it human or mosquito). Our definition
of R0 includes the generation of infections in mosquitoes, so is the square root of the
original definition. The threshold condition for both definitions is the same.

3.3. Stability of the Disease-Free Equilibrium Point.

1In defining periods of time and probabilities for R0, we use the original system of equations
(2.1) and not the scaled equations (2.8). As the two models are equivalent, the reproductive number
is the same with either definition: µ1h + µ2hN

∗
h

= ψh + Λh/N
∗
h

and µ1v + µ2vN∗
v = ψv .
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Theorem 3.3. The disease-free equilibrium point, xdfe, is locally asymptotically
stable if R0 < 1 and unstable if R0 > 1.

The proof of this theorem is in Appendix A.1.

4. Endemic Equilibrium Points. Endemic equilibrium points are steady state
solutions where the disease persists in the population (all state variables are positive).
We use general bifurcation theory to prove the existence of at least one endemic
equilibrium point for all R0 > 1. We prove that the transcritical bifurcation at
R0 = 1 is supercritical (forward) when δh = 0 (there is no disease-induced death).
However, numerical results show that the bifurcation can be subcritical (backward)
for some positive values of δh, giving rise to endemic equilibria for R0 < 1.

We first rewrite the equilibrium equations for u = (eh, ev) in (2.8) as a nonlinear
eigenvalue problem in a Banach space:

u = G(ζ, u) = ζLu+ h(ζ, u) (4.1)

where u ∈ Y ⊂ R
2, with Euclidean norm, ‖ · ‖; ζ ∈ Z ⊂ R is the bifurcation

parameter; L is a compact linear map on Y ; and h(ζ, u) is O(‖u‖2) uniformly on
bounded ζ intervals. We require that both Y and Z be open and bounded sets,
and that Y contains the point, 0. We define Z as the open and bounded set, Z =
{ζ ∈ R| −MZ < ζ < MZ}. This set is defined to include the characteristic values
(reciprocals of eigenvalues) of L so there is minimum value that MZ can have, but
MZ may be arbitrarily large. We use

ζ =
σvσh

σvN∗

v + σhN∗

h

(4.2)

for the bifurcation parameter. We also define Ω = Z × Y so that the pair (ζ, u) ∈ Ω.
We denote the boundary of Ω by ∂Ω.

A corollary by Rabinowitz [24] (Corollary 1.12) states that if ζ0 ∈ Z is a char-
acteristic value of L of odd multiplicity, then there exists a continuum of nontrivial
solution-pairs, (ζ, u) of (4.1) that intersects the trivial solution (that is, (ζ, 0) for any

ζ) at (ζ0, 0) and either meets ∂Ω or meets (ζ̂0, 0) where ζ̂0 is also a characteristic value
of L of odd multiplicity. We use this corollary to show that there exists a continuum of
solution-pairs (ζ, u) ∈ Ω for the eigenvalue equation (4.1). To each of these solution-
pairs, there corresponds an equilibrium-pair (ζ, x∗). We define the equilibrium-pair,
(ζ, x∗) ∈ Z × R

7, as the collection of a parameter value, ζ, and the corresponding
equilibrium point, x∗, for that parameter value, of the malaria model (2.8).

Theorem 4.1. The model (2.8) has a continuum of equilibrium-pairs, (ζ, x∗) ∈
Z × R

7, that connects the point (ξ1, xdfe) to the hyperplane ζ = MZ in R × R
7, on

the boundary of Z × R
7, for any MZ > ξ1, where x∗ is in the positive orthant of R

7.
Here ξ1 = 1/

√
AB where A and B are defined in (A.19).

We show the proof of this theorem and related lemmas in Appendix A.2.
Theorem 4.2. The transcritical bifurcation point at ζ = ξ1 corresponds to R0 =

1. For the set of ζ for which there exists an equilibrium-pair (ζ, x∗), the corresponding
set of values for R0 includes, but is not necessarily identical to the interval, 1 < R0 <
∞. Thus, there exists at least one endemic equilibrium point of the malaria model
(2.8) for all R0 > 1.

Proof. Using the definition of ζ, (4.2), some algebraic manipulations of R0 (3.4)
produce

R0 = ζ
√
AB. (4.3)
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Thus, R0 is linearly related to ζ; and when ζ = ξ1, R0 = 1. For any R0 > 1, (4.3)
defines a corresponding ζ. We pick an MZ larger than this ζ. Then, Theorem 4.1
guarantees the existence of an endemic equilibrium point for ζ, and thereby for the
corresponding value of R0. It is possible, though not necessary, for the continuum of
equilibrium-pairs to include values of ζ < ξ1 (R0 < 1).

Typically in epidemiological models, bifurcations at R0 = 1 tend to be supercrit-
ical (i.e., positive endemic equilibria exist for R0 > 1 near the bifurcation point). In
this model (2.8), in the absence of disease-induced death (δh = 0), we prove, using the
Lyapunov-Schmidt expansion as described by Cushing (1998) [9], that the bifurcation
is supercritical (forward).

Theorem 4.3. In the absence of disease-induced death (δh = 0), the transcritical
bifurcation at R0 = 1 is supercritical (forward).

Details of this proof are in Appendix A.2.

In the general case, a subcritical (backward) bifurcation can occur for some pa-
rameter values, where near the bifurcation point, positive endemic equilibria exist for
R0 < 1. Other examples of epidemiological models with subcritical bifurcations at
R0 = 1 include those described by Castillo-Chavez and Song [6], Gómez-Acevedo and
Yi [13] and van den Driessche and Watmough [26]. The model of Ngwa and Shu [23]
only exhibits a supercritical bifurcation at R0 = 1. Although we cannot prove the
existence of a subcritical bifurcation, we show through numerical examples that it is
possible for some positive values of δh. This is important because it implies that there
can be a stable endemic equilibrium even if R0 < 1.

We use the bifurcation software program AUTO [12] to create two bifurcation
diagrams around R0 = 1 (Figure 4.1) with parameter values in Table 4.1, except for
σh, σv, and δh. σh and σv change as ζ is varied as shown in the figure; however,
their ratio, θ = σh/σv = 30 remains constant. One curve has δh as in Table 4.1,
while the other has δh = 3.419 × 10−5. The curve with δh = 3.454 × 10−4 has both
unstable and stable endemic equilibrium points. There is a subcritical bifurcation at
ζ = 7.494 × 10−4 (R0 = 1); and a saddle-node bifurcation at ζ = 7.417 × 10−4 (R0 =
0.9897). Thus a locally asymptotically stable endemic equilibrium is possible for values
of R0 below 1. Further bifurcation analysis (not presented here) indicates that as ζ is
increased to large levels, the size of the projection of the endemic equilibrium on the
fractional infected groups increases monotonically, and the equilibrium point remains
stable. For comparison we show the bifurcation diagram with δh = 3.419×10−5. Here,
we only see a stable branch of endemic equilibrium points. There is a supercritical
bifurcation at ζ = 7.209 × 10−4 (R0 = 1). There are no endemic equilibrium points
for R0 less than 1. As ζ is increased to large levels, the size of the projection of the
endemic equilibrium on the fractional infected groups increases monotonically, and
the equilibrium point remains stable.

Figure 4.2 shows the infectious human population, for two different initial condi-
tions, of the solutions to the unscaled equations (2.1) for parameter values in Table 4.1
with R0 < 1. One solution approaches the locally asymptotically stable endemic equi-
librium point, while the other approaches the locally asymptotically stable disease-free
equilibrium point.

The parameter values in Table 4.1 are within the bounds of a realistically feasible
range, except for the mosquito birth and death rates, ψv and µ1v, which have been
increased to lower R0 below 1. More realistic values are ψv = 0.13 and µ1v = 0.033
which result in (with all other parameters as in Table 4.1) R0 = 1.6. More lists of
realistic parameter values, and their references, can be found in [7] and [8]. δh =
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Fig. 4.1. Bifurcation diagrams for (2.8) showing the endemic equilibrium values for the fraction
of exposed humans, eh, plotted for the parameters in Table 4.1 (except for σv and σh which vary with
ζ) and two values of the disease-induced death rate (δh = 3.454×10−4 and δh = 3.419×10−5). For
the parameter values in Table 4.1, there are three equilibrium points in D: a locally asymptotically
stable disease-free equilibrium point, xdfe, on the boundary of the positive orthant of R

7; and two
endemic equilibrium points inside the positive orthant. Linear stability analysis shows that the
“larger” endemic equilibrium point, is locally asymptotically stable, while the “smaller” point, is
unstable. Further linear analysis with an increased value of σv = 0.7000, σh = 21.00, and all other
parameters as in Table 4.1 (with R0 = 1.155) shows that xdfe is unstable and there is one locally
asymptotically stable endemic equilibrium point.

Table 4.1

The parameter values for which there exist positive endemic equilibrium points when R0 < 1:
R0 = 0.9898. The unit of time is days.

Λh = 3.285 × 10−2

ψh = 7.666 × 10−5 ψv = 0.4000
βvh = 0.8333 βhv = 2.000 × 10−2

β̃vh = 8.333 × 10−2

σv = 0.6000 σh = 18.00
νh = 8.333 × 10−2 νv = 0.1000
γh = 3.704 × 10−3

δh = 3.454 × 10−4

ρh = 1.460 × 10−2

µ1h = 4.212 × 10−5 µ1v = 0.1429
µ2h = 1.000 × 10−7 µ2v = 2.279 × 10−4

3.454 × 10−4 corresponds to a death rate of 12.62% of infectious humans per year.

5. Summary and Conclusions. We analyzed an ordinary differential equa-
tion model for the transmission of malaria, with four variables for humans and three
variables for mosquitoes. We showed that there exists a domain where the model
is epidemiologically and mathematically well-posed. We proved the existence of an
equilibrium point with no disease, xdfe. We defined a reproductive number, R0, that
is epidemiologically accurate in that it provides the expected number of new infections
(in mosquitoes or humans) from one infectious individual (human or mosquito) over
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Fig. 4.2. Solutions of the malaria model (2.1) with parameter values defined in Table 4.1 show-
ing only the number of infectious humans, Ih, for two different initial conditions. The parameters
correspond to R0 = 0.9898. Initial condition 1 is: Sh = 400, Eh = 10, Ih = 30, Rh = 0, Sv = 1000,
Ev = 100, and Iv = 50. Initial condition 2 is: Sh = 700, Eh = 10, Ih = 30, Rh = 0, Sv = 1000,
Ev = 100, and Iv = 50. The solution for Initial Condition 1 approaches the locally asymptotically
stable endemic equilibrium point, while the solution for Initial Condition 2 approaches the locally
asymptotically stable disease-free equilibrium point.

the duration of the infectious period given that all other members of the population
are susceptible. We showed that if R0 < 1, then the disease-free equilibrium point,
xdfe, is locally asymptotically stable and if R0 > 1, then xdfe is unstable.

We also proved that an endemic equilibrium point exists for all R0 > 1 with
a transcritical bifurcation at R0 = 1. The analysis and the numerical simulations
showed that for δh = 0 (no disease-induced death), and for some small positive values
of δh, there is a supercritical transcritical bifurcation at R0 = 1 with an exchange of
stability between the disease-free equilibrium and the endemic equilibrium. For larger
values of δh, there is a subcritical transcritical bifurcation at R0 = 1, with an exchange
of stability between the endemic equilibrium and the disease-free equilibrium; and
there is a saddle-node bifurcation at R0 = R∗

0 for some R∗

0 < 1. Thus, for some
values of R0 < 1, there exist two endemic equilibrium points, the smaller of which is
unstable, while the larger is locally asymptotically stable.

Although we cannot prove in general that the endemic equilibrium point is unique
and stable for R0 > 1, numerical results for particular parameter sets suggest that
there is a unique stable endemic equilibrium point for R0 > 1. Also, from Theorem 2.1
it follows that all orbits of the malaria model (2.8) are bounded. Thus, if there were
no stable endemic equilibria in D, then there would exist a nonequilibrium attractor
(such as a limit cycle or strange attractor), though for this model we have no evidence
for nonequilibrium attractors.

The possible existence of a subcritical bifurcation at R0 = 1 and a saddle-node
bifurcation at some R∗

0 < 1, can have implications for public health, when the epi-
demiological parameters are close to those in Table 4.1. Simply reducing R0 to a
value below 1 is not always sufficient to eradicate the disease; it is now necessary to
reduce R0 to a value less than R∗

0 to ensure that there are no endemic equilibria. The
existence of a saddle-node bifurcation also implies that in some areas with endemic
malaria, it may be possible to significantly reduce prevalence or eradicate the disease
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with small increases in control programs (a small reduction in R0 so that it is less
than R∗

0). It can be possible in some areas where malaria has been eradicated, for a
slight disruption, like a change in environmental or control variables or an influx of
infectious humans or mosquitoes, for the disease to re-establish itself in the population
with a significant increase in disease prevalence (increasing R0 above R∗

0 or moving
the system into the basin of attraction of the stable endemic equilibrium).

As we have an explicit expression for R0, we can analytically evaluate its sensitiv-
ity to the different parameter values. We can also numerically evaluate the sensitivity
of the endemic equilibrium to the parameter values. This allows us to determine the
relative importance of the parameters to disease transmission and prevalence. As each
malaria intervention strategy affects different parameters to different degrees, we can
thus compare different control strategies for efficiency and effectiveness in reducing
malaria mortality and morbidity. This analysis, in the limiting case of the Chitnis
model [7] shows that malaria transmission is most sensitive to the mosquito biting
rate, and prevalence is most sensitive to the mosquito biting rate and the human
recovery rate. The sensitivity analysis for the new model (2.8) is forthcoming [8].

We are extending the model to include the effects of the environment on the
spread of malaria. Some parameters, such as the mosquito birth rate and the incuba-
tion period in mosquitoes, depend on seasonal environmental factors such as rainfall,
temperature and humidity. We can include these effects by modeling these parame-
ters as periodic functions of time. We would like to explore this periodically-forced
model for features not seen in the autonomous model, including the modifications
to the definition of the reproductive number and the endemic states. This would
provide a more accurate picture of malaria transmission and prevalence than that ob-
tained from models using parameter values that are averaged over the seasons. Other
planned improvements to the model include the addition of age and spatial structure.

An ultimate goal is to validate this model by applying it to a particular malaria-
endemic region of the world to compare the predicted endemic states with the preva-
lence data.

Appendix A. Lemmas and Proofs of Theorems.

Lemma A.1. For all equilibrium points on D∩∂R
7
+, eh = ih = rh = ev = iv = 0.

Proof. We need to show that for an equilibrium point in D, if any one of diseased
classes is zero, all the rest are also equal to zero. We show by setting the right hand
side of (2.8) equal to 0, that if any one of eh, ih, rh, ev, or iv is equal to 0, then
eh = ih = rh = ev = iv = 0. For i′h = 0, eh = 0 if and only if ih = 0.2 Similarly,
for r′h = 0, ih = 0 if and only if rh = 0. Thus, if eh = 0, ih = 0, or rh = 0, then
eh = ih = rh = 0. From e′h = 0, we see that if eh = ih = rh = 0, then iv = 0. Also,
for i′v = 0, ev = 0 if and only if iv = 0. Thus, if ev = 0 or iv = 0, then ev = iv = 0.
Finally, for e′v = 0, if ev = iv = 0, then ih = rh = 0.

A.1. Proof of Theorem 3.3. Proof. The Jacobian of the malaria model (2.8)

2As the right-hand side of (2.8b) is a quadratic function of ih, there are 2 possible solutions of
ih when i′

h
= 0 and eh = 0. However, the nonzero solution of ih is greater than 1 and is thus outside

of D.
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evaluated at xdfe is of the form:

J =





















J11 0 0 0 0 J16 0
J21 J22 0 0 0 0 0
0 J32 J33 0 0 0 0
0 J42 0 J44 0 0 0
0 J52 J53 0 J55 0 0
0 0 0 0 J65 J66 0
0 0 0 0 0 0 J77





















. (A.1)

As the fourth and seventh columns (corresponding to the total human and mosquito
populations) contain only the diagonal terms, these diagonal terms form two eigen-
values of the Jacobian:

η6 = ψh − µ1h − 2µ2hN
∗

h = −
√

(ψh − µ1h)2 + 4µ2hΛh (A.2a)

η7 = ψv − µ1v − 2µ2vN
∗

v = −(ψv − µ1v). (A.2b)

As we have assumed that ψv > µ1v, both, η6 and η7 are always negative. The other
five eigenvalues are the roots of the characteristic equation of the matrix formed by
excluding the fourth and seventh rows and columns of the Jacobian (A.1):

A5η
5 +A4η

4 +A3η
3 +A2η

2 +A1η +A0 = 0 (A.3)

with

A5 = 1

A4 = B1 +B2 +B3 +B4 +B5

A3 = B1B2 +B1B3 +B1B4 +B1B5 +B2B3 +B2B4 +B2B5 +B3B4

+B3B5 +B4B5

A2 = B1B2B3 +B1B2B4 +B1B2B5 +B1B3B4 +B1B3B5 +B1B4B5 +B2B3B4

+B2B3B5 +B2B4B5 +B3B4B5

A1 = B1B2B3B4 +B1B2B3B5 +B1B2B4B5 +B1B3B4B5 +B2B3B4B5

−B6B7B8B9

A0 = B1B2B3B4B5 − (B3B6B7B8B9 +B6B7B9B10B11)

and B1 = νh + ψh + Λh/N
∗

h , B2 = γh + δh + ψh + Λh/N
∗

h , B3 = ρh + ψh + Λh/N
∗

h ,
B4 = νv + ψv, B5 = ψv, B6 = b∗hβhv, B7 = νh, B8 = b∗vβvh, B9 = νv, B10 = γh, and

B11 = b∗vβ̃vh.
To evaluate the signs of the roots of (A.3), we first use the Routh-Hurwitz criterion

to prove that when R0 < 1, all roots of (A.3) have negative real part. Then, using
Descartes’s Rule of Sign, we prove that when R0 > 1, there is one positive real root.

The Routh-Hurwitz criterion [[18], §1.6-6(b)], for a real algebraic equation

anx
n + an−1x

n−1 + . . .+ a1x+ a0 = 0, (A.4)

states that, given an > 0, all roots have negative real part if and only if T0 = an,
T1 = an−1,

T2 =

∣

∣

∣

∣

an−1 an

an−3 an−2

∣

∣

∣

∣

, T3 =

∣

∣

∣

∣

∣

∣

an−1 an 0
an−3 an−2 an−1

an−5 an−4 an−3

∣

∣

∣

∣

∣

∣

, . . . , Tn =

∣

∣

∣

∣

∣

∣

∣

an−1 · · · 0
...

. . .
...

0 · · · a0

∣

∣

∣

∣

∣

∣

∣
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are all positive, with ai = 0 for i < 0. This is true if and only if all ai and either
all even-numbered Tk or all odd-numbered Tk are positive (Liénard-Chipart Test).
Korn and Korn [18] in §1.6-6(c) state Descartes’s Rule of Sign as: the number of
positive real roots of a real algebraic equation (A.4) is equal to the number, Na, of
sign changes in the sequence, an, an−1, . . . , a0, of coefficients, where the vanishing
terms are disregarded, or it is less than Na by a positive even integer.

We show that when R0 < 1, all the coefficients, Ai, of the characteristic equation
(A.3), and T0, T2, and T4, are positive, so by the Routh-Hurwitz criterion, all the
eigenvalues of the Jacobian (A.1) have negative real part. We then show that when
R0 > 1, there is one and only one sign change in the sequence A5, A4, . . . , A0, so
by Descartes’s Rule of Sign, there is one eigenvalue with positive real part and the
disease-free equilibrium point is unstable.

The expression for R2
0 (3.4) can be written, in terms of Bi, as

R2
0 =

B3B6B7B8B9 +B6B7B9B10B11

B1B2B3B4B5
. (A.5)

For R0 < 1, by (A.5),

B3B6B7B8B9 +B6B7B9B10B11 < B1B2B3B4B5 (A.6)

B6B7B8B9 < B1B2B4B5. (A.7)

As all the Bi are positive, A5, A4, A3 and A2 are always positive. From (A.7), we
see that A1 > 0 and from (A.6), we see that A0 > 0. Thus, for R0 < 1, all Ai are
positive. We now show that the even-numbered Tk are positive for R0 < 1. For the
fifth-degree polynomial (A.3), T0 = A5 which is always positive. T2 = A3A4 − A2A5

which we can show to be a positive sum of products of Bi’s, so T2 > 0. Lastly,

T4 = A1[A2A3A4 − (A1A
2
4 +A2

2A5)] −A0[A3(A3A4 −A2A5) − (2A1A4A5 −A0A
2
5)].

For ease of notation, we introduce

C1 = A2A3A4 − (A1A
2
4 +A2

2A5)

C2 = A3(A3A4 −A2A5) − (2A1A4A5 −A0A
2
5),

where we can show that C1 > 0 and C2 > 0, so that T4 = A1C1 −A0C2. We define

C
(1)
2 = C2 +B6B7B9B10B11.

As C
(1)
2 > C2 and A0 > 0, for T

(1)
4 = A1C1 −A0C

(1)
2 , T4 > T

(1)
4 . Similarly, we define

A
(1)
0 = A0 + (B3B6B7B8B9 +B6B7B9B10B11).

As A
(1)
0 > A0 and C

(1)
2 > 0, for T

(2)
4 = A1C1 − A

(1)
0 C

(1)
2 , T

(1)
4 > T

(2)
4 . Finally, we

define

A
(1)
1 = A1 − (B1B2B4B5 −B6B7B8B9).

As A
(1)
1 < A1 (for R0 < 1) and C1 > 0, for T

(3)
4 = A

(1)
1 C1−A(1)

0 C
(1)
2 , T

(2)
4 > T

(3)
4 . We

can show that T
(3)
4 is a sum of positive terms, so T

(3)
4 > 0. As T4 > T

(1)
4 > T

(2)
4 > T

(3)
4 ,

T4 > 0. Thus, for R0 < 1, all roots of (A.3) have negative real parts.
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When R0 > 1

B3B6B7B8B9 +B6B7B9B10B11 > B1B2B3B4B5

so A0 < 0. As A5, A4, A3, and A2 are positive, the sequence, A5, A4, A3, A2, A1, A0

has exactly one sign change. Thus, by Descartes’s Rule of Sign, (A.3) has one positive
real root when R0 > 1.

Thus, the disease-free equilibrium point, xdfe, is locally asymptotically stable if
R0 < 1 and unstable if R0 > 1. If R0 < 1, on average each infected individual infects
less than one other individual and the disease dies out. If R0 > 1, on average each
infected individual infects more than one other individual so we would expect the
disease to spread. The Jacobian of (2.8) at xdfe has one eigenvalue equal to 0 at
R0 = 1.

A.2. Proofs of Theorems and Lemmas for the Existence of Endemic

Equilibrium Points. The equilibrium equations for (2.8) are shown below in (A.8).
In this analysis, we use the terms, eh, ih, rh, Nh, ev, iv, and Nv to represent their
respective equilibrium values and not their actual values at a given time, t.

(

σvσhNvβhviv
σvNv + σhNh

)

(1 − eh − ih − rh) − (νh + ψh + Λh/Nh)eh + δhiheh = 0 (A.8a)

νheh − (γh + δh + ψh + Λh/Nh)ih + δhi
2
h = 0 (A.8b)

γhih − (ρh + ψh + Λh/Nh)rh + δhihrh = 0 (A.8c)

Λh + ψhNh − (µ1h + µ2hNh)Nh − δhihNh = 0 (A.8d)
(

σvσhNh

σvNv + σhNh

)

(

βvhih + β̃vhrh

)

(1 − ev − iv) − (νv + ψv)ev = 0 (A.8e)

νvev − ψviv = 0 (A.8f)

ψvNv − (µ1v + µ2vNv)Nv = 0 (A.8g)

We rewrite (A.8a) and (A.8e) in terms of the bifurcation parameter, ζ (4.2), and a
new parameter, θ = σh/σv, to give us

ζ

(

N∗

v + θN∗

h

Nv + θNh

)

Nvβhviv(1 − eh − ih − rh) − (νh + ψh + Λh/Nh − δhih)eh = 0(A.9a)

ζ

(

N∗

v + θN∗

h

Nv + θNh

)

Nh

(

βvhih + β̃vhrh

)

(1 − ev − iv) − (νv + ψv)ev = 0(A.9b)

We can vary the bifurcation parameter, ζ, while keeping all other parameters fixed. In
terms of the original variables, this corresponds to changing σh and σv while keeping
the ratio between them fixed. We can pick θ, the ratio between them, and sweep out
the entire parameter space.

We reduce the equilibrium equations to a two-dimensional system for eh and ev

by solving for the other variables, either explicitly as functions of the parameters,
or in terms of eh and ev. We solve (A.8g) for Nv, explicitly expressing the positive
equilibrium for the total mosquito population in terms of parameters (exactly as in
the disease-free case (3.1)).

Nv =
ψv − µ1v

µ2v

(A.10)
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Solving for iv in (A.8f) in terms of ev we find:

iv =
νv

ψv

ev. (A.11)

We write the positive equilibrium for Nh in terms of ih from (A.8d) as

Nh =
(ψh − µ1h − δhih) +

√

(ψh − µ1h − δhih)2 + 4µ2hΛh

2µ2h

. (A.12)

Using (A.12) in (A.8c), we solve for rh in terms of ih.

rh =
2γhih

2ρh + (ψh + µ1h − δhih) +
√

(ψh − µ1h − δhih)2 + 4µ2hΛh

(A.13)

Given the nonlinear nature of (A.8b), it is not feasible (or useful) to solve for ih
in terms of eh explicitly. We therefore use (A.12) to rewrite (A.8b) and define the
function eh = g(ih) as

g(ih) =
γh + δh + 1

2

(

(ψh + µ1h − δhih) +
√

(ψh − µ1h − δhih)2 + 4µ2hΛh

)

νh

ih.

We note that g(0) = 0 and label the positive constant g(1) = emax
h . As g(ih) is a

smooth function of ih with g′(ih) > 0 for ih ∈ [0, 1] and eh ∈ [0, emax
h ], there exists a

smooth function, ih = y(eh) with domain, [0, emax
h ] and range, [0, 1]. As g′(0) > 0, the

smooth function, y(eh) would extend to some small eh < 0. Substituting ih = y(eh)
into (A.12) and (A.13), we can also express Nh and rh as functions of eh.

We now introduce the bounded open subset of R
2,

Y =

{(

eh

ev

)

∈ R
2

∣

∣

∣

∣

−εh < eh < emax
h

−εv < ev < 1

}

(A.14)

for some εv > 0 and some εh > 0. By substituting (A.10), (A.11), (A.12), (A.13), and
ih = y(eh) into (A.8a) and (A.8e), we reformulate the seven equilibrium equations
(A.8) equivalently as two equations for the components (eh, ev) ∈ Y . To place these
two equations into the Rabinowitz form (4.1), we need to determine lower order terms.
We rewrite (A.8b) as f(eh, ih) = 0 where f(eh, ih) =

νheh −
[

γh + δh + 1
2

(

(ψh + µ1h − δhih) +
√

(ψh − µ1h − δhih)2 + 4µ2hΛh

)]

ih,

and use implicit differentiation to write ih = y(eh) as a Taylor polynomial of the form

ih = y1eh + O(e2h) (A.15)

where

y1 = −
∂f
∂eh

∂f
∂ih

∣

∣

∣

∣

∣

ih=eh=0

=
νh

γh + δh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

) .

Finally, we substitute the Taylor approximation for ih (A.15) into rh (A.13) and
Nh (A.12), and then all three, along with iv (A.11) and Nv (A.10) into the equilibrium
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equations for eh (A.9a) and ev (A.9b), to provide first order approximations to the
equilibrium equations:

(

0
0

)

=

(

f1 10 f1 01

f2 10 f2 01

)(

eh

ev

)

+ O
(

(

eh

ev

)2
)

(A.16)

where

f1 10 = −
[

νh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)]

(A.17a)

f1 01 = ζ · νvβhv(ψv − µ1v)

ψvµ2v

(A.17b)

f2 10 = ζ ·
νh

(

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4Λhµ2h

)

2µ2h

(

γh + δh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)) (A.17c)

×



βvh +
γhβ̃vh

ρh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)





f2 01 = − (ψv + νv) . (A.17d)

To apply Corollary 1.12 of Rabinowitz [24], we algebraically manipulate (A.16)
to produce

u = ζLu+ h(ζ, u) (A.18)

where

u =

(

eh

ev

)

and L =

(

0 A
B 0

)

with

A =
νvβhv(ψv − µ1v)

ψvµ2v

(

νh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)) (A.19a)

B =



βvh +
γhβ̃vh

ρh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)



× (A.19b)

νh

(

(ψh − µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

)

2µ2h(ψv + νv)
(

γh + δh + 1
2

(

(ψh + µ1h) +
√

(ψh − µ1h)2 + 4µ2hΛh

))

and h(ζ, u) is O(u2). The matrix, L, has 2 distinct eigenvalues: ±
√
AB. Charac-

teristic values of a matrix are the reciprocals of its eigenvalues. We denote the two
characteristic values of L by ξ1 = 1/

√
AB and ξ2 = −1/

√
AB. As both A and B are

always positive (because we have assumed that ψv > µ1v), ξ1 is real and corresponds
to the dominant eigenvalue of L. The right and left eigenvectors corresponding to ξ1
are, respectively,

v =

( √
A√
B

)

and w =
( √

B
√
A
)

. (A.20)
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For MZ > ξ1, as 0 ∈ Y , (ξ1, 0) ∈ Ω. By Corollary 1.12 of Rabinowitz [24], we
know that there is a continuum of solution-pairs (ζ, u) ∈ Ω, whose closure contains
the point (ξ1, 0), that either meets the boundary of Ω, ∂Ω, or the point (ξ2, 0). We
denote the continuum of solution-pairs emanating from (ξ1, 0) by C1 where C1 ⊂ Ω;
and from (ξ2, 0) by C2 where C2 ⊂ Ω. We introduce the sets

Z1 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C1} (A.21a)

U1 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C1} (A.21b)

Z2 = {ζ ∈ Z| ∃u such that (ζ, u) ∈ C2} (A.21c)

U2 = {u ∈ Y | ∃ζ such that (ζ, u) ∈ C2} . (A.21d)

We denote the part of Y in the positive quadrant of, R
2, by Y + = {(eh, ev) ∈ Y | eh >

0 and ev > 0} and the internal boundary of Y + by

∂Y + =







(

eh

ev

)

∈ Y

∣

∣

∣

∣

∣

∣





eh > 0
and
ev = 0



 or





eh = 0
and
ev > 0



 or





eh = 0
and
ev = 0











.

We can determine the initial direction of the continua of solution-pairs, C1 and
C2, using the Lyapunov-Schmidt expansion, as described by Cushing [9]. Although
we only show the proofs for the expansion of C1 around the bifurcation point at ζ = ξ1
in Lemmas A.2 and A.3, the results for C2 around ζ = ξ2 are similar. We begin by
expanding the terms of the nonlinear eigenvalue equation (A.18) about the bifurcation
point, (ξ1, 0). The expanded variables are

u = 0 + εu(1) + ε2u(2) + . . . (A.22a)

ζ = ξ1 + εζ1 + ε2ζ2 + . . . (A.22b)

h(ζ, u) = h(ξ1 + εζ1 + ε2ζ2 + . . . , εu(1) + ε2u(2) + . . .) (A.22c)

= ε2h2(ξ1, u
(1)) + . . .

We substitute the expansions (A.22) into the eigenvalue equation (A.18) and evaluate
at different orders of ε. Evaluating the substitution of the expansions (A.22) into the
eigenvalue equation (A.18) at O(ε0) produces 0 = 0 which gives us no information.

Lemma A.2. The initial direction of the branch of equilibrium points, u(1), near
the bifurcation point (ξ1, 0), is equal to the right eigenvector of L corresponding to the
characteristic value, ξ1.

Proof. Evaluating the substitution of the expansions (A.22) into the eigenvalue
equation (A.18) at O(ε1) we obtain u(1) = ξ1Lu

(1). This implies that u(1) is the
right eigenvector of L corresponding to the eigenvalue 1/ξ1, v (A.20). Thus, close to
the bifurcation point, the equilibrium point can be approximated by eh = ε

√
A and

ev = ε
√
B.

Lemma A.3. The bifurcation at ζ = ξ1 of the nonlinear eigenvalue equation
(A.18) is supercritical if ζ1 > 0 and subcritical if ζ1 < 0 where

ζ1 = −w · h2

w · Lv (A.23)

where v and w are the right and left eigenvectors of L corresponding to the character-
istic value ξ1, respectively.
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Proof. Evaluating the substitution of the expansions (A.22) into the eigenvalue
equation (A.18) at O(ε2) we obtain u(2) = ξ1Lu

(2)+ζ1Lu
(1)+h2 which we can rewrite

as

(I − ξ1L)u(2) = ζ1Lv + h2 (A.24)

where I is the 2 × 2 identity matrix. As ξ1 is a characteristic value of L, (I − ξ1L)
is a singular matrix. Thus, for (A.24) to have a solution, ζ1Lv + h2 must be in the
range of (I − ξ1L), i.e., it must be orthogonal to the null space of the adjoint of
(I− ξ1L). The null space of the adjoint of (I− ξ1L) is spanned by the left eigenvector
of L (corresponding to the eigenvalue 1/ξ1), w (A.20). The Fredholm condition for
the solvability of (A.24) is w · (ζ1Lv + h2) = 0. Solving for ζ1 provides (A.23). If
ζ1 is positive, then for small positive ε, u > 0 and ζ > ξ1 and the bifurcation is
supercritical. Similarly, if ζ1 is negative, then for small positive ε, u > 0 and ζ < ξ1
and the bifurcation is subcritical.

Lemma A.4. For all u ∈ U1, eh > 0 and ev > 0.
Proof. By Lemma A.1, there are no equilibrium points on ∂Y + other than eh =

ev = 0, so U1 ∩ ∂Y + = 0. We know from Lemma A.2 that close to the bifurcation
point, (ξ1, 0), the direction of U1 is equal to v, the right eigenvector corresponding to
the characteristic value, ξ1. As v contains only positive terms, U1 is entirely contained
in Y +. Thus, for all u ∈ U1, eh > 0 and ev > 0.

Lemma A.5. The point, u = 0 ∈ Y corresponds to xdfe ∈ R
7 (on the boundary

of the positive orthant of R
7). For every solution-pair (ζ, u) ∈ C1, there corresponds

one equilibrium-pair (ζ, x∗) ∈ Z × R
7 where x∗ is in the positive orthant of R

7.
Proof. We first show that u = 0 corresponds to xdfe. As eh = ev = 0, by

Theorem 3.1 we know that the only possible equilibrium point is xdfe. We now
show that for every ζ ∈ Z1 there exists an x∗ in the positive orthant of R

7 for the
corresponding u ∈ U1. By Lemma A.4, we know that eh > 0 and ev > 0. We now
need to show that for every positive eh and ev, there exist corresponding positive ih,
rh, iv, Nh, and Nv. By looking at the equilibrium equation for iv (A.11), we see
that for every positive ev there exists a positive iv. The equilibrium equation for
Nv has a positive and bounded solution depending only on parameter values (A.10).
From ih = y(eh), we see that for every positive eh, there exists a positive ih. The
equilibrium equations for rh (A.13) and Nh (A.12) show that for every positive ih
there exists a positive rh and Nh, respectively.

Lemma A.6. The set, U1, does not meet the boundary of Y .
Proof. As Lemma A.4 shows us that for all u ∈ U1, eh > 0 and ev > 0, we need

to show that eh < emax
h and ev < 1. By Lemma A.5, we know that all state variables

are positive. Therefore, for (A.8e) to have a solution, ev + iv < 1 so ev < 1. From
the properties of eh = g(ih), we know that as ih increases, eh increases monotonically,
reaching emax

h at ih = 1. However, we have already shown that when eh + ih +rh = 1,
e′h + i′h +r′h < 0, thus there can be no equilibrium point at eh + ih +rh = 1. Therefore,
ih is always less than 1 and eh is always less than emax

h .
Proof. [Proof of Theorem 4.1] As shown in Lemma A.4, U1 ∩ ∂Y + = 0 and U1

is entirely contained in Y +. We can similarly show that U2 is entirely outside of Y +

because the right eigenvector corresponding to ξ2 is ( −
√
A

√
B )T. Therefore, C1

and C2 do not intersect and by Corollary 1.12 of Rabinowitz [24], C1 meets ∂Ω. By
Lemma A.6, the set U1 does not meet the boundary of Y , so C1 only meets ∂Ω at
ζ = MZ .

By Lemma A.5, for every u ∈ U1, there corresponds an x∗ in the positive orthant
of R

7; and u = 0 corresponds to xdfe (on the boundary of the positive orthant of R
7).
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Thus, there exists a continuum of equilibrium-pairs (ζ, x∗) ∈ Z × R
7 that connects

the point (ξ1, xdfe) to the hyperplane ζ = MZ in R × R
7.

Proof. [Proof of Theorem 4.3] When δh = 0, we can explicitly evaluate h(ζ, u) in
the nonlinear eigenvalue equation (A.18) from the equilibrium equations (A.8) as

h = ζ

(

C(δh=0)ehev

D(δh=0)ehev

)

(A.25)

since the coefficients of all the other higher order terms are zero. Although we do
not show the explicit representations for C(δh=0) and D(δh=0), they are both negative.
From (A.25) and (A.22) we can evaluate the second order expansion,

h2 = ξ1

(

C(δh=0)

√
A
√
B

D(δh=0)

√
A
√
B

)

=

(

C(δh=0)

D(δh=0)

)

. (A.26)

As h2 contains only negative terms and w, v and L contain only nonnegative terms,
(A.23) implies that ζ1 is positive. Thus, by Lemma A.3, with no disease-induced
death, for any positive values of the other parameters there is a supercritical bifurca-
tion at R0 = 1.
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